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Abstract. Since the discovery of HIV/AIDS there have been numerous math-
ematical models proposed to explain the epidemic of the disease and to evaluate

possible control measures. In particular, several recent studies have looked at
the potential impact of condom usage on the epidemic [1, 2, 3, 4]. We develop a
simple model for HIV/AIDS, and investigate the effectiveness of condoms as a
possible control strategy. We show that condoms can greatly reduce the num-
ber of outbreaks and the size of the epidemic. However, the necessary condom
usage levels are much higher than the current estimates. We conclude that
condoms alone will not be sufficient to halt the epidemic in most populations
unless current estimates of the transmission probabilities are high. Our model
has only five independent parameters, which allows for a complete analysis.
We show that the assumptions of mass action and standard incidence provide
similar results, which implies that the results of the simpler mass action model
can be used as a good first approximation to the peak of the epidemic.

1. Introduction. Human immunodeficiency virus (HIV), which is now epidemic
worldwide, is spread mainly through unprotected sexual intercourse and the shar-
ing of contaminated needles. As such, the correct and consistent use of condoms
is expected to be an effective means of slowing, or halting the spread of the virus.
This paper presents a simple model for the spread of HIV and its control by condom
use. Other control strategies for HIV include vaccination [5], microbicides [6] and
antiretroviral therapy. However, although researchers are optimistic [7, 8], there is
currently no vaccine available for HIV, and the long-term use of treatment methods
risks development of resistant strains of the virus. The aim of this paper is to inves-
tigate the potential use of condoms as a control strategy for HIV when withdrawal
from sexual activity is included for those individuals in the later stages of their HIV
infection. In this section we review the background of the HIV epidemic and models
for its spread. In Section 2 we introduce our model and discuss our analysis and
results, focusing on the implications for disease control.

According to the Centre for Disease Control, the first known case of HIV was in
San Francisco in the early 1980s [9]. Since then the number of individuals developing
AIDS has increased rapidly each year, from approximately 8 million cases worldwide
in 1990 to 39 million cases in 2006 [9]. The rapid increase in AIDS cases is most
noticeable in developing countries such as Africa, where the prevalence rate among
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pregnant women has risen from 4.3% in 1999 to 30.2% in 2005. In Canada, there
are approximately 60,000 people living with HIV whereas in 1996 there were 35,000.
Among this group, females now account for approximately 23% of the cases, whereas
between 1979-94 they accounted for 7% of the cases [10].

As with most models for disease transmission and control, our model is based
on the simple SIR model [2]. The main parameter of the SIR model is the basic
reproduction number, R0. If this parameter is below one, then the disease dies out,
whereas if this parameter is above one, any small introduction of infected individuals
in the population results in an oscillatory approach to an endemic equilibrium.
Mathematically, there is a trivial equilibrium, known as the disease-free equilibrium,
which is globally asymptotically stable whenever R0 < 1 [11]. For many diseases,
HIV included, the initial peak is much larger than the final endemic prevalence
of infection, and the period of oscillation is long compared with the time scale of
interest for disease control. For this reason, the main focus of this paper is the peak
of the initial epidemic.

The simplest theoretical result follows from assuming that condom usage directly
affects the reproduction number by reducing transmission rates. Suppose condom
use reduces transmission by a factor p, on average, with 0 ≤ p ≤ 1. The simple
SIR model then predicts that an epidemic can be controlled if (1 − p)R0 < 1,
or equivalently, p < pc = 1 − 1/R0. A conservative estimate of 0.6 for pc (see
below) suggests that condoms alone would be sufficient to control the HIV epidemic
provided R0 < 1/(1 − 0.6) = 2.5. Estimates of R0 for HIV vary widely, but this
value is likely low and one concludes that condom use alone is not sufficient to
control the epidemic. However, condoms in combination with other approaches
may be sufficient.

Greenhalgh et al [1] analyzed a two-group deterministic model to assess the
potential effectiveness of condom usage as a control strategy for HIV/AIDS in a
homosexual population. Their model exhibited a threshold for the reproduction
number below which the disease-free equilibrium was locally asymptotically stable.
However, they also showed the existence of a locally stable endemic equilibrium for
R0 < 1. Hence, disease control requires restraints on the initial conditions in addi-
tion to the usual requirement that the reproduction number be below one. Green-
halgh also investigated the effects of an individual’s behavioral changes based on
the society they live in when determining an individual’s inclination/disinclination
to use condoms. They found that when accounting for behavioral changes, condoms
can have a positive effect on reducing the HIV epidemic. They found such effects
to include a reduction in the peak prevalence of HIV and delays in the time taken
to reach this peak [1, p.252]

More recently, Moghadas et al [12] proposed a three-compartment, deterministic
model to analyze the effects of condom use on the HIV epidemic. The model
predicts that if the average number of sexual partners is small (fewer than seven)
then condoms can be an effective control strategy for the HIV epidemic. However,
if the number of sexual partners is larger, the level of condom usage required to
control the epidemic is unrealistic.

Mukandavire and Garira [4] analyzed a two-sex model to investigate condom
usage as a potential control strategy for HIV/AIDS. They considered only hetero-
sexual transmission with the population divided into three compartments: suscepti-
bles, individuals who are infected with the virus but have not developed AIDS and
those who have developed AIDS. They assumed all individuals in the susceptible
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class to be sexually active and all individuals who have developed AIDS and are
showing symptoms withdraw from sexually activity. They first formulated a fixed
time delay model without condom usage or any other control measure as a base
model to compare the results from the condom usage models. The fixed time delay
model was chosen to represent the long incubation period of HIV. Mukandavire and
Garira considered two cases: male condoms only, and male and female condoms.
Female condom usage was included because women are more vulnerable to HIV
infection [4]. The results for the male condom usage with no female condom usage
showed a preventability value of 90% for male condoms is needed to ensure the male
condom-induced basic reproduction number is less than one. When male and female
condoms are used, a preventability value of 80% for both is necessary to ensure the
male and female-condom induced reproduction numbers below unity. Results also
indicated there are certain values of the basic reproduction number that won’t re-
duce the male and female-condom induced reproduction numbers below unity even
with 100% preventability. They also showed that even for values where the repro-
duction number can be reduced below unity, the necessary preventability values are
quite high and perhaps unattainable. Thus the authors concluded that condoms
may not be effective in stopping the spread of the epidemic.

We extend this previous research by modeling contacts by individuals in the
second infectious stage of infection differently. Rather than assume that individuals
in the second stage make contacts at a different rate (the rate c2 in [12]), we assume
that the contacts are made at the same rate, but that a fraction, q, of individuals
withdrawal from sexual activity. The fraction q appears in both the numerator and
the denominator of the incidence term. We show that model parameters influence
the peak of the epidemic through Rc, so that the effectiveness of control measures
can be determined solely by analyzing Rc. This greatly simplifies the sensitivity
analysis. We further show in Section 3 that although the longer term dynamics
of disease prevalence are very sensitive to the choice of incidence, the peak of the
epidemic is only mildly affected by a change in incidence terms. This allows one to
use the simpler mass action model as a first approximation to the peak.

2. Model and analysis. After an initial symptomatic infection lasting 6 to 18
weeks, HIV enters a dormant stage, with low viral load, lasting 10 years, on average.
This is followed by an increased viral load, decreased CD4+ count, vulnerability to
infection and eventually AIDS. However, it is thought that individuals in their final
years before AIDS and morbidity may be highly contagious and asymptomatic [13].
We model this by the introduction of two infectious stages. The model consists of
the following system of differential equations:

dS

dt
= π − λ(S, I, A) − µS, (1)

dI

dt
= λ(S, I, A) − (µ + σ)I, (2)

dA

dt
= σI − (µ + γ)A, (3)

with

λ(S, I, A) =
(1 − p)cS

N − qA

(

β1I + (1 − q)β2A
)

, (4)

together with the initial conditions



366 JEFF MUSGRAVE AND JAMES WATMOUGH

S(0) = S0,

I(0) = I0, (5)

A(0) = A0.

Here, S(t) is the number of susceptible individuals, I(t) is the number of indi-
viduals in the first infectious stage, A(t) is the number of individuals in the second
infectious stage and N(t) = S(t) + I(t) + A(t) is the total population. Note that
S0 = N0 = π/µ, with I0 = A0 = 0 leads to a constant solution known as the disease-
free equilibrium. We are interested in initial conditions with S0 < N0 = π/µ,
0 < I0 << N0 and A0 = 0, which represent a small deviation from this equilibrium.

Sexually active infected individuals make contacts at a rate c, but, assuming a
fraction q of the infectious individuals in the second stage withdraw from contact,

only a fraction
S

N − qA
of these contacts are with susceptible individuals [14]. In

the absence of condom use, a fraction β1 of contacts made by individuals in the first
infectious compartment lead to new infections. Condom use prevents transmission
in a fraction p of these potential contacts, as described in detail below. Thus, the
incidence of new infections due to contacts with the I(t) individuals in the first
infectious compartment is (1 − p)cβ1IS/(N − qA), which is the first component of
λ. Active individuals in the second infectious compartment make contacts at the
same contact rate c. However, since only a fraction, 1 − q, of these individuals
are sexually active, the incidence of infection from these contacts is given by (1 −
q)cβ2AS/(N − qA) where a fraction β2 of contacts with an second stage infected
individual leads to new infectious. The two transmission probabilities, β1 and β2,
reflect the fact that the probability of transmission may be higher for individuals in
the second infectious stage due to a higher viral load [15]. The two terms together
make up the total incidence λ(S, I, A). Individuals progress from the first infectious
compartment to the second at a rate σ, and the mortality rate for individuals in
the second infectious compartment is γ. Susceptible individuals are recruited into
the sexually active population at a rate π and removed at a rate µ.

Condom use is assumed to reduce transmission by a factor p, on average, with 0 ≤
p ≤ 1 [12]. This parameter combines two effects: compliance and efficacy. Condom
compliance measures the fraction of sexual contacts for which a condom is used
consistently and correctly. Condom efficacy measures the protection individuals
receive by condom usage and is mainly a product of condom breakage, leakage, or
slippage [16, 17, 18, 19].

Before proceeding with the analysis, it is convenient to define several important
parameter combinations.

RI =
cβ1

µ + σ
, RA =

cβ2

µ + γ
, τ =

β2

β1
, χ =

(µ + γ)

(µ + σ)
, ε =

µ

(µ + σ)
, N0 =

π

µ
.

The interpretations of the parameters are as follows: RI and RA are the expected
number of secondary infections made by an infectious individual during the first and
second stages of infection respectively, in absence of prevention and withdrawal; τ
is the ratio of the transmission probabilities in the first and second infectious com-
partments; χ is the ratio of the mean time spent in the first and second infectious
compartments; ε is the ratio of the expected, or mean, duration of the first infec-
tious period to the mean lifespan in absence of HIV/AIDS related deaths; and N0
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is the population at the disease-free equilibrium defined below. Note that these
parameters are not independent, since τ = χRA/RI .

The model (1) - (5) has a unique disease-free equilibrium given by S(t) = N(t) =
N0 = π/µ, I(t) = 0 and A(t) = 0. The technique of van den Driessche and
Watmough [11] can be applied to show that the disease-free equilibrium is locally
asymptotically stable whenever the control reproduction number, Rc, defined by

Rc = (1 − p)c

(

β1

µ + σ
+

β2(1 − q)σ

(µ + γ)(µ + σ)

)

(6)

is below one, and unstable if Rc > 1. By the following theorem, local stability
implies global stability.
Theorem: The disease-free equilibrium of (1) - (3) is globally asymptotically stable
whenever Rc < 1.

Proof. First, it is straightforward to verify that (1) - (5) with S0, I0, A0 ≥ 0 is well
posed in the sense that there exists a nonnegative solution for all time. Let

D = {(S, I, A) ∈ R
3
+

∣

∣ S, I, A ≥ 0, S + I + A ≤ N0}, (7)

and let F (I, A) = RcI + (1 − p)(1 − q)RAA. Summing (1) - (3) gives

N ′ = N0 − µN − δA.

It follows that N ′ < 0 if N > N0, and hence D is attracting and positively invariant.
Finally, since F is a Lyapunov function on D [20], it follows that limt→∞ I(t) = 0
and limt→∞ A(t) = 0. Hence, the ω - limit set of R+

3 is contained in the set

{0 ≤ S ≤ N0, 0, 0} .

Inspection of (1) confirms that limt→∞ S(t) = N0, and the disease-free equilibrium
is globally asymptotically stable as claimed.

3. The epidemic peak. Let x = S/N0 y = I/N0 and z = A/N0, and let t∗ =
(µ + σ)t. This change of variables leads to the system

ẋ = ε(1 − x) − λ(x, y, z), (8)

ẏ = λ(x, y, z) − y, (9)

ż = (1 − ε)y − χz, (10)

with

λ(x, y, z) =
(1 − p)RI(y + (1 − q)(τ/χ)z)x

x + y + z − qz
, (11)

and y(0) = y0 = S0/N0, x(0) = 1 − y0, z(0) = 0. The dot on the righthand side of
(8) - (10) represents differentiation with respect to the new time variable t∗. The
scaling of 1/(µ + σ) for time is the expected duration of the first stage of infection,
before progression to AIDS.

The expression for λ given by (11) is referred to as the standard incidence. The
analysis of this section compares the results using standard incidence with those of
the simpler mass action model with λ(x, y, z) = (1 − p)RI(y + (1 − q)(τ/χ)z)x.

Based on estimates from several sources [1, 21], parameters for the simulations
were sampled uniformly from the following ranges:
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Figure 1. Time trace of solutions for three cases: mass action
(upper curve), standard incidence (middle curve) and mass action
with ε = 0 (lower curve). The remaining parameters are as detailed
in the text.

Table 1. Number of outbreaks for different values of p

preventability (p) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
number of outbreaks 100 100 100 100 98 93 83 65 33 1 0

.05 ≤ ε ≤ .30

2 ≤ χ ≤ 6

1 ≤ RI ≤ 3

1 ≤ τ ≤ 10

During the early stages of HIV and all stages of AIDS, individuals are very infectious
leading to the large range of transmission probabilities [15].

Figure 1 shows the prevalence as y(t∗) + z(t∗) for three simulations: standard
incidence (middle curve), mass action (upper curve) and mass action with ε = 0
(lower curve). The remaining parameters are as follows: RI = 4.94, τ = 1.53,
χ = 2.48, ε = 0.40, p = 0, q = 0, y0 = 0.01. These parameter values lead to
Rc = 6.8. The time scale is in units of mean infectious period, (µ+σ)−1, which can
be taken as 10 years. The three curves overlap up to the peak, suggesting that the
form of the incidence term is not as important for the initial epidemic. We explore
the use of a simpler epidemic model in Section 4.
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Figure 2. Boxplots of epidemic peaks for 100 simulations. (a) and
(c) are for standard incidence, and (b) and (d) are for the model
with mass action incidence. The lower two plots are peak versus
the withdrawl fraction q, and the upper two plots are peaks versus
the preventability p.

Figure 2 shows boxplots of the peak caseload of the epidemic vs. p and q for a
random sample of 100 points in parameter space. For the 100 parameter sets, R0

ranged from 1.45 to 12.1 with a median of 4.05. In addition to reducing the peak of
the epidemic, condom use may also prevent an epidemic. The number of outbreaks
for the different values of p are given in Table 1. Since the peak values are close for
the full range of parameter space for both incidence terms, this suggests that one
can use the simpler mass action model as a first approximation for the peak of the
epidemic. As can be seen in Figure 2, neither the number of outbreaks or the size
of the peak is sensitive to the value of q. However, changing p significantly reduces
the size of the peak and the number outbreaks.
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4. The epidemic model. There are two motivating reasons to study the epidemic
system given by (8) - (10) with ε = 0. First, the demographic timescale, as measured
by ε, is thought to be long, and so ε is a small parameter that can be neglected
in a first approximation. Second, and related, simulations of the model suggest
that the initial peak of solutions to (8) - (10) is close to the peak of the epidemic
model. Current studies suggest that HIV is still an epidemic, so that the study of
this peak remains important [22, 23]. This model has no endemic equilibria, and
the disease-free equilibrium is replaced with the line of equilibria y = z = 0.
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Figure 3. Peaks of the epidemic model for various levels of con-
dom preventability, p.

Figure 3 shows boxplots of peaks of the epidemic for the same 100 parameter
sets used previously, but with ε = 0 and mass action incidence. The peak values
obtained are similar to those obtained for ε > 0 in the previous section. Figure 4
is a plot of the predictions of model (8)-(10) with the standard incidence form of
λ versus the predictions of the epidemic model with mass action incidence. Each
point on the plot represents the result from one of the 100 parameter sets simulated.
The dashed line represents equality of the two predictions, so in almost every case
the standard incidence model predicts a higher peak. However, the differences
are small and consistent, which suggests that the epidemic model is a good first
approximation.

System (8) through (10) with ε = 0 becomes

ẋ = −(1 − p)RIc(x, y, z)
(

y + τ(1 − q)z
)

x (12)

ẏ = (1 − p)RIc(x, y, z)
(

y + τ(1 − q)z
)

x − y (13)

ż = y − χz (14)

where,

c(x, y, z) =
1

x + y + (1 − q)z
. (15)
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Figure 4. Plot of peaks predicted from model (8) through (10)
with standard incidence versus the prediction of the epidemic model
with mass action incidence.

This simpler system, which we refer to as the epidemic model, no longer has a unique
disease-free equilibrium and is similar to the epidemic model studied by Kermack
and McKendrick [24]. Kermack and McKendrick showed the final size of a simple
epidemic model with no disease induced death depends only on R0. The final size
relation assumes µ is much less then σ or that the life expectancy in absence of HIV
is much larger then the lifespan with HIV. It is expected that the parameter ε is on
the order of 0.1, and thus the study of the simpler system with ε = 0 is merited.
It should be noted that neglecting µ increases R0, but does allow us to consider a
worst-case scenario.

The final size of an epidemic is defined as the fraction of the initial population
infected over the course of the epidemic which, with our notation, is x0−x∞. In this
section, we develop the final size relation for (12)- (14) and compare the results to
the ones obtained by solving (12) through (14) numerically. Let y∞ = limt→∞ y(t)
and ŷ =

∫

∞

0
y(t)dt, provided these limits exist. Summing (12) through (13) and

integrating leads to the relation

(x0 − x∞) + (y0 − y∞) = ŷ. (16)

From (12), x(t) is decreasing and bounded below, hence x∞ = limt→∞ x(t) exists.

Further,
∫ T

0
y(t) dt is increasing, and, by (16), bounded above. Hence, ŷ exists.

Similarly, from (14),
(z0 − z∞) = ŷ − χẑ, (17)

so that ẑ and z∞ must also exist. It follows that z∞ = y∞ = 0. Dividing (12)
through by x and integrating yields

log(x∞/x0) = −(1 − p)RI

∫

∞

0

c(x(t), y(t), z(t))
(

y(t) + τ(1 − q)z(t)
)

dt. (18)

For our model, c(x, y, z) is not bounded; however, in practice, this function will be
bounded above and below by strictly positive constants cM and cm, and it follows
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that
log(x0/x∞) ≤ cM (1 − p)RI(ŷ + τ(1 − q)ẑ). (19)

From (16) and (17), with z0 = 0, it follows that

log(x0/x∞) ≤ cM (1 − p)RI(1 + τ(1 − q)/χ)(x0 − x∞ + y0). (20)

Since the righthand side is finite, x∞ > 0. That is, the epidemic passes leaving a
strictly positive fraction, x∞, of the initial population untouched by the disease.
Equation (20) with inequality replaced by equality gives a lower bound for x∞. An
upper bound for x∞ can be found by replacing cM by cm in (20) and reversing the
inequality. Note that for the standard incidence model with c(x, y, z) unbounded,
this approach does not yield a lower bound for x∞. Derivation of a final size relation
for a more general model can be found in Arino et al. [25].

For the mass action model, cm = cM = 1, and the final size relation becomes the
equality

log(x0/x∞) = Rc(x0 − x∞ + y0). (21)

Based on the simulation results of the previous section, we conjecture that the initial
peak of the model of Section 2 will be similar to that of the simpler mass action
model with ε = 0, and since the peak of the epidemic model is related to the final
size of the epidemic, study of (21) will lead to insights into the peak of the model
of Section 2.

Setting p = q = 0 in (6) gives the basic reproduction number

R0 = c

(

β1

µ + σ
+

β2σ

(µ + γ)(µ + σ)

)

(22)

The numbers Rc and R0 are usually interpreted as the average number of secondary
infections caused by one infectious individual in a totally susceptible population
with and without control measures in place [26]. These two numbers are important
thresholds for disease spread in epidemiological models. It is evident from (6) that
Rc is an increasing function of the partial reproduction numbers, RI and RA, and

the fraction, 1−ε =
σ

µ + σ
, of individuals progressing to the second infectious stage,

and is decreasing with the control parameters p and q. It is clear that increasing p
from 0 to 1 with q = 0, decreases Rc from R0 to 0. Further, increasing q from 0
to 1 decreases Rc from (1 − p)R0 to (1 − p)RI . Moreover, the elasticity [27] of Rc

with respect to p and q can be computed as follows:

p

Rc

∂Rc

∂p
= −

p

1 − p
, (23)

q

Rc

∂Rc

∂q
= −q

(

(1 − p)RA

Rc

)

. (24)

These elasticities measure the effect a change in p or q has as a proportional change
in Rc. The elasticity to p increases nonlinearly with p, so that the proportional
change of Rc to p is small for p near zero, and very large for p near one. It may
be more informative to note that the elasticity of Rc to (1 − p) is unity. That is,
percent changes in the fraction of people not using condoms produced equal percent
changes in Rc. In contrast, the elasticity of Rc to q depends on the ratio RA to
Rc. Since the viral loads and duration of infection vary between individuals it is
important to examine the model for a range of RI and RA. If RI is much larger then
RA then its elasticity to q is small and withdrawl will have little effect. However, if,
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Figure 5. Level curves of (26) for ε = 0.3, q = 0. The labels
above each curve indicate the value of p for which Rc = 1. Thus,
disease control is achieved in the triangular region below the line.

as we expect, RA is much larger then unity, withdrawl can be very effective. Thus,
early identification of HIV- progression is important.

In terms of dimensionless parameters, Rc is

Rc = (1 − p)(RI + RA(1 − q)(1 − ε)). (25)

Note that Rc = RI in the special case that RA << RI (or q = 1) and p = 0.
This would be the case if AIDS symptoms develop rapidly as the viral load increases
so that infectious individuals in the second stage withdraw from contact, due to
morbidity or death, quickly. The reproduction number is also very sensitive to the
ratio RA/RI especially given the fact that the values of these two parameters are
uncertain.

The critical preventability necessary to end an epidemic is calculated by setting
Rc equal to 1 and re-writing (25) as follows:

pc = 1 −
1

RI + RA(1 − q)(1 − ε)
. (26)

Level curves for this relation are straight lines shown in Figure 5.
We now consider two scenarios for individual withdrawal, q, and look at the

effects on pc: first we assume that every individual in the second infectious stage
withdraws from sexual activity (q = 1) to obtain
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pc = 1 −
1

RI

.

The assumed condom preventability range of 0.6 < p < 0.9 then corresponds to a
range 2.5 < RI < 10. Estimates for RI are in the low end of this range, and thus
condoms could be sufficient to drive Rc below unity, resulting in the disease-free
equilibrium becoming globally asymptotically stable. However, this is most likely
unattainable as it would be extremely difficult, if not impossible, to have every
individual in the second infectious stage withdraw from sexually activity [28]. If we
assume that q = 0 so that no infectious individuals withdraw we obtain

pc = 1 −
1

RI + RA(1 − ǫ)
= 1 −

1

R0
.

Thus, if R0 > 6, as is likely, then pc > 0.84, and it is unlikely that condoms would
be sufficient in halting the epidemic.

It can be seen from Figure 5 that with no infectious individuals withdrawing
from sexual activity (q = 0), a preventability value of approximately 93% would be
necessary to ensure Rc was below unity assuming a worst-case scenario for RI and
RA. This figure also predicts that if the current estimates of transmission are high
then condoms could be effective as these values would be included in the triangular
region for pc ≤ 0.9.

5. Discussion and conclusion. The purpose of this paper was to investigate the
effectiveness of condoms as a control strategy for HIV. We considered a model where
a fraction of individuals would withdraw from contact. Although our model is not
as complex as other models (i.e., does not consider migration patterns, different
contact rates for males and females, different classes for males and females, etc), it
does provide us with an easier analysis to obtain Rc and a critical preventability
for control of an HIV epidemic by condom use.

We developed a simple preventability model for control of an HIV epidemic by
condom use. The inclusion of q is a necessary parameter to model the contact rate of
AIDS individuals given the reduction in incidence levels and number of contacts as
discussed in [29, 30]. Also, given the health factors that AIDS-infected individuals
face, such as becoming bedridden the inclusion of q for individual withdrawal is a
necessary component of the contact rate. As opposed to previous contact rates,
having a fraction of the AIDS population withdraw from sexual contact should
give more accurate contact rates compared to not including it. We showed that
the disease-free equilibrium is globally asymptotically stable whenever Rc ≤ 1 and
examined the sensitivity of RI and RA to p and q. We also showed that similar
sizes for the peak of the epidemic were obtained using standard and mass action
incidence for a full range of parameter space. This implies that one can use the
simpler mass action incidence as a first approximation to the peak of the epidemic.

We finally showed that condoms are effective in lowering the number of disease
outbreaks and the size of the epidemic. However, assuming that no infectious in-
dividuals withdraw from sexual activity (q = 0) requires a preventability level of
approximately 97% to control the epidemic. Even with some individuals withdraw-
ing from contact, a preventability value in the range of 85 to 93% would be necessary
to ensure the disease could not invade the population. This is presumably due to
the large range of values for RI as q only reduces RA. Thus, in order for individual
withdrawal to be effective it would require individuals in the first infectious stage
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who are in the very early symptomatic stages to withdraw as well. We conclude
condoms are not sufficient to halt the epidemic unless transmission probabilities
are at the lower range of current estimates. A two group model should be studied
in more detail to determine if targeted condom use of high risk contacts is feasible
as it has been suggested by [19]. It is thought if condoms are introduced into a
high-risk group before the disease spreads to the low risk groups then condoms can
be sufficient to halt the epidemic. However, if condoms are introduced too late into
the high-risk group then condoms alone will not be sufficient.

Acknowledgements. The paper is dedicated to Karl Hadeler and Fred Brauer.
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