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Abstract. The SIS model of Hadeler and Castillo-Chavez [9] with a constant
transfer rate of susceptibles into a partially protected state has been modified
to take into account vaccination at birth. The model shows backward bifur-
cation (existence of multiple endemic stationary states) for certain values of
parameters. Parameter values ensuring the existence and nonexistence of en-
demic equilibria have been discussed. Local and global stability of equilibria
have been investigated. The minimum effort required to eradicate the infection
has been determined.

1. Introduction. A well known concept in mathematical epidemiology, known as
the basic reproduction number and denoted by R0, plays a key role in evaluating
controlling infectious diseases. For models without backward bifurcation it has the
property that for R0 < 1 the infection disappears while for R0 > 1 the infection
persists. Recently it was shown, however, that there are many models for which
the basic reproduction number can not be used as a threshold value in the infection
eradication process (see for example [6], [8], [9], [12], [13], [14], [15], [17], [20], and
[21]). This is because of the appearance of multiple positive infected stationary
states for R0 < 1. Hence another concept (satisfying the property that if it is less
than one then the infection disappears while if it is bigger than one the infection
persists) has to be found. Safan et al [18] introduced such a concept (denoted by R).
It is the minimum effort required to eradicate infections. It can also be interpreted
as a reproduction number.

In general vaccines do not fully protect an individual against infections. Nev-
ertheless, partially protective effective (imperfect) vaccines may be used to protect
both individuals and whole populations [7]. We aim in this work to see, through
mathematical modelling, whether a public health strategy based solely on the use
of an imperfect vaccine can lead to the effective control of the infection under con-
sideration. In other words, is there a feasible solution for the inequality R < 1
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in terms of the vaccination coverage p (the proportion of newborns who get vacci-
nated immediately after birth). Our analysis is motivated by the model introduced
by Hadeler and Castillo-Chavez [9]. We consider a model that is a modification of
theirs to the case when a proportion p of newborns is vaccinated immediately after
birth. If the vaccine gives only partial protection, then the relative susceptibility of
vaccinated individuals compared to unvaccinated individuals is lower than one.

The paper is organized as follows. We introduce the model in Section 2. In Sec-
tion 3 we study the existence and stability of the trivial stationary state (infection
free equilibrium). Both the bifurcation equation and the direction of bifurcation
are shown in Section 4. In Section 5 we study the conditions on parameters for
which positive equilibria exist and we evaluate the minimal/critical contact rate
(the supremum of all values of the contact rate for which no feasible infected equi-
librium exists). Local stability of the infected stationary states is shown in Section 6
while the global stability of equilibria is shown in Section 7. In Section 8 we estimate
the minimum effort required to eradicate the infection and we find the constraints,
under which it is possible to eradicate the infection by vaccination only. A summary
and conclusion is shown in Section 9.

2. The model. The present model is based on the model by Hadeler and Castillo-
Chavez [9], if we allow the vaccine to be given to a proportion p of the newborns
immediately after birth rather than vaccinating susceptible individuals with rate ψ
(according to their notation). The total population is divided into three classess:
the first class is that of susceptibles of type one whose proportion in the total
population is S1; the second class is that of infected individuals whose proportion
in the total population is I; and the last one is that of susceptibles of type two whose
proportion in the total population is S2. Infected individuals are those being able to
transmit the infection. The transitions between the states of the model are shown
in Figure 1. Unvaccinated individuals are assumed to be born as susceptibles of
type one with rate µ. All individuals are assumed to die according to the mortality
rate µ. A proportion p, 0 ≤ p ≤ 1, of the newborns is assumed to get vaccinated
immediately after birth. Type one susceptible individuals can either die or get
infected with force of infection βI. Infected individuals can either die or recover
with rate α. At recovery, individuals may either pass into the class of type two
susceptible individuals at rate gα, 0 ≤ g < 1, or return to the class of type one
susceptible individuals at rate (1 − g)α. Individuals in the class S2 can either die
or get infected with force of infection, different from the previous one, rβI where
r is the relative susceptibility of individuals in the compartment S2 to those in the
compartment S1. The mathematical representation of the model is

Ṡ1 = (1 − p)µ− (βI + µ)S1 + (1 − g)αI,

Ṡ2 = pµ− (rβI + µ)S2 + gαI, (1)

İ = β(S1 + rS2)I − (α+ µ)I,

where the dot means the derivative with respect to time, all parameters are non-
negative, and 0 ≤ r < 1.

The present model is a special case of equation (6) in the paper by Hadeler and
van den Driessche [10]. Here we set ψ = δ = 0. Their κ is our p and their σ is our
g. Their β1 is our β, while their β2 is our rβ. They concentrate on the effect of ψ
for the existence of backward bifurcation. They do not seem to be aware that even
for ψ = δ = 0 there is a possibility of backward bifurcation. Another version of
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Hadeler and van den Driessche [10] has been considered by Reluga and Medlock [17]
where they focused on the effect of resistance type (behavioral or immunological)
for the existence of backward bifurcation. However, we concentrate here on the
possibility for eradicating the infection, by vaccination solely, if the model shows
backward bifurcation. Moreover, we determine exactly the parameter space where
the backward bifurcation occurs and we study the global stability of the solutions.

S
1 I

S
2

µ µ µ

(1−p) µ p µ

(1−g) α g α

r β Iβ I

Figure 1. Transitions between the states of the model.

3. Existence and local stability of the infection-free equilibrium. We de-
termine the stationary points by setting the derivatives equal to zero which gives
the system of equations

0 = (1 − p)µ− (βĪ + µ)S̄1 + (1 − g)αĪ,

0 = pµ− (rβĪ + µ)S̄2 + gαĪ, (2)

0 = β(S̄1 + rS̄2)Ī − (α + µ)Ī ,

1 = S̄1 + S̄2 + Ī .

The stationary state in the absence of the infection (i.e., Ī = 0) is unique and
reads E0 = (1 − p, p, 0)′ where ′ represents vector transpose. Since 0 ≤ p ≤ 1, then
E0 exists always.

To establish the local stability of the infection-free equilibrium, we evaluate the
Jacobian matrix at E0 and find its characteristic equation

Φ(λ) = ((1 − p+ rp)β − (α+ µ) − λ) (µ+ λ)2 = 0. (3)

The eigenvalues are λ1 = λ2 = −µ < 0 and λ3 = (1− p+ rp)β − (α+ µ) < 0 if and
only if

Rv :=
β

α+ µ
(1 − p+ rp) < 1.

The quantity Rv can be interpreted as the vaccine reproduction number. We intro-
duce the following definitions.

Definition 3.1. The basic reproduction number R0: It is the expected number
of secondary cases produced by an infected case, during the infectious period, when
introduced into a totally susceptible population. Mathematically, it is expressed as

R0 =
β

α+ µ
. (4)
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It is the product of the successful contact rate between type one susceptible
individuals and infected individuals and the length of the infectious period.

Definition 3.2. The vaccine reproduction number Rv: It is the expected
number of secondary cases produced by one case, during the infectious period,
when it is introduced into an infection-free population, at equilibrium, in which a
proportion p of newborns gets vaccinated immediately after birth. Mathematically,
it is

Rv =
β

α+ µ
(1 − p+ rp) = (1 − p+ rp)R0. (5)

It can also be interpreted as the product of the basic reproduction number R0 and
a quantity representing the average susceptibility in the total population. Another
way to interpret Rv is to explain it as the average of two reproduction numbers.
A third way to interpret it is to say, it is the ratio between the successful contact
rate β and the zero successful contact rate, say β0, where β0 means the successful
contact rate when the endemic prevalence of infected individuals is reduced to be
zero.

Definition 3.3. Zero contact rate β0: The zero contact rate β0 is the value of
the contact rate at which the endemic prevalence of infected individuals is zero.
This is determined by solving (8) with respect to β when Ī has been cancelled.
Therefore,

β0 =
(α+ µ)

(1 − p+ rp)
. (6)

Definition 3.4. The episode reproduction number Re [18]: It is the expected
number of secondary episodes produced by one episode when the sizes of the sub-
populations are given by the fractions (S1, S2, I). It is given by

Re =
β

α+ µ
(S1 + rS2) . (7)

From the third equation in (1) we notice that the episode reproduction number
equals one in the steady state. If Re > 1, then I initially increases while if Re < 1
it initially decreases. When the population is completely free from the infection,
the vaccine reproduction number coincides with the episode reproduction number.

Proposition 1. The infection free equilibrium E0 = (1 − p, p, 0)′ is locally asymp-
totically stable if and only if the vaccine reproduction number Rv is less than one.

4. Endemic equilibria, bifurcation equation and the direction of bifurca-
tion. We want a simple characterization of the endemic stationary solutions. In
(2) we assume Ī 6= 0 and we eliminate the variables S̄1 and S̄2. Then we arrive at
a scalar equation for the variable Ī

0 = F (β, Ī) = rβ2Ī2+((r+g−rg)α+rµ+µ−rβ)βĪ+µ(α+µ−(1−p+rp)β), (8)

which can be seen as a bifurcation equation. Once a solution Ī > 0 of this equation
has been obtained, we find positive S̄2 and S̄1 from the other equations. Hence
we have a one-to-one correspondence between the positive solutions of (8) and the
endemic stationary points.

We keep the parameters µ, α, r, g and p fixed and discuss the equation in terms
of β and Ī. Eventually we are interested in the solutions Ī for a given value of β
and in the global dependence of Ī depending on β.
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The function F is a polynomial of order four in two variables β and Ī. Now we
describe qualitative features of the null set. For fixed β, the polynomial is quadratic
in Ī and hence there are at most two solutions Ī. For fixed Ī, the polynomial is
quadratic in β and hence there are at most two solutions β. For β = 0 there are
no solutions. For large β, i.e., |β| → ∞, the asymptotes are Ī ∼ 0 and Ī ∼ 1. For
Ī = 0, the only solution is positive, β = β0.

Hence the curve described by F (β, Ī) = 0 has at least two branches, one in β > 0
and one in β < 0. There are only two branches because otherwise there would be
more than two solutions for some given Ī. The negative branch looks like a hairpin
in 0 < Ī < 1 with asymptotes 0 and 1, the positive branch is another hairpin which
is asymptotic to 1 from below and also asymptotic to 0 from below. It crosses the
β axis at Ī = 0, β = β0 where β0 is the zero contact rate.
Of course only the positive branch is of interest with respect to the epidemiological
problem.

At β = β0, Ī = 0 we compute the direction of bifurcation:

dĪ

dβ
= −Fβ

FĪ

whereby

Fβ |(β0,0) = −µ(1 − p+ rp) < 0,

FĪ |(β0,0) = β0[(r + g − rg)α + rµ+ µ− rβ0].

Using the definition of β0, we thus find

dĪ

dβ
=

µ(1 − p+ rp)2

β0[(1 − p+ rp)(µ+ (1 − r)gα) − r(1 − r)(µ + α)p]
.

Hence we have a forward bifurcation if

(1 − p+ rp)(µ + (1 − r)gα) − r(1 − r)(µ + α)p > 0 (9)

and a backward bifurcation if

(1 − p+ rp)(µ+ (1 − r)gα) − r(1 − r)(µ + α)p < 0. (10)

We show the following proposition.

Proposition 2. The condition (10) for backward bifurcation is equivalent with the
following set of inequalities:

0 < r < r1 :=
(1 − g)α

µ+ (1 − g)α
, (11)

p > p := 1/

(

1 +
r((1 − g)α+ µ)

(1 − r)gα+ µ

(

(1 − g)α

(1 − g)α+ µ
− r

))

. (12)

The inequality (11) ensure that 0 < p < 1. Figure (2) shows the areas in the plane
(r, p) in which the direction of bifurcation is backward as well as that in which it is
forward.
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Figure 2. The (r, p) plane is divided according to the direction
of bifurcation. The curves have been drawn with parameter values
α = 10 per year, µ = 0.015 per year, and g varying from 0 to
0.95 as explained in the legend on the left. Above any curve the
bifurcation is backward while below it the bifurcation is forward
(part (a)). Part (b) is a zoom in for the right narrow corner of part
(a).
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Figure 3. The polynomial F (I) = AI2 +BI+C = 0 for different
values of the parameters. All curves have been done with parameter
values: α = 10 per year, µ = 0.015 per year, g = 0.2, r = 0.499,
p = 0.8, and β as it would be stated in each part. Part (a) shows
that F (I) = 0 has no root in the interval (0, 1] where the curves
have been drawn with β values 8 per year for the solid line and
12.56 per year for the broken line. However, part (b) shows that
it has a unique root in the mentioned interval where the curve has
been drawn with β = 17 per year , and part (c) shows that it can
have two different solutions (the dashed-dotted line corresponding
to β = 12.7 per year) which can decline to coincide and show two
equal roots (the solid curve corresponding to β = β⋆ = 12.5977 per
year).
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5. Existence of the endemic equilibria and the critical contact rate. Equa-
tion (8) can be considered as a polynomial of the second degree in the proportion
Ī, if we consider the model parameters to be fixed. Therefore,

0 = F (Ī) = rβ2Ī2 +((r+g−rg)α+rµ+µ−rβ)βĪ +µ(α+µ− (1−p+rp)β). (13)

We notice that

F (1) = µ(α + µ) + ((g + (1 − g)r)α + (p+ (1 − p)r)µ)β,

F (0) = (α + µ− (1 − p+ rp)β)µ. (14)

It is clear that F (1) > 0 for all parameter values, but F (0) can be positive or
negative according to the values of the parameters. Since F is a polynomial of
degree two in Ī ∈ [0, 1] and F (1) > 0, hence the number of roots of (13) depends
on the sign of F (0). Therefore, we have the following proposition:

Proposition 3. In the presence of backward bifurcation, the following cases hold:
i) If F (0) ≤ 0, then there is a unique endemic equilibrium in addition to the infection
free equilibrium (see Figure 3(b)).

ii) If F (0) > 0, dF
dI

(0) < 0 and F (I⋆) ≤ 0 where dF (I⋆)
dI

= 0, then there are two
endemic equilibria in addition to the infection-free equilibrium (see Figure 3(c), the
dashed-dotted line). These two endemic equilibria coincide when F (I⋆) = 0 (see
Figure 3(c), the solid line). The point, in the plane (β, I), corresponding to this
coincidence is called the turning point [19].
iii) Otherwise, the infection free equilibrium is unique and no endemic state exists
(see Figure 3(a)).

The first item of proposition 3 implies that β ≥ β0 := (α+ µ)/(1 − p+ rp), i.e.,

Rv :=
β

α+ µ
(1 − p+ rp) ≥ 1. (15)

On the other hand, we notice that F (0) < 0 iff β < β0, while dF
dI

(0) < 0 iff
β > (µ+ rµ + (r + g − rg)α)/r. However, F (I⋆) ≤ 0 iff

r2β2 − 2 ((1 − (1 − r)(1 − g))α− (1 − r)(1 − 2p)µ) rβ + (µ+ rµ+ (r + g − rg)α)
2

−4rµ(α+ µ) ≥ 0.
Collecting these three conditions together implies that β1

⋆ ≤ β < β0 where

β1
⋆ =

1

r
{rα + (1 − r)(gα + (2p− 1)µ)

+ 2
√

(1 − r)µ(((1 − p)µ+ (1 − g)α)pr − (1 − p)(pµ+ gα))}. (16)

Thus for β ∈ [β1
⋆, β0), there are two positive solutions for (13) which are given by

Ī1 =
−B −

√
B2 − 4AC

2A
, (17)

Ī2 =
−B +

√
B2 − 4AC

2A
, (18)

A = rβ2,

B = (µ+ rµ− rβ + (r + (1 − r)g)α) β, (19)

C = (α+ µ− (1 − p+ rp)β) µ.

The equality in (15) corresponds to the case when Ī1 declines to zero, while the
equality in (16) corresponds to the turning point at which both Ī1 and Ī2 coalesce
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and coincide with I⋆ = −B/(2A).
The third item of the proposition corresponds to the case β < β1

⋆. Hence we
show the following proposition.

Proposition 4. In the presence of backward bifurcation, the following cases hold:
i) If β ≥ β0, then there is a unique endemic equilibrium in addition to the infection-
free equilibrium.
ii) If β1

⋆ ≤ β < β0 and (0 < r < r1&p > p1 or r > r2&p < p2), then there are two
endemic equilibria in addition to the infection-free equilibrium. These two endemic
equilibria coincide when F (I⋆) = 0. The point, in the plane (β, I), corresponding
to this coincidence is called the turning point [19].
iii) If 0 < β < β1

⋆, then the infection-free equilibrium is unique and no endemic
state exists.

Let us now consider the case when the direction of bifurcation is forward (i.e.,
when (11) and (12) do not hold. In this case the value Ī at the turning point is
negative and hence β⋆ > β0 has no biological meaning. However, in the case of
backward bifurcation we have β⋆ < β0 and the corresponding value I⋆ is positive.
In this case β⋆ is the critical (minimal) contact rate for which there are infected sta-
tionary solutions. Now it makes sense to define the critical contact rate comprising
both cases of backward and forward bifurcation.

Definition 5.1. The critical contact rate β⋆: It is the value of the minimum
contact rate at which the endemic prevalence of infected individuals is positive, i.e.,
it is the contact rate separating between nonexistence and existence of endemic
states. Therefore

β⋆ =

{

β1
⋆ if the bifurcation is backward,

β0 if the bifurcation is forward.
(20)

6. Local stability of the endemic equilibria. To establish the stability of the
endemic solutions, we reduce model (1) to get a two-dimensional one. Assume that
the size of the population is equal to the equilibrium value 1, then we can use
S2 = 1 − S1 − I in the last equation of (1) to get the reduced model

Ṡ1 = µ(1 − p) − (µ+ βI)S1 + α(1 − g)I,

İ = β(r + (1 − r)S1 − rI)I − (α+ µ)I. (21)

This model has the trivial stationary state Ē0 = (1 − p, 0)′ which corresponds to
the infection-free equilibrium E0 of the original model (1). The endemic equilibria
of (21) satisfy (13) and are given by Ē1 = (S11, I1)

′, and Ē2 = (S12, I2)
′ where

S11,12 =
(α + µ− rβ) + rβI1,2

(1 − r)β
. (22)

Now for a general equilibrium (S̄1, Ī)
′, assume that we make a small perturbation

(x(t), y(t))′. Therefore, the linearized system of (21) reads

ẋ(t) = −(µ+ βĪ)x(t) +
(

(1 − g)α− βS̄1

)

y(t),

ẏ(t) = (1 − r)βĪx(t) +
(

(1 − r)βS̄1 + rβ(1 − 2Ī) − (α+ µ)
)

y(t).

It can be written in matrix form as

d

dt

(

x

y

)

=

(

−(µ+ βĪ) (1 − g)α− βS̄1

(1 − r)βĪ (1 − r)βS̄1 + rβ(1 − 2Ī) − (α+ µ)

)(

x

y

)

. (23)
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We denote the coefficient matrix by J . Hence the characteristic equation of J is

λ2 − tr(J)λ + det(J) = 0, (24)

where, using (22)

tr(J) = −(µ+ (1 + r)βĪ) < 0, (25)

and

det(J) = Ī
(

2rβ2Ī + β(µ+ rµ− rβ + (r + g − rg)α)
)

= Ī
(

2AĪ +B
)

= ∓Ī
√

B2 − 4AC

=

{

< 0 if Ī = I1,

> 0 if Ī = I2.

Therefore, we get the following proposition:

Proposition 5. The endemic equilibrium Ē1 = (S11, I1)
′ is unstable whenever it

exists, while the other one Ē2 = (S12, I2)
′ is locally asymptotically stable whenever

it exists.

7. Global stability of the equilibria. Let us consider the reduced model (21).
It is easy to check that the stable manifold of Ē0 is on the S1-axis. If S1 = 0,
then Ṡ1 = µ(1 − p) + α(1 − g)I > 0 for I > 0. Therefore, the first quadrant and
consequently the set Ω := (S1, I) : S1 ≥ 0, I ≥ 0, S1 + I ≤ 1 are positively invariant
regions for the system (21), for any solution of (21) starting in the interior of Ω.
Hence the ω−limit set of its trajectory must be contained in Ω. Assume that

X(S1, I) = µ(1 − p) − (µ+ βI)S1 + α(1 − g)I,

Y (S1, I) = β(r + (1 − r)S1 − rI)I − (α+ µ)I,

and consider the Dulac function D = 1
I
, where I > 0. Hence

∂(DX)

∂S1
+
∂(DY )

∂I
= −

(

rβ +
µ+ βI

I

)

< 0.

Therefore, using Dulacs criterion [16], the reduced model (21) has no limit cycle in
the first quadrant.

Now, since for β > β0 the system (21) has a unique endemic state Ē2 = (S12, I2)
′

(which is locally asymptotically stable) in addition to the unstable infection-free
equilibrium Ē0 = (1− p, 0)′, then (taking into account the previous properties) the
local asymptotic stability implies the global stability of Ē2 for β ≥ β0. Similarly,
since the infection-free equilibrium Ē0 = (1 − p, 0)′ is unique and locally asymp-
totically stable for β < β⋆, then it is globally asymptotically stable provided that
β < β⋆. Therefore, we summarize our results in the following proposition:

Proposition 6. For the reduced model (21) and therefore the original model (1)
the following items hold:
i) If β < β⋆, then the infection-free equilibrium is unique and globally asymptotically
stable.
ii) For β⋆ ≤ β < β0, there are two positive stationary states in addition to the
infection free equilibrium which is locally asymptotically stable as well as the higher
positive infected stationary solution, while the lower positive infected solution (lying
in between) is unstable.
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iii) For β0 < β, there is a unique and globally asymptotically stable positive infected
stationary state in addition to the unstable infection-free equilibrium.

8. The minimum eradication effort. Safan et al [18] introduced a method to
evaluate the minimum effort required to eradicate infections for a model with back-
ward bifurcation. The method depends on determining the episode reproduction
number at the turning point, i.e., the point in the plane (β, I) separating between
nonexistence and existence of endemic states E⋆ = (S1

⋆, I⋆, S2
⋆) where

I⋆ =

{

= 0 if β⋆ = β0,

= rβ⋆
−µ−rµ−(g+(1−g)r)α

2rβ⋆
if β⋆ = β1

⋆ < β0,
(26)

S1
⋆ =

α+ µ− rβ⋆(1 − I⋆)

(1 − r)β⋆
, (27)

S2
⋆ = 1 − S1

⋆ − I⋆. (28)

Hence

Re(β, S1
⋆, S2

⋆) =
β

α+ µ
(S1

⋆ + rS2
⋆)

=
β

α+ µ
((1 − r)S1

⋆ + r(1 − I⋆))

=
β

α+ µ

(

α+ µ

β⋆
− r(1 − I⋆) + r(1 − I⋆)

)

=
β

β⋆
.

Therefore we show the following proposition:

Proposition 7. The minimum effort required to eradicate the infection is given by

R =
β

β⋆
. (29)

=

{

β
β0

= Rv if the bifurcation direction is forward,
β

β1
⋆ if the bifurcation direction is backward.

(30)

Hence the ratio β/β⋆ can be interpreted as a reproduction number and eradicating
the infection requires a reduction of R to a value slightly less than one. However,
the question now is how to reduce R to below one. Can we do it by vaccination
only or do we need additional efforts? This can be clarified if we solve the inequality
R < 1 with respect to p ∈ [0, 1]. We hae three cases:

Case I: r = 0
In this case the bifurcation is always forward and therefore, R = β

β0

= (1−p)β
α+µ

< 1

iff 1− p < 1
R0

. Therefore, the infection can be eradicated from the population if we

vaccinate a proportion (of the newborns) slightly higher than 1 − 1
R0

.

Case II: 0 < r < r1 := (1−g)α
µ+(1−g)α < 1

In this case the model shows backward bifurcation. To eradicate the infection we
simply seek strategies to reduce the reproduction number

R =

{

β
β0

= Rv if the bifurcation direction is forward,
β

β1
⋆ if the bifurcation direction is backward
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Figure 4. Bifurcation diagram in the (β, p) plane. The solid line
represents p0 as a function of β, while the dashed-dotted line rep-
resents p⋆ as a function of β. The parameter values being cho-
sen are α = 10 per year, µ = 0.015 per year, g = 0.2, and
r = 0.499 < 0.9981 = r2. The numbers 0, 1, and 2 denote respec-
tively to the number of persistent solutions in the corresponding
areas.

to a value slightly less than one. To do so, we consider p as a function of the
successful contact rate β. Therefore, we solve equations (6) and (16) to, respectively,
get

p0 =
1

1 − r

(

1 − α+ µ

β

)

=
1

1 − r

(

1 − 1

R0

)

(31)

and

p⋆
1 =

(µ+ rµ− rβ + (r + g − rg)α)2 − 4rµ(α + µ− β)

4r(1 − r)µβ
(32)

which is well defined if and only if

β <
gα+ (

√

(1 − r)µ +
√

(1 − g)rα)2

r
:= β1. (33)

Hence the correspondence of (20) is

p⋆ =

{

p1
⋆ if β < β < β1,

p0 if α+ µ < β < β.
(34)

The inequality R < 1 corresponds to p > p⋆; see figure (4) for more explanation.
Hence if β < β1, then vaccinating a proportion p slightly higher than p⋆ of the
newborns immediately after birth is sufficient to eradicate the infection. However
if β > β1, then there is no feasible p sufficient to reduce R below 1. Therefore,
vaccination solely can not be used to eradicate the infection, but we have apply ad-
ditional control measures which reduce the transmission rate β below β1 and then
vaccinate a proportion p of the newborns slightly above p⋆ in order to eradicate the
infection.

Case III: r1 := (1−g)α
µ+(1−g)α ≤ r < 1
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In this case the model shows only forward bifurcation, and the critical contact
rate separating between nonexistence and existence of positive endemic solutions is
β0 = (α+ µ)/(1 − p+ rp). Hence

R = Rv = (1 − p+ rp)
β

α + µ
.

However R < 1 if and only if p > 1
1−r

(1 − 1
R0

) := pc. We notice that β0 = α + µ

when p = 0, while β0 = β2 := (α + µ)/r 6= ∞ when p = 1. Therefore, a feasible
proportion p ∈ [0, 1] does not exist if β ≥ β2 so that the infection gets eradicated.
Hence, control measures (other than vaccination) aiming to reduce the successful
contact rate β to below β2 should be applied before vaccinating a proportion p > pc

of the newborns immediately after birth.
We summarize the above results in the following proposition:

Proposition 8. (1) For r = 0, the model shows only forward bifurcation and the
infection can be eradicated from the population by vaccinating a proportion of the
newborns, immediately after birth, slightly higher than 1 − 1

R0

.

(2) For 0 < r < r1 := (1−g)α
µ+(1−g)α < 1, the model shows backward bifurcation for

certain parameter values and vaccination solely is not sufficient to eradicate the
infection. However, it can be eradicated from the population in two steps. We first
apply control measures aiming to reduce the conatct rate β to below some level β1 (as
defined in (33)), and then we vaccinate a proportion, of the newborns immediately
after birth, slightly higher than p⋆

1 (as defined in (32)).

(3) For r1 := (1−g)α
µ+(1−g)α < r < 1, the model shows only forward bifurcation and the

infection can be eradicated in two steps. We first reduce β to a value slightly less
than α+µ

r
(i.e., to reduce R0 to a value slightly less than 1

r
) and then we vaccinate

a proportion p, of the newborns immediately after birth, slightly higher than

1

1 − r
(1 − 1

R0
).

9. Summary and conclusion. The importance of vaccinating individuals in a
population is to protect them from an infection. However, for many infections
vaccines are not perfect. In other words, individuals loose their immunity being
acquired by vaccination. We try here to show the possibility of eradicating the
infection by vaccination only. In this respect, we have modified the SIS model of
Hadeler and Castillo-Chavez (1995), with a constant transfer rate of susceptibles
into a partially protected state, to take into account vaccination at birth. The key
parameter is the relative susceptibility of susceptible individuals of type two with
respect to those of type one. If r = 0, then individuals in the S2-state are totally
protected and the infection can be eradicated by vaccination alone. However, if
r increases from zero to some level r1 = (1 − g)α/(µ+ (1 − g)α) < 1, then the
model shows backward bifurcation for certain parameter values and eradicating the
infection requires a reduction of the successful contact rate β to below some level
β1 and then we vaccinate a proportion of the newborns slightly higher than some
level p⋆

1. Hence, vaccination solely can not be used to eradicate the infection. If r
increases further from r1 to 1, then the model shows only forward bifurcation, but
vaccination solely is not sufficient to eradicate the infection. We have to apply con-
trol measures, other than vaccination, aiming to reduce the susccessful contact rate
to below some level (α + µ)/r before vaccinating a proportion (of the newborns)
slightly above some level (1 − 1/R0)/(1 − r) where R0 = β/(α + µ) is the basic
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reproduction number.
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