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Abstract. The basic reproductive number, R0, and the effective reproductive
number, R, are commonly used in mathematical epidemiology as summary sta-

tistics for the size and controllability of epidemics. However, these commonly

used reproductive numbers can be misleading when applied to predict pathogen
evolution because they do not incorporate the impact of the timing of events

in the life-history cycle of the pathogen. To study evolution problems where

the host population size is changing, measures like the ultimate proliferation
rate must be used. A third measure of reproductive success, which combines

properties of both the basic reproductive number and the ultimate proliferation

rate, is the discounted reproductive number Rd. The discounted reproductive
number is a measure of reproductive success that is an individual’s expected

lifetime offspring production discounted by the background population growth

rate. Here, we draw attention to the discounted reproductive number by pro-
viding an explicit definition and a systematic application framework. We de-

scribe how the discounted reproductive number overcomes the limitations of
both the standard reproductive numbers and proliferation rates, and show that

Rd is closely connected to Fisher’s reproductive values for different life-history

stages.

1. Introduction. The theory of biological evolution provides a dynamic method
for predicting past and future population change. If we know a population’s cur-
rent composition and we can identify the fittest individuals, we can predict that
population’s future composition. However, when converting theory to prediction
we stumble at one particular point: how does nature determine fitness? Fitness is
a flexible concept that can be defined in different ways depending on the evolution-
ary problem being addressed [27]. The evolutionary ecology concept of fitness is
conventionally defined as the “reproductive success” of a phenotype or adaptation.
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This convention bypasses the complexities of population genetics (that inherited
genotypes differ from expressed phenotypes according to Mendel’s laws) but is a
reasonable approximation under weak selection [23, 6].

In infectious disease research, the most commonly invoked measure of reproduc-
tive success is the basic reproductive number R0 [10]. In a demographic sense, R0

is the total number of offspring a typical individual expects to have over the course
of a lifetime in a naive population. For infectious diseases, this means the number
of new infections caused by a typical case in a completely susceptible population.
In several archetypal epidemiology models, strains of disease with higher R0 values
out-compete strains with lower R0 values, leading to a rule-of-thumb that evolu-
tion maximizes R0. This phenomenon has been exploited to derive a number of
useful results concerning pathogen evolution in the context of vaccination [14, 13].
In populations that are not completely susceptible, R0 is replaced by an effective
reproductive number R representing the number of new cases created, conditional
on the population’s state. But Bremermann and Thieme [3] have shown that even
in some cases where populations are not completely susceptible, R0 can be used to
predict the asymptotic outcomes of some nonlinear competition models.
R0 maximization does not always correctly predict evolutionary changes in strain

frequencies, however. If, for example, at the beginning of an epidemic, there are two
strains of a virus: one strain that kills its host in 2 days while causing 2 new cases
at the end of those 2 days, and a second strain that kills its host in 6 days while
causing 3 new cases at the end of those 6 days, the second strain has a larger R0

(3 versus 2). However, the relative frequency of the second strain will decrease over
time. In 6 days, the first strain will have been transmitted though 3 generations,
for a total of 8 descendant infections compared to the 3 descendant infections of
the second strain. If both strains start with a single case, then after a month, there
will clearly be more cases of strain one than strain two although strain two has the
larger R0 value.

The above argument applies for both naive populations with R0 and non-naive
population states where we use the effective reproductive number R. Both R0

and R ignore the timing of reproduction events, treating all reproduction events
as having the same value. If the population size is not changing, all reproductive
events do indeed have the same value, and reproductive success can be predicted
by R0 or R. But if the population size is changing, early reproductive events have
more value than late reproduction events.

In situations where the population size is growing, reproductive success is often
measured in terms of the ultimate proliferation rate r of the strains. Biologically, r
is the asymptotic instantaneous rate of change in abundance of a population of iden-
tical individuals after the population structure has settled down to a stable stage
distribution [20]. Although no population can grow indefinitely, and the allowance
for indefinite growth superficially violates one of the fundamental premises of Dar-
win and Wallace’s theory of evolution, r is a measure of reproductive success that
receives regular use in both theory and practice [4, 28, 5]. Comparative analysis
of the ultimate proliferation rates r of different strains can correctly predict evo-
lutionary changes in strain frequency not just when population sizes are changing,
but also when the total population size is stationary (r = 0).

However, the dichotomy between the ultimate proliferation rate and the basic
reproductive value is unsettling. A better mathematical theory of fitness would not
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require this ad-hoc distinction between populations that are changing size and pop-
ulations that are not changing size. The ultimate proliferation rate is often more
difficult to calculate than a reproductive number when comparing novel mutant
strains with a wild-type population, especially when considering a subpopulation
having a different life history than the population as a whole. Another issue is that
the ultimate proliferation rate has the connotation of a population-scale concept,
describing how the size of a specific subpopulation changes in time as the population
structure converges to a stationary distribution. By contrast, reproductive numbers
have a connotation associated with individuals. As each individual case of an infec-
tion has a basic reproductive number, so each mutation in an evolving population
has the potential to create a new strain with its own reproductive number.

Instead of having to deal with both the ultimate proliferation rate and the basic
reproductive number, there is an equivalent alternative approach. Here we describe
a third measure of reproductive success equally valid in contexts of both grow-
ing and static background populations: the discounted reproductive number Rd.
The discounted reproductive number Rd is a measure of reproductive success that
is an individual’s expected lifetime offspring production discounted by the back-
ground population growth rate. We provide an explicit definition and systematic
application framework for the discounted reproductive number. Although other
authors have used the discounted reproductive number for life-history optimization
[16, 29, 31], its merits remain under-recognized. Furthermore, the fundamentally
comparative and game-theoretic nature of the discounted reproductive number has
not been made explicit. In this work, we illustrate the versatility of the discounted
reproductive number as a fitness measure that subsumes the two most common
measures, the basic reproductive number and the ultimate proliferation rate. We
also show that Rd is closely connected to Fisher’s reproductive values for differ-
ent life-history stages. Our results show how the standard concept of reproductive
numbers extends naturally to solve a wide array of evolution problems.

2. Mathematical methods and results. To define measures of reproductive
success within a quantitative framework, we consider the family of continuous-
time, stage-structured population models described by a (possibly nonlinear) matrix
equation of the form

dn
dt

= (F + T)n, (1)

where n is a vector of population abundances at each life stage, F is a non-negative
matrix of reproduction rates, and T is the negative of an M-matrix1 describing the
transition rates of a Markov process, and F + T is irreducible and primitive. For-
mally, there are many different splittings of the system into fecundity and transition
components such that F + T = F̃ + T̃ with F 6= F̃ and T 6= T̃. Biologists may
argue that life-cycle structure dictates a canonical splitting. Our results will hold
for all splittings provided the non-degeneracy condition λ0(F + T) > λ0(T) holds,
where the notation λ0(·) represents the matrix’s largest real eigenvalue.

The ultimate proliferation rate is the largest real eigenvalue of the growth oper-
ator:

r = λ0(F + T), (2)

1See the appendix for a definition of M-matrix and other matrix terminology.
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which is the eigenvalue with largest real part. The general methods for calculation
ofR0 andR are closely related to the theory of Markov decision processes developed
by Howard [19] and to branching process theory [37]. The basic reproductive number
can be thought of as the expected number of offspring produced in each life-history
stage, weighted by the probability of surviving and entering that stage, and summed
over all stages. The basic reproduction number of an epidemic is the expected
number of new cases in a naive population. R0 is calculated [8, 5, 9, 38] as

R0 = λ0

(
−FT−1

)
. (3)

In situations where the expected number of new cases is conditional on a population
state other than the naive state, the calculation is the same and the result is called
an effective reproductive number R. Note that the difference between R0 and R
is simply whether the matrices F and T, as functions of the population state, are
evaluated at a naive or non-naive state. In what follows, we will refer only to R,
although the statements also hold for R0.

A third measure of reproductive success that combines both the basic repro-
ductive number and the ultimate proliferation rate is the discounted reproductive
number Rd. The discounted reproductive number represents the number of off-
spring an individual expects to have over the course of a lifetime, discounted for
expected changes in population size. The conceptual origins of the discounted re-
productive number begin with the r–K theory of selection introduced by Margalef
[26] and MacArthur and Wilson [25]. The r–K selection theory was originally en-
visioned as a continuum between r selected species in resource-rich environments
that evolve to maximize productivity and K selected species in resource-scarce en-
vironments that evolve to maximize efficiency. The nomenclature derives from the
simple logistic-growth model

dn

dt
= rn

(
1− n

K

)
(4)

where r represents the per-capita growth rate and K denotes the carrying capacity.
In application, however, r–K selection has most often been treated as a polar di-
chotomy because there is no natural continuum between the carrying capacity K,
measured in the same units as the population’s size, and the growth rate r, mea-
sured in units of inverse time. Although it is a convenient caricature, r–K selection
theory has been largely abandoned.

The discounted reproductive number supplies the missing spectrum to r–K se-
lection theory, with K selection corresponding to static populations without dis-
counting, and r selection corresponding to any scenario with positive population
growth. The concept of discounting has a long history in economics tracing back
to Fibonacci’s 13th-century work [15]. In the later part of the 20th century, some
researchers have observed that the discount rate also plays an important role in
evolutionary population biology because it provides a means to account for costs
associated with delays in reproduction [16]. Rd has appeared repeatedly throughout
the historical development of evolutionary theory, although not explicitly by this
name. Taylor et al. [36] showed that the proliferation rate and Rd are equivalent
fitness measures in the special case of a discrete-time, age-structured model. Schaf-
fer [35] also implicitly employed the discounted reproductive number in his study of
life-history evolution. Li and Schneider [24] later extended this by studying models
with general stage structure in discrete time. Goodman [16] seems to be the first
author to treat the discount rate as a free parameter, although he takes pains to
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downplay any originality in his paper. Goodman further suggests a method for
optimizing Rd in an age-structured model. The method implicitly requires that an
equilibrium strategy have a form of convergent stability [11] to guarantee that it
will be found. McNamara refers specifically to Rd as the “discounted maximum
future expected reward” [29] or the “discounted lifetime reproduction success” [31].
Rd plays an important role in studies of evolution based on dynamic programming
approaches to fitness [29] and alternative versions of adaptive topographies [30, 23].

The discounted reproductive number is defined in a manner similar to the basic
reproductive number, except that the number of offspring from each stage is also
weighted to reduce the value of offspring produced later in time, relative to offspring
produced earlier. Thus, the discounted reproductive number is defined as

Rd = λ0

(
F (δI−T)−1

)
, (5)

where δ is the discount rate. In general, we take δ > λ0(T) so that an inverse exists.
Since all known species are mortal, λ0(T) < 0.

Just likeR,Rd can be defined for other common life-history models in addition to
the continuous-time matrix models presented here. For a McKendrick–von Foerster
model,

∂n

∂t
+

∂n

∂a
= −µ(a)n and n(0, t) =

∫ ∞

0

m(a, t)n(a, t) da, (6)

where a is the age of a cohort, the discounted reproductive number is given by

Rd =
∫ ∞

0

e−δa `(a) m(a) da, (7a)

with

`(a) = exp
(∫ a

0

−µ(â) dâ

)
. (7b)

For the discrete-time matrix model

nt+1 = (F + T)nt, (8)

the discounted reproductive number is given by

Rd = λ0

(
θF (I− θT)−1

)
, (9)

where θ is the discrete-time discounting ratio [24]. The equation Rd = 1 is a special
case which leads to the well-known Euler–Lotka eigenvalue problem [22] and Fisher’s
reproductive value [12] for age-structured populations.

3. Properties of Rd. Inspecting equations (3) and (5), we see that when there is
no discounting (δ = 0), Rd = R. Further, positive discount rates always result in
discounted reproductive numbers smaller than the basic reproductive number.

Proposition 1. The discounted reproductive number Rd is a decreasing function
of the discount rate δ and is bounded below by 0.

Proof. Define the discounted generation matrix

G = F (δI−T)−1
, (10)
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so that Rd = λ0(G). By the properties of M-matrices, G exists for all δ > λ0(T).
The discounted generation matrix can be rewritten as

G =
∫ ∞

0

F e−(δI−T)t dt. (11)

Since multiplication by a scalar commutes over all matrices, we can decompose the
matrix exponential to the form

G = F
∫ ∞

0

e−δteTt dt. (12)

Because −T is an M-matrix, the matrix exponential and hence the whole integrand
must be non-negative [2, p. 146]. Perron–Frobenius theory tells us that the domi-
nant eigenvalue of a non-negative matrix is non-negative [17], so Rd = λ0(G) ≥ 0.

By inspection, the integrand is decreasing in δ. Because F is also non-negative,
we see that G is a component-wise strictly decreasing function of δ in the sense that
either ∂Gij/∂δ < 0 or Gij = 0. Take h such that for sufficiently small ε,

G(δ) ≥ (1− hε)G(δ) ≥ G(δ + ε) ≥ 0. (13)

If for two matrices A and B where B ≥ A ≥ 0 component-wise, then λ0(B) ≥
λ0(A) ≥ 0 [17, p. 491], so

λ0(G(δ)) ≥ λ0((1− hε)G(δ)) = (1− hε)λ0(G(δ)) ≥ λ0(G(δ + ε)) ≥ 0. (14)

It follows that either λ0(G(δ)) = 0, or λ0(G(δ)) > λ0(G(δ + ε)) ≥ 0 in the limit as
ε approaches 0 from above.

As Rd = λ0(G), we conclude that Rd is decreasing in the discount rate δ, and
strictly decreasing so long as Rd is positive.

Note that this proof holds for any T and F satisfying our assumptions, so there
is a continuous cone of discounted reproductive numbers Rd for any alternative
splitting F̃+ T̃ = F+T, but all of these Rd’s have the same relationship to the ul-
timate proliferation rate r: the discounted reproductive number is 1 if reproduction
is discounted at the ultimate proliferation rate.

Proposition 2. Rd = 1 if and only if δ = r.

Proof. We need to show that the dominant eigenvalue of F(rI − T)−1 is 1. Since
r is the dominant eigenvalue of the primitive matrix F + T, the left eigenvector v
corresponding to r is unique (up to scaling) and can be taken to be positive [17].
Moreover, v is the only positive left eigenvector for any eigenvalue [7, p. 914]. Then

vT(F + T− rI) = vT[F− (rI−T)] = 0, (15)

where vT denotes the transpose of v. Since −T is an M-matrix and r = λ0(F+T) >
λ0(T), the matrix rI−T also satisfies the definition of an M-matrix. Because the
inverse of an M-matrix is non-negative [18, p. 117], (rI−T)−1 exists and is non-
negative. If we multiply by this inverse,

vT[F(rI−T)−1 − I] = 0. (16)

We now see that v is a positive left eigenvector of F(rI − T)−1 corresponding to
the eigenvalue of 1.

Perron–Frobenius theory tells us that for a non-negative matrix A, if an eigen-
value e has a modulus smaller than the dominant modulus, then the eigenvector for
e is not strictly positive. Contrapositively, if A is non-negative and v is a positive
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eigenvector, then the corresponding eigenvalue has modulus equal to the dominant
eigenvalue [7, p. 914]. Since v is a positive left eigenvector of the non-negative
matrix F(rI−T)−1, we must have λ0(F(rI−T)−1) = 1. Thus, if δ = r, Rd = 1.

Conversely, let δ 6= r. As Rd is strictly decreasing in δ when Rd > 0, Rd 6= 1.

4. Comparison of fitness measures. To demonstrate that the discounted re-
productive number is equivalent to the basic reproductive number and the ultimate
proliferation rate as a fitness measure, consider a very large population where a small
number of individuals possess a mutant phenotype π that differs from the popula-
tion’s resident phenotype π. The life-history and fecundity matrices of individuals
depend both on the mutant phenotype and on the resident phenotype, which we
will denote using subscripts. The mutant phenotype has basic reproductive number

R(π, π) = λ0(−Fπ,πT−1
π,π), (17)

ultimate proliferation rate

r(π, π) = λ0(Fπ,π + Tπ,π), (18)

and discounted reproductive number

Rd(π, π) = λ0

(
Fπ,π [δ(π)I−Tπ,π]−1

)
, (19)

where

δ(π) = r(π, π) = λ0(Fπ,π + Tπ,π). (20)

We have chosen the discount rate δ(π) to be the ultimate proliferation rate of indi-
viduals with the resident phenotype because this is the population’s baseline growth
rate against which the mutant phenotype is competing. Although all phenotypes
with R(π, π) > 1 will increase in number, only phenotypes with an ultimate prolif-
eration rate larger than that of the resident population will increase in frequency.

A mutant phenotype can only invade a population if it has a greater fitness in the
current environment than the resident phenotype. If we define the relative fitness
of a phenotype as W (π, π), with the convention that W (π, π) = 1, then a mutation
can invade when W (π, π) > 1. A resident phenotype is a strict Nash equilibrium of
the population game if all possible mutations have a lower fitness than the resident
phenotype (W (π, π) < 1 for all π 6= π). This and other evolutionary properties of
a fitness measure can be assessed using the pairwise invasion test map

S(W ) =


−1 if W < 1,

0 if W = 1,
+1 if W > 1.

(21)

As examples, we re-derive and generalize results from Mylius and Diekmann [33]
and Bulmer [4, p. 77] describing the circumstances when each fitness measure is
equivalent.

Comparison 1. When a population is at a stable size (i.e., no growth, r = 0), the
pairwise invasion test of relative fitness measured in terms of the basic reproductive
number is the same as the pairwise invasion test of relative fitness measured in
terms of the discounted reproductive number.
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Proof. We need to prove

S

(
R(π, π)
R(π, π)

)
= S

(
Rd(π, π)
Rd(π, π)

)
. (22)

Because there is no asymptotic growth of the population (r(π, π) = 0), there is
no discounting (δ(π) = 0) and the discounted reproductive numbers are equal to
the basic reproductive numbers. The ratio of the mutant discounted reproductive
number to the resident discounted reproductive number is then the same as the
ratio of the basic reproductive numbers:

R(π, π)
R(π, π)

=
Rd(π, π)
Rd(π, π)

. (23)

Thus, the population games are identical, and the pairwise invasion tests must also
be identical.

R does not correctly measure fitness, however, when a population’s size is growing
or decaying because it gives all reproduction events equal weight. In a growing
population, reproduction events next year are worth less than reproduction events
this year. Both the ultimate proliferation rate and the discounted reproductive
number are suitable alternatives in these cases.

Comparison 2. The pairwise invasion test of relative fitness measured in terms of
the ultimate proliferation rate is the same as the pairwise invasion test of relative
fitness measured in terms of the discounted reproductive number.

Proof. In order for 1 to remain the critical value for invasion, as in the definition
(21) of S(W ), we will use the exponential of the ultimate proliferation rate, er(π,π),
instead of the ultimate proliferation rate. Consequently, the relative fitness of π
with respect to π is

er(π,π)

er(π,π)
= er(π,π)−r(π,π). (24)

Thus, we need to show that

S
(
er(π,π)−r(π,π)

)
= S(Rd(π, π)). (25)

The tests are equal if they are equal at each point (π, π). If r(π, π)−r(π, π) = 0, then
the discounted reproductive number has a discount rate equal to the proliferation
rate and by Proposition 2, Rd(π, π) = 1. If r(π, π)− r(π, π) < 0, then the discount
rate is faster than the proliferation rate and Rd(π, π) < 1. If r(π, π)− r(π, π) > 0,
then the discount rate is slower than the proliferation rate and Rd(π, π) > 1. The
tests are therefore equal.

Comparisons 1 and 2 show that the discounted reproductive number subsumes
the two most common measures of fitness, r and R. To show how Rd can be
combined with population-level and individual-level models to study evolutionary
strategies, let n(t) be the macroscopic state of the resident population, e(t) be the
state of the environment, and p(t) be the probability density of the life-history state
space over time for an individual with the mutant phenotype π. We refer to p(t)
as the microscopic state, because it is the life-history state of a single individual.
We refer to n(t) as the population’s macroscopic state because it is a combination
of all other individuals’ states. Mathematically, the macroscopic and microscopic
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dynamics are driven by separate but related processes. From the microscopic per-
spective of the individual, life is stochastic, but from the macroscopic perspective of
a large population, the dynamics are treated as deterministic. If we use a Markov
process to describe the life of an individual, and a system of ordinary differential
equations to describe changes in a population, the relative fitness of an individual
with phenotype π is given by the discounted reproductive number

W (π, π) =
∫ ∞

0

e−δtvTFp(t) dt, (26a)

where
dp
dt

= T (n, e, π)p (26b)

governs the dynamics of the microscopic state, and
dn
dt

= gn (n, e, π) , (26c)

de
dt

= ge (n, e, π) (26d)

govern the dynamics of the macroscopic state and the environment. Here, T is
the transition-rate matrix of the life-history Markov process, δ = r(π, π) is the
population’s proliferation rate, F is the fecundity matrix, and the vector v is the
reproductive value for each state. The use of v was introduced by Fisher [12], who
suggested it be interpreted as the relative expected future lifetime contribution to
reproductive output for individuals in each state when π = π. The population’s
proliferation rate δ discounts future reproduction relative to current reproduction.

Consider a system that is stationary in the sense that the resident population
is growing at rate δ(π) with fixed proportions of life-history states so that n(t) =
eδ(π)tn∗ and the resource is at steady state, i.e. e(t) = e∗. The dynamic equations
can be reduced by substituting n(t) = eδ(π)tn∗ and e(t) = e∗ into system (26) and
requiring that the equation for the microscopic state, p, be at steady state, resulting
in the system of equations:

δ(π)n∗ = e−δ(π)tgn

(
eδ(π)tn∗, e∗, π

)
= gn (n∗, e∗, π) , (27a)

0 = ge

(
eδ(π)tn∗, e∗, π

)
= ge (n∗, e∗, π) , (27b)

T(eδ(π)n∗, e∗, π) = T(n∗, e∗, π). (27c)

Under these equilibrium conditions, the probability of being in each state at a given
time is

p(t) = eTtp(0). (28)

It follows that

W (π, π) = vTF (δI−T)−1 p(0). (29)

We want to choose the reproductive values v such that the relative fitness W (π, π)
correctly predicts changes in strategy frequency of long times; mathematically,

S(W (π, π)) = S(er(π,π)−δ(π)). (30)

If we choose v to be the left eigenvector associated with the dominant eigenvalue
of F (δI−T)−1, normalized such that vTp(0) = 1, then

W (π, π) = Rd(π, π)vTp(0) = Rd(π, π). (31)
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Applying Comparison 2, we find that for this choice of v,

S(W (π, π)) = S(Rd(π, π)) = S(er(π,π)−r(π,π)) = S(er(π,π)−δ(π)). (32)

Thus, the relative fitness W (π, π) correctly predicts which strategies π can replace
the resident strategy π provided that the reproductive value v is defined in terms of
a left eigenvector. The reproductive value v is a generalization of Fisher’s reproduc-
tive value because it depends on both the invading phenotype π and the resident
phenotype π, whereas for Fisher’s reproductive value it is traditionally assumed
that π = π. The definition of the reproductive values in terms of an eigenvector of
F (δI−T)−1 may seem to preclude the practical use of equation (26a). However, of-
ten F has only 1 nonzero row, corresponding to birth into only one life-history stage,
and vTF is a scalar multiple of that row. In this case, the condition vTp(0) = 1
completely characterizes vT.

Given a fitness function, we can then compare strategies and determine which
strategies are Nash equilibria. A phenotype π is a Nash equilibrium strategy if
Rd(π∗, π∗) > Rd(π, π∗) for all π 6= π. When Rd is a smooth function, the Nash
condition is equivalent to ∂Rd

∂π (π, π) = 0 and ∂2Rd
∂π2 (π, π) < 0.

5. Applications of Rd. The discounted reproductive number is easy to apply,
although closed-form solutions are uncommon. As a first example, let us calculate
Rd for a simplification of the classic problem of maturation-time evolution. Consider
a population with two life-history states, juvenile and adult, that grows linearly
according to

dy1

dt
= −f(π)y1 − µ1y1 + u(π)y2, (33)

dy2

dt
= f(π)y1 − µ2y2, (34)

where π is the resident phenotype strategy. An individual with phenotype π has
life-history transition-rate matrix

T =
[
−f(π)− µ1 0

f(π) −µ2

]
(35)

and fecundity matrix

F =
[
0 u(π)
0 0

]
. (36)

Applying equation (27), we find the discounted reproductive number

W (π, π) = Rd(π, π) =
u(π)f(π)

[f(π) + µ1 + δ(π)] [µ2 + δ(π)]
, (37)

where the discount rate

δ(π) =

√
[f(π) + µ1 − µ2]

2 + 4u(π)f(π)− f(π)− µ1 − µ2

2
. (38)

Let us extend this model to pathogen evolution in epidemiology. Consider
incubation-period evolution in the susceptible-exposed-infectious-recovered (SEIR)
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model

Ṡ = η −mS − β(π)SI, (39a)

Ė = β(π)SI − f(π)E −mE − µEE, (39b)

İ = f(π)E − γI −mI − µII, (39c)

Ṙ = γI −mR. (39d)

Here S is the number of people who are susceptible, E is the number exposed, I is
the number infectious, and R is the number recovered. The birth rate is given by η,
m is the background death rate, µE is the infection-induced death rate during the
exposed stage, µI is the infection-induced death rate during the infectious stage,
and γ is the recovery rate. The infection rate, β, and the incubation rate, f , are
both functions of pathogen phenotype.

The dynamics of System (39) are well understood. If(
β

f + m + µE

) (
f

γ + m + µI

)
η

m
≤ 1, (40)

then the disease-free stationary solution is globally attracting. Otherwise, there is a
unique, globally attracting stationary solution with known Lyapunov function [21].

In infectious-disease modeling, the pathogens are the organisms of interest, and
they only exist in infected human hosts. Therefore, we only need the exposed (E)
and infectious (I) compartments of the host population to model the pathogen
population. The life-history transition-rate matrix for an infection with type π is

T =
[
−f(π)− µE −m 0

f(π) −γ − µI −m

]
(41)

and the fecundity matrix for the creation of new infections is

F =
[
0 β(π)S
0 0

]
. (42)

We apply equation (5) and find

Rd =
β(π)Sf(π)

[f(π) + µE + m + δ(π)][γ + µI + m + δ(π)]
(43)

with

δ =
−2m− f(π)− µE − γ − µI +

√
[f(π) + µE − γ − µI ]

2 + 4 β(π) Sf(π)

2
. (44)

In this calculation, S is treated as a constant. There are two natural cases of
equation (39) where this is reasonable. First, early in an epidemic, the number of
infections is small while S is large and relatively constant. In this case, S is fixed
and independent of the resident phenotype π. Second, late in an epidemic, the
dynamics approach the endemic steady-state solution, where S is again constant.
In this case, the steady-state depends on the resident phenotype π;

S(π) = min
{

η

m
,

(γ + m + µI) (f(π) + m + µE)
β(π)f(π)

}
. (45)

As an example, let f(π) = π and β(π) = b0π
1+b1π2 (Fig. 1). Example contour plots

of Rd(π, π) early and late in an epidemic are shown in Figure 2. The condition
above are used to show that the points where the 1-contours cross in Figure 2 are
Nash equilibria.
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Figure 1. Transmission rate, β vs. incubation rate, f used in our
example for equation (39) and Figure 2. The functional forms are
f(π) = π and β(π) = b0π

1+b1π2 with b0 = b1 = 1.

The value of the discount rate differs at different points in an epidemic, as does
the number of susceptibles S. Early in an epidemic almost all individuals are
susceptible and the number of infections grows exponentially. Thus, the discount
rate is large. Over time, however, the excess of susceptibles is exhausted and the
population-dynamics approach an endemic stationary solution with the discount
rate also approaching 0. The evolutionary pressures on the pathogen change as
the discount rate varies between these extremes. The discount rate is faster early
in the epidemic when the number of susceptibles is largest and the number of
infections is growing quickly, favoring short incubation periods (large π). Late in
the epidemic, discounting is slow, and longer incubation periods can pay off with
greater transmission. Figure 2 shows how these differences play out in moving the
Nash equilibrium from short incubation early in the epidemic to longer incubation
periods late in the epidemic.

6. Discussion. We have shown that the discounted reproductive number Rd uni-
fies several disparate measures of fitness within a single framework while providing
a mechanistic basis for the derivation of new results. The discounted reproductive
number allows us to systematically account for the timing of transmission events to
study changes in frequency in a way not possible with the reproductive number R.
Although we illustrated the use of Rd with ordinary differential equation models,
we also showed how Rd is formulated for difference equation and partial differential
equation models. We have applied Rd to model changes in host behavior when
virulence changes with the age of the host [34] and here to describe changes in
pathogen selection over the course of an epidemic. In addition, Rd can be used in
studies of the evolution of clutch size, senescence, growth, and other evolutionary
trade-offs, including co-evolution, like that between host and pathogen. We also
have shown that Rd(π, π) is closely connected to Fisher’s reproductive values for
different life-history strategies. Therefore, the discounted reproductive number is
broadly applicable to other studies where it is reasonable to assume populations are
near dynamic equilibrium or growing exponentially.



THE DISCOUNTED REPRODUCTIVE NUMBER FOR EPIDEMIOLOGY 389

1 2 3 4 5

Invading strategy �
1

2

3

4

5

R
e
si

d
e
n
t 

p
h
e
n
o
ty

p
e
 ¯

� 0
.6

0
0

0.
80

0

1.0
00

1.0
00

2.0003.000
4.000

Rd  early in an epidemic

1 2 3 4 5

Invading phenotype �
1

2

3

4

5

R
e
si

d
e
n
t 

p
h
e
n
o
ty

p
e
 ¯

�

0
.6

0
0

0.600

0
.8

0
0

0.800

1.000

1.0
00

2.000

2.
00

0

3.0004.000

Rd  late in an epidemic

Figure 2. Contour plots of Rd(π, π) early (top) and late (bot-
tom) in the course of an epidemic described by equation (39). Nash
equilibria correspond to the phenotypes where the 1-contours in-
tersect. At the start of an epidemic, the number of susceptibles
is independent of the strategies and the number of infections is
growing exponentially. However, near the end of an epidemic, the
number of susceptible individuals at dynamic equilibrium depends
on the population’s resident phenotype π, although there is no net
change in the number of susceptible individuals per unit time. Be-
cause of these differences, the Nash equilibrium π∗ for the rate of
leaving the exposed class is more than twice as large early com-
pared to late in the epidemic. Parameter values µE = µI = 0,
γ = 10, m = 1/60, η/m = 100. The early plot is for the naive
population, S = 100. For the late plot, S is given by equation (45).

For many models, the reproductive number R is easier to derive and takes a
simpler form than the ultimate proliferation rate r. When discount rate δ is treated
as a free parameter, which may suffice for some kinds of analysis, Rd is as easy to
derive and as simple in form as R. However, when δ is taken to be the ultimate
proliferation rate of the resident population r(π, π), the determination of Rd(π, π)
involves the complexity of calculating both r and R.
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Figure 3. Nash equilibrium strategy (π∗) at the start of an epi-
demic, depending on the initial population size (N = η/m). Pa-
rameter values are m = 1/60, µE = µI = 0, γ = 1/3, and b0 and
b1 as in Figure 1.

The proofs of Proposition 1 and Proposition 2 rely on our assumption that the
demography matrix F + T is irreducible and primitive. It is not immediately clear
what form the results would take if either of these conditions were relaxed. Of
particular interest is the fact that the splitting of F + T needed to define Rd,
as well as R, is not unique. A similar issue is present and more onerous when
matrix models are generalized to branching-process models of demography. This
suggests two points. First, the mathematics is not capturing some parts of the
biology, since fecundity can not be defined arbitrarily in practice. Second, while
each splitting defines a different Rd, there seem to be no significant mathematical
differences between these splittings in practice. These points suggest a need for a
practical convention to aid in comparative analyses. Some readers may note a close
connection between the concept of the discounted reproductive number as a function
of the discount rate δ and the concept of a Laplace transform. This connection may
provide a convenient avenue for mathematical applications of Rd in new research.

Evolutionary population game theory based on the discounted reproductive num-
ber has a number of limitations. While convenient, population game theory based
on Rd is an asymptotic theory with well-known shortcomings [1]. The theory has
primarily been applied in settings where population dynamics are stationary or
growing exponentially. Equation (5) assumes the matrices F and T are stationary.
If transition rates or fecundities are not stationary, the integrals in equation (11)
and equation (26a) do not have general closed-form solutions. Similar issues arise
in attempts to apply R and r in situations where dynamics oscillate. Further gen-
eralizations are needed to accommodate dynamic programming formulations and
Lyapunov-exponent descriptions of fitness in settings with periodic and chaotic pop-
ulation dynamics [31, 32]. We have also sidestepped the challenges associated with
frequency-dependent selection by restricting our attention to population games. In
general, alternative mathematical approaches should be used if the evolutionary
dynamics of a biological system are not easily summarized in terms of asymptotic
properties.
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In summary, we have provided an explicit definition and systematic application
framework for extending the reproductive number R to the discounted reproductive
number. We demonstrated that the discounted reproductive number is a versatile
fitness measure that subsumes the two most common measures of fitness, the basic
reproductive number and the ultimate proliferation rate.

Terminology. Here we briefly outline the terminology we use to describe a variety
of matrices that arise in population modeling.

A matrix A = [aij ] is non-negative if all its entries are non-negative, aij ≥ 0.
Likewise, A is positive if its entries are all positive, aij > 0.

A Z-matrix is a square matrix whose off-diagonal entries are all non-positive,
aij ≤ 0 for i 6= j. A Z-matrix can be written as Z = αI − P, where P is a
non-negative matrix. An important property of Z-matrices is that the matrix ex-
ponential e−Zt is non-negative for all t ≥ 0 [2, p. 146].

An M-matrix is a Z-matrix that can be decomposed as M = αI − P for some
non-negative matrix P and some α > λ0(P), where λ0 denotes the largest real
eigenvalue of the matrix. The real part of all the eigenvalues of an M-matrix are
positive. Moreover, the inverse of an M-matrix is non-negative [18, p. 117]. See
Horn and Johnson [18] and Berman and Plemmons [2] for expositions on M-matrix
theory.

A matrix A being irreducible means, in population terms, that each life stage can
ultimately produce every other life stage, either by transition between life stages
or by production of offspring. (See, for example, Caswell [5, p. 81].) Note that
this definition implies that the matrix must be square. An example of a reducible
matrix would be the projection matrix from a model that includes post-reproductive
adults: the post-reproductive life stage cannot produce newborns or any other life
stage.

A non-negative matrix P is primitive if there exists an integer z such that Pz

is positive [17]. Note that primitive implies irreducible. Otherwise, we define the
matrix A to be primitive if there exists α > 0 such that A = P − αI, with P
non-negative and primitive. Note that A primitive implies that it is irreducible, as
with non-negative matrices, and that it is the negative of a Z-matrix, A = −Z. For
a primitive matrix A = P−αI, by Perron–Frobenius theory, the eigenvalue of max-
imum modulus of P is real and positive [17]. Therefore, the largest real eigenvalue,
λ0(P), is the eigenvalue of maximum modulus. This implies that λ0(A) = λ0(P)−α
is real and is the eigenvalue of A with the largest real part.
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