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Abstract. A deterministic model for the co-interaction of HIV and malaria
in a community is presented and rigorously analyzed. Two sub-models, namely
the HIV-only and malaria-only sub-models, are considered first of all. Unlike
the HIV-only sub-model, which has a globally-asymptotically stable disease-
free equilibrium whenever the associated reproduction number is less than
unity, the malaria-only sub-model undergoes the phenomenon of backward
bifurcation, where a stable disease-free equilibrium co-exists with a stable en-
demic equilibrium, for a certain range of the associated reproduction number
less than unity. Thus, for malaria, the classical requirement of having the as-
sociated reproduction number to be less than unity, although necessary, is not
sufficient for its elimination. It is also shown, using centre manifold theory,
that the full HIV-malaria co-infection model undergoes backward bifurcation.
Simulations of the full HIV-malaria model show that the two diseases co-exist
whenever their reproduction numbers exceed unity (with no competitive ex-
clusion occurring). Further, the reduction in sexual activity of individuals
with malaria symptoms decreases the number of new cases of HIV and the
mixed HIV-malaria infection while increasing the number of malaria cases. Fi-
nally, these simulations show that the HIV-induced increase in susceptibility
to malaria infection has marginal effect on the new cases of HIV and malaria
but increases the number of new cases of the dual HIV-malaria infection.
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1. Introduction. HIV/AIDS has killed more than 25 million people since it was
first recognized in 1981, making it one of the most destructive epidemics in recorded
history (UNAIDS/WHO [45]). It remains one of the leading causes of death in the
world, with its effect most devastating in sub-Saharan Africa, where HIV prevalence
can range between 12% to 42% (Roseberry, et al. [41]). One of the key factors that
fuels the high incidence of HIV in sub-Saharan Africa is the dual infection with
malaria (Abu-Raddad et al. [1]). HIV has been shown to increase the risk of malaria
infection and accelerate the development of clinical symptoms of malaria, with the
greatest impact in immune-suppressed persons. Conversely, malaria has been shown
to induce HIV-1 replication in vitro and in vivo. A biological explanation for these
interactions lies in the cellular-based immune responses to HIV and malaria. Studies
have shown that when HIV-infected individuals are attacked by malaria, their body
immune system weakens significantly, creating a conducive environment for the HIV
virus to replicate (virtually unchallenged), resulting in an increase in the viral load
(the amount of HIV virus in the body). Hence, since viral load is correlated with
infectiousness [38], such a process (co-infection with malaria) leads to an increase
in the number of new HIV cases in the population.

Humans acquire malaria infection from infected female Anopheles mosquitoes
(after taking blood meal). Of the four mosquito species that infect humans (P.
falciparum, P. vivax, P. ovale, and P. malarie), P. falciparum is the most viru-
lent and potentially lethal to humans. Plasmodium falciparum stimulate release
of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and the compli-
cations of severe falciparum malaria are mostly due to release of these cytokines.
The increased levels of such cytokines stimulate the replication of HIV in vivo
(thus increasing the HIV levels in patients [49]). HIV-1 proviral loads are signifi-
cantly higher in patients with malaria than those without; and remain higher for
at least 4 weeks after treatment [26]. Thus, malaria infection could cause faster
progression of HIV-1 disease [34]. A study in rural Tanzania shows a significantly
higher prevalence of symptomless malarial parasitemia in HIV-infected adults and
higher mortality due to malaria in these individuals [6]. In a large study carried
out in Uganda, HIV-1 infection has been found to increase the frequency of clinical
malaria and parasite density with tendency to greater parasitemia with advancing
immunosuppression [47]. Furthermore, morbidity is higher in HIV-infected individ-
uals [34, 31, 37]. Recent studies of dual HIV-malaria infection confirm and extend
earlier findings [26, 47, 20, 28, 35, 39] by showing that co-infection leads to a near
one-log increase in viral load in chronic-stage HIV-infected patients during febrile
malaria episodes and that HIV infection substantially increases susceptibility to
malaria infection [1, 39].

This symbiotic relationship between HIV and malaria is a double blow to sub-
Saharan Africa region because of the high prevalence of HIV/AIDS and incidence
of malaria [44]. This highlights the need for a robust qualitative assessment of
the population-level implications of the immune-mediated interaction of the two
diseases [1, 48]. Abu-Raddad et al. [1] recently presented a mathematical model to
study the transmission dynamics of HIV and malaria co-infection. It quantifies the
size of the epidemic synergy between HIV-1 and malaria.

In this study, we formulate and analyse a realistic mathematical model for HIV-
malaria co-infection, which incorporates the key epidemiological and biological fea-
tures of each of the two diseases. The main contribution of this study is in carrying
out a detailed qualitative analysis of the resulting model; an activity not carried
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out in [1]. It is our view that this study represents the very first modelling work
that provides an in-depth analysis of the qualitative dynamics of HIV-malaria co-
infection. Additionally, there are some important differences between the model in
[1] and the one in this paper. For instance, whilst we used an exponential distri-
bution waiting time to model the exposed class, a discrete time delay was used for
the same purpose in [1]. Further, seasonality variations were used in [1] to model
the birth rate of mosquitoes, whereas the current study uses a constant birth rate.
Mathematically speaking, while the model considered in [1] is non-autonomous, the
model considered in the current study is autonomous. Furthermore, unlike in many
other modelling studies of HIV transmission dynamics in a population, this study
assumes that individuals in the AIDS stage of HIV infection do transmit the dis-
ease to susceptible individuals. This is owing to the fact that epidemiologic evidence
supports the hypothesis that AIDS patients are capable of, and do engage in, risky
sexual behavior defined in terms of inconsistent condom use or having multiple sex
partners [30].

It is worth stating that although the acquisition of immunity to malaria is a slow
and complex process [4], the effect of partial host immunity on the transmission
dynamics of malaria in areas where malaria is endemic can be significant. Such
partial immunity, which develops after several years of endemic exposure, results
from many factors such as antigenic polymorphism, poor immunogenicity of individ-
ual antigens, the ability of the parasite to interfere with the development of immune
responses and the interaction of maternal and neonatal immunity [14]. Many in-
fected individuals in endemic areas are asymptomatic (that is, they may harbour
large numbers of parasites without exhibiting signs and symptoms of the disease)
[2, 5, 14]. In areas of low malaria transmission, immunity develops slowly and
malaria affects all age groups [22]. As noted in [33], since HIV infection interferes
with cellular immune function, HIV may interfere with the development of partial
immunity to malaria, particularly amongst children. This complicates the explicit
modelling of the role of partial immunity to malaria in HIV/malaria transmission
dynamics.

The paper is organized as follows. The model is formulated in Section 2. The
sub-models for HIV and malaria are presented and analyzed in Sections 3 and 4,
respectively. The analysis of the full HIV-malaria co-infection model is carried
out in Section 5. Numerical simulations and concluding remarks are presented in
Section 6.

2. Model description. The model sub-divides the total sexually-active human
population at time t, denoted by NH(t), into the following sub-populations of sus-
ceptible individuals (SH(t)), individuals exposed to malaria parasite only (EM (t)),
individuals with malaria symptoms only (IM (t)), individuals infected with HIV only
but display no clinical symptoms of AIDS (IH(t)), HIV-infected individuals (with
no symptoms of AIDS) exposed to malaria (EHM (t)), individuals dually-infected
with HIV and malaria, displaying clinical symptoms of malaria but no AIDS symp-
toms (IHM (t)), HIV-infected individuals displaying AIDS symptoms (AH(t)), AIDS
individuals exposed to malaria (EAM (t)) and AIDS individuals dually-infected with
malaria, and displaying clinical symptoms (AHM (t)), so that

NH(t) = SH(t) + EM (t) + IM (t) + IH(t) + EHM (t) + IHM (t) +AH(t)
+ EAM (t) +AHM (t).



336 Z. MUKANDAVIRE, A. B. GUMEL, W. GARIRA AND J. M. TCHUENCHE

The total vector (mosquito) population at time t, denoted by NV (t), is sub-
divided into susceptible mosquitoes (SV (t)), mosquitoes exposed to the malaria
parasite (EV (t)) and infectious mosquitoes (IV (t)), so that

NV (t) = SV (t) + EV (t) + IV (t).

It is assumed that susceptible humans are recruited into the population at a
constant rate ΛH . Susceptible individuals acquire HIV infection following effective
contact with HIV-infected individuals (at a rate λH), and acquire infection with
malaria following effective contact with infected mosquitoes (at a rate λM ). It is
assumed that individuals with malaria infection only may recover and return to the
susceptible class (at a rate φ1). Further, natural death occurs in all human sub-
populations (at a rate µH). The force of infection associated with HIV infection,
denoted by λH , is given by

λH =
βH {IH + ηHM (EHM + θHMIHM ) + ηA [AH + ηHM (EAM + θHMAHM )]}

NH

.

(1)
In (1), βH is the effective contact rate for HIV infection (contact sufficient to

result in HIV infection), the modification parameter ηHM ≥ 1 accounts for the
relative infectiousness of individuals asymptomatically-infected with HIV exposed
to malaria (EHM ) or displaying clinical symptoms of malaria (IHM ) in comparison
to those with HIV infection alone but with no AIDS symptoms (IH). In other
words, it is assumed that HIV-infected individuals (with no AIDS symptoms) who
are also infected with malaria are more infectious than HIV-infected individuals
with no AIDS symptoms and no malaria infection (similar comparisons are made
for HIV-infected individuals with AIDS symptoms alone in relation to those with
AIDS symptoms and malaria infection). Further, the parameter θHM ≥ 1 models
the fact that dually-infected individuals with no symptoms of AIDS, but displaying
symptoms of malaria (IHM ), are more infectious than the corresponding dually-
infected individuals who are only exposed to malaria (EHM ). Finally, the parameter
ηA > 1 captures the fact that individuals in the AIDS stage of HIV infection are
more infectious than HIV-infected individuals displaying no clinical symptoms of
AIDS. This is due to the fact that individuals in the AIDS stage have higher viral
load compared to other HIV-infected individuals with no AIDS symptoms (this is
owing to the aforementioned correlation between HIV viral load and infectiousness).

Similarly, humans acquire malaria infection following effective contact with in-
fected mosquitoes at a rate λM , given by,

λM = βMbM
IV
NH

, (2)

where βM is the transmission probability per bite and bM is the per capita biting
rate of mosquitoes (the form of the disease incidence function is obtained by taking
into account “conservation of bites”; that is, the total number of bites made by
mosquitoes equals the number of bites received by the human hosts [8] ).

Susceptible individuals infected with malaria are moved to the exposed class
(EM ) at the rate λM , and then progress to the infectious class (IM ), following the
development of clinical symptoms (at a rate γH). Individuals exposed to malaria
can be infected with HIV (at a rate λH). That is, individuals in the EM class are
moved into the EHM class upon acquiring HIV infection. Furthermore, individuals
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with symptoms of malaria can acquire HIV infection, at a rate σλH , where the
parameter 0 < σ ≤ 1 models the expected decrease in sexual activity (contact) by
individuals with malaria symptoms (because of ill health). Individuals with malaria
symptoms recover (at the rate φ1) and suffer disease-induced death (at a rate δM ).

The population of individuals infected with HIV only (and displaying no symp-
toms of AIDS) is generated following infection (at the rate λH) and by the recovery
of malaria infection by those dually-infected with HIV and malaria (at a rate φ2).
Individuals in this class acquire malaria infection (at a rate ϑλM , where ϑ > 1 ac-
counts for the assumed increase in susceptibility to malaria infection as a result of
HIV infection). This population is further decreased following progression to AIDS
(at a rate κ). Individuals infected with HIV and exposed to malaria develop symp-
toms of malaria at a rate ǫγH , where ǫ ≥ 1 represents the assumption that HIV
infected individuals exposed to malaria develop malaria at a faster rate compared
to those not infected with HIV.

Individuals in the IHM class die due to malaria (at the rate τδM , where τ ≥
1 accounts for the increased mortality of the IHM individuals in comparison to
individuals with malaria symptoms but not infected with HIV), recover (at a rate
φ2) and progress to AIDS (at a rate ξκ, where ξ ≥ 1 represents the assumption that
HIV infected individuals dually-infected with malaria progress to AIDS at a faster
rate compared to those with HIV only).

The population of individuals with AIDS symptoms only is generated following
the progression to AIDS by individuals with HIV only (at the rate κ) as well as the
recovery from malaria of individuals with AIDS symptoms and malaria (at a rate
φ3). Individuals in this class also acquire malaria infection (at the rate ϑλM ) and
die of AIDS-related illness (at a rate δH). Individuals in the class of people with
AIDS symptoms exposed to malaria develop symptoms of malaria at the accelerated
rate ǫγH .

The population of individuals with symptoms of both malaria and AIDS is gen-
erated by progression to AIDS by individuals dually-infected with HIV and malaria
(at the rate ξκ) and the development of malaria symptoms by individuals with
AIDS exposed to malaria (at the rate ǫγH). This population is diminished by nat-
ural death (at the rate µH), recovery from malaria infection (at a rate φ3), death
due to AIDS (at a rate ψδH , where ψ > 1 accounts for the assumed increase in
HIV-related mortality due to the dual infection with malaria) and death due to
malaria (at the rate τδM ).

Susceptible mosquitoes (SV ) are generated at a constant rate ΛV , and acquire
malaria infection (following effective contacts with humans infected with malaria)
at a rate λV , where the force of infection λV is given by

λV = βV bM
IM + ηV (IHM + θV AHM )

NH

, (3)

where βV is the transmission probability for mosquito infection, bM is the biting
rate of mosquitoes, ηV ≥ 1 is a modification parameter accounting for the increased
likelihood of infection of vectors from humans with dual HIV-malaria infection in
relation to acquiring infection from humans with malaria only. The parameter
θV ≥ 1 is similarly defined. Mosquitoes are assumed to suffer natural death at a
rate µV , regardless of their infection status. Newly-infected mosquitoes are moved
into the exposed class (EV ), and progress to the class of symptomatic mosquitoes
(IV ) following the development of symptoms (at a rate γV ).
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Putting the above formulations and assumptions together gives the following sys-
tem of differential equations (where a prime represents differentiation with respect
to time).

S′

H = ΛH + φ1IM − λHSH − λMSH − µHSH ,

E′

M = λMSH − λHEM − (γH + µH)EM ,

I ′M = γHEM − σλHIM − (µH + δM + φ1)IM ,

I ′H = λHSH + φ2IHM − ϑλMIH − (µH + κ)IH ,

E′

HM = λHEM + ϑλMIH − (ǫγH + µH + κ)EHM ,

I ′HM = σλHIM + ǫγHEHM − (µH + τδM + φ2 + ξκ)IHM ,

A′

H = κIH + φ3AHM − ϑλMAH − (µH + δH)AH ,

E′

AM = ϑλMAH + κEHM − (ǫγH + µH + δH)EAM ,

A′

HM = ξκIHM + ǫγHEAM − (µH + φ3 + τδM + ψδH)AHM ,

S′

V = ΛV − λV SV − µV SV ,

E′

V = λV SV − (γV + µV )EV ,

I ′V = γVEV − µV IV .

(4)

The model flow diagram is depicted in Figure 1, and the associated parameters
are described in Table 1. Since the model (4) monitors human populations, all asso-
ciated state variables and parameters are non-negative for all time t ≥ 0. Further,
before analyzing the dynamics of the full model (4), it is instructive to analyze the
sub-models (HIV-only and malaria-only) first of all. This is done below.

3. HIV-only model. We begin by analysing the HIV-only model (obtained by
setting EM = IM = EHM = EAM = AHM = SV = EV = IV = 0 in (4)) given by,

S′

H = ΛH − λHSH − µHSH ,

I ′H = λHSH − (µH + κ)IH ,

A′

H = κIH − (µH + δH)AH ,

(5)

where, now, λH = βH(IH+ηAAH)
NH

and NH = SH + IH +AH . Consider the region

ΩH =
{

(SH , IH , AH) ∈ R
3
+ : NH ≤ ΛH/µH

}

.

It can be shown (see, for instance, [42, 43]) that all solutions of the system (5)
starting in ΩH remain in ΩH for all t ≥ 0. Thus, ΩH is positively-invariant (hence,
it is sufficient to consider the dynamics of (5) in ΩH).
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The HIV-only model (5) has a DFE given by,

Eh0 =
(

SH , IH , AH

)

=
(ΛH

µH

, 0, 0
)

. (6)

The stability of this equilibrium will be investigated using the next generation op-
erator [17, 46]. Using the notation in [46] on the system (5), the matrices F and
V , for the new infection terms and the remaining transfer terms are, respectively,
given by

F =

(

βH βHηA

0 0

)

and V =

(

µH + κ 0
−κ µH + δH

)

.

It follows that the associated basic reproduction number [3, 10, 12, 25], denoted by
RH , is given by

RH = ρ(FV −1) =
βH(δH + κηA + µH)

(κ+ µH)(δH + µH)
, (7)

where ρ represents the spectral radius (the dominant eigenvalue in magnitude) of
FV −1. Using Theorem 2 of [46], the following result is established.

Lemma 1. The DFE of the HIV-only model (5) is locally-asymptotically stable
(LAS) if RH < 1, and unstable if RH > 1.

The basic reproduction number (RH) measures the average number of new infec-
tions generated by a single infected individual in a completely susceptible popu-
lation. Thus, Lemma 1 implies that HIV can be eliminated from the community
(when RH < 1) if the initial sizes of the sub-populations of the model are in the
basin of attraction of the DFE Eh0. To ensure that elimination of the virus is in-
dependent of the initial sizes of the sub-populations, it is necessary to show that
the DFE is globally-asymptotically stable. The following results can be established
(using, for instance, the techniques in [43], where a treatment model for HIV is
considered):

Theorem 2. The DFE of the model (5), given by Eh0, is globally-asymptotically
stable (GAS) whenever RH ≤ 1.

Lemma 3. The HIV-only model has a unique endemic equilibrium if and only if
RH > 1.

The global stability property of the endemic equilibrium of the HIV-only model
is now investigated for a special case.

3.1. Global stability of the endemic equilibrium for δH = 0. Consider the
HIV-only model (5) with δH = 0, given by

S′

H = ΛH − λHSH − µHSH ,

I ′H = λHSH − (µH + κ)IH ,

A′

H = κIH − µHAH .

(8)

The system (8), for the special case above, has the same unique endemic equi-
librium as the HIV-only model (5), but with δH = 0. Let,
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ΩH0 =
{

(SH , IH , AH) ∈ Ωh : IH = AH = 0
}

and RH1 = RH |δH=0.

We claim the following

Theorem 4. The endemic equilibrium of the HIV-only model with δH = 0 is GAS
in ΩH \ ΩH0 whenever RH1 > 1.

Proof. It can be shown, as for the case of Lemma 3, that the unique endemic
equilibrium for this case exists only if RH1 > 1. Further, NH = ΛH/µH as t→ ∞.
Thus, using SH = ΛH/µH − IH − AH and substituting in (8) gives the following
limiting system

I ′H = λH(ΛH/µH − IH −AH) − (µH + κ)IH ,

A′

H = κIH − µHAH .
(9)

Using the Dulac’s multiplier 1/IHAH , it follows that

∂

∂IH

[

βH(IH + ηAAH)

IHAHΛH/µH

(ΛH/µH − IH −AH) −
(κ+ µH)

AH

]

+
∂

∂AH

(

κ

AH

−
µH

IH

)

= −

[

βHµH

ΛH

+
βHηAµH

ΛHI2
H

(

1 −
AH

ΛH/µH

)

+
κ

A2
H

]

< 0 since AH ≤ ΛH/µH in ΩH .

Thus, by Dulac’s criterion, there are no periodic orbits in ΩH \ΩH0. Since ΩH is
positively invariant, and the endemic equilibrium exists whenever RH1 > 1, then it
follows from the Poincaré-Bendixson Theorem [40] that all solutions of the limiting
system originating in ΩH remain in ΩH for all t. Further, the absence of periodic
orbits in ΩH implies that the unique endemic equilibrium of the special case of the
HIV-only model is GAS whenever RH1 > 1.

It may be possible to show, using a regular perturbation argument (as in [8]), that
the above proof holds for δH > 0, but small.

In summary, the model with HIV alone has a globally-asymptotically stable
disease-free equilibrium whenever RH ≤ 1, and a unique endemic equilibrium when-
ever RH > 1. The unique endemic equilibrium is globally-asymptotically stable for
the special case δH = 0 if RH1 > 1. The dynamics of the malaria-only model is
now studied.
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4. Malaria-only model. Consider the malaria-only model (obtained by setting
IH = EHM = IHM = AH = EAM = AHM = 0 in (4)), given by

S′

H = ΛH + φ1IM − λMSH − µHSH ,

E′

M = λMSH − (γH + µH)EM ,

I ′M = γHEM − (µH + δM + φ1)IM ,

S′

V = ΛV − λV SV − µV SV ,

E′

V = λV SV − (γV + µV )EV ,

I ′V = γV EV − µV IV ,

(10)

where, now, λM = βMbM
IV
NH

, λV = βV bM
IM
NH

and NH = SH + EM + IM . The

model is a slight modification of the dengue transmission model in [21].
Consider the region

ΩM =
{

(SH , EM , IM , SV , EV , IV ) ∈ R
6
+ : NH ≤ ΛH/µH , NV ≤ ΛV /µV

}

.

It can be shown that the region ΩM is positively-invariant (so that it is sufficient
to consider the dynamics of the model (10) in ΩM ).

4.1. Local stability of the disease-free equilibrium. The DFE of the malaria-
only model (10) is given by,

EM0 =
(

SH , EM , IM , SV , EV , IV

)

=
(ΛH

µH

, 0, 0,
ΛV

µV

, 0, 0
)

. (11)

Here, the associated next generation matrices are given by

F =









0 0 0 bMβM

0 0 0 0

0 bM βV ΛV µH

ΛHµV
0 0

0 0 0 0









,

V =









γH + µH 0 0 0
−γH δM + µH + φ1 0 0

0 0 γV + µV 0
0 0 −γV µV









,

so that,

RM = ρ(FV −1) =

√

b2MβMβV γHγV µHΛV

ΛHµ2
V (γH + µH)(γV + µV )(δM + µH + φ1)

. (12)

Thus, using Theorem 2 of [46], we have established the following result.

Theorem 5. The DFE of the malaria-only model (10) is LAS if RM < 1, and
unstable if RM > 1.
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4.2. Existence of backward bifurcation. It is shown from Theorem 5 that the
DFE of the malaria-only model is LAS if RM < 1. However, this equilibrium may
not be GAS in ΩM for RM < 1, owing to the possibility of backward bifurcation,
where the stable DFE co-exists with a stable endemic equilibrium when RM < 1
(see, for instance, [9, 13, 18, 19, 21, 23, 32, 29, 42, 43] and the references therein
for further discussion on backward bifurcation). The public health implication of
backward bifurcation is that the classical requirement of having the basic reproduc-
tion number less than unity, although necessary, is no longer sufficient for disease
control. The possibility of the backward bifurcation phenomenon in the system (10)
is investigated below.

Solving the malaria-only model at an arbitrary equilibrium, denoted by EM1 =
(S∗

H , E
∗

M , I∗M , S∗

V , E
∗

V , I
∗

V ), gives,















































S∗

H = (γH+µH)(δM+µH+φ1)ΛH

µH (λ∗

M
+µH)(δM +µH+φ1)+γH (δM (λ∗

M
+µH )+µH(λ∗

M
+µH+φ1)) ,

E∗

M =
(δM+µH+φ1)λ

∗

M ΛH

µH (λ∗

M+µH )(δM+µH+φ1)+γH(δM (λ∗

M+µH )+µH(λ∗

M +µH+φ1)) ,

I∗M =
γHλ∗

M ΛH

µH (λ∗

M
+µH )(δM+µH+φ1)+γH(δM (λ∗

M
+µH )+µH (λ∗

M
+µH+φ1))

,

S∗

V = ΛV

λ∗

V +µV
, E∗

V =
λ∗

V ΛV

(γV +µV )(λ∗

V +µV ) , I∗V =
γV λ∗

V ΛV

µV (γV +µV )(λ∗

V +µV ) ,

(13)

where,

λ∗M =
bMβMI∗V

S∗

H + E∗

M + I∗M
, (14)

and,

λ∗V =
bMβMI∗M

S∗

H + E∗

M + I∗M
. (15)

Substituting (13) and (15) into (14) shows that the endemic equilibria of the malaria-
only model (10) satisfy the following polynomial (in terms of λ∗M )

λ∗M

[

A (λ∗M )
2

+Bλ∗M + C
]

= 0, (16)

where,

A = ΛHµV (γV + µV )(γH + δM + µH + φ1)A1,

B = ΛHµV (γH + µH)(γV + µV )(δM + µH + φ1)B1

−b2MβMβV γHγV ΛV

[

γH(δM + µH) + µH(δM + µH + φ1)
]

,

C = ΛHµ
2
V (γV + µV )(γH + µH)2(δM + µH + φ1)

2(1 −R2
M ),

with,

A1 = bMβV γH + µV (γH + δM + µH + φ1),

B1 = bMβV γH + 2µV (γH + δM + µH + φ1).
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The root λ∗M = 0, of (16), corresponds to the DFE EM0 (whose stability has
already been analyzed). For backward bifurcation to occur, multiple non-zero (en-
demic) equilibria must exist. It follows from (16) that the non-zero equilibria of the
model satisfy

f(λ∗M ) = A (λ∗M )
2

+Bλ∗M + C = 0, (17)

so that the quadratic (17) can be analyzed for the possibility of multiple equilibria.
It is worth noting that the coefficientA is always positive and C is positive (negative)
if RM is less than (greater than) unity, respectively. Hence, we have established
the following result.

Theorem 6. The malaria-only model (10) has

(i) precisely one unique endemic equilibrium if C < 0 (i.e., RM > 1),
(ii) precisely one unique endemic equilibrium if B < 0, and C = 0 or B2−4AC =

0,
(iii) precisely two endemic equilibria if C > 0 (i.e., RM < 1), B < 0 and B2 −

4AC > 0,
(iv) no endemic equilibrium otherwise.

The possible presence of two endemic equilibria (Case (iii)) above indicates the
possibility of backward bifurcation in the model (10). This is explored further below,
using the Centre Manifold theory [11, 13, 18, 46]. To apply this theory, the following
simplification and change of variables are made first of all. Let SH = x1, EM =
x2, IM = x3, SV = x4, EV = x5 and IV = x6, so that NH = x1 + x2 + x3 and
NV = x4 + x5 + x6. Further, by using vector notation x = (x1, x2, x3, x4, x5, x6)

T ,
the malaria-only model (10) can be written in the form dx

dt
= F (x), with F =

(f1, f2, f3, f4, f5, f6)
T , as follows:

dx1

dt
= f1 = ΛH + φ1x3 − λMx1 − µHx1,

dx2

dt
= f2 = λMx1 − (γH + µH)x2,

dx3

dt
= f3 = γHx2 − (µH + δM + φ1)x3,

dx4

dt
= f4 = ΛV − λV x4 − µV x4,

dx5

dt
= f5 = λV x4 − (γV + µV )x5,

dx6

dt
= f6 = γV x5 − µV x6,

(18)

with,

λM =
βM bMx6

x1 + x2 + x3
and λV =

βV bMx3

x1 + x2 + x3
.

The method entails evaluating the Jacobian of the system (18) at the DFE EM0,
denoted by J(EM0). This gives:
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J(EM0) =

















−µH 0 φ1 0 0 −J1

0 −J2 0 0 0 J1

0 γH −J3 0 0 0
0 0 −J4 −µV 0 0
0 0 J4 0 −J5 0
0 0 0 0 γV −µV

















,

where,

J1 = βMbM , J2 = γH + µH , J3 = µH + δM + φ1,
J4 = (βV bMΛV µH)/(µV ΛH), J5 = γV + µV .

Consider, next, the case when RM = 1. Suppose, further, that βM = β∗ is
chosen as a bifurcation parameter. Solving for βM from RM = 1 gives

βM = β∗ =
ΛHµ

2
V (γH + µH)(µH + δM + φ1)(µV + γV )

b2MβV γHγV µHΛV

.

It follows that the Jacobian (J(EM0)) of (18) at the DFE, with βM = β∗, denoted
by Jβ∗ , has a simple zero eigenvalue (with all other eigenvalues having negative
real part). Hence, the Centre Manifold theory [11] can be used to analyze the
dynamics of the model (18). In particular, the theorem in [13] (see also [11, 18, 46]),
reproduced below for convenience, will be used to show that the model (18) (or,
equivalently, (10)) undergoes backward bifurcation at RM = 1.

Theorem 7. Castillo-Chavez and Song [13]

Consider the following general system of ordinary differential equations with a pa-
rameter φ

dx

dt
= f(x, φ), f : R

n × R → R
n and f ∈ C

2(Rn × R),

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and

1. A = Dxf(0, 0) =
(

∂fi

∂xj
(0, 0)

)

is the linearization matrix of the system around

the equilibrium 0 with φ evaluated at 0;
2. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative

real parts;
3. Matrix A has a right eigenvector w and a left eigenvector v corresponding to

the zero eigenvalue.

Let fk be the kth component of f and

a =

n
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

b =
n

∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0),

then the local dynamics of the system around the equilibrium point 0 is totally de-
termined by the signs of a and b. Particularly, if a > 0 and b > 0, then a backward
bifurcation occurs at φ = 0.
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In order to apply the above theorem, the following computations are necessary
(it should be noted that we are using β∗ as the bifurcation parameter, in place of
φ in Theorem 7).

Eigenvectors of Jβ∗: For the case when RM = 1, it can be shown that the
Jacobian of (18) at βM = β∗ (denoted by Jβ∗) has a right eigenvector given by
w = [w1, w2, w3, w4, w5, w6]

T , where,

w1 =
φ1w3 − β∗bMw6

µH

,

w2 =
β∗bMw6

γH + µH

,

w3 =
γHw2

µH + δM + φ1
,

w4 =
−(βV bMµHΛVw3)

ΛHµ2
V

,

w5 =
µVw6

γV

,

w6 = w6.

Further, Jβ∗ has a left eigenvector v = [v1, v2, v3, v4, v5, v6], where,

v1 = 0,

v2 = v2,

v3 =
γH + µH

γH

,

v4 = 0,

v5 =
γV v6

γV + µV

,

v6 =
β∗bMv2
µV

.

Computations of a and b : It can be shown, after some algebraic manipulations
(involving computing the associated non-zero partial derivatives of F (at the DFE)
to be used in the expression for a in Theorem 7), that

a =
−2bMµHv5w3w4βV (∇− 1)

ΛH

,

where,



346 Z. MUKANDAVIRE, A. B. GUMEL, W. GARIRA AND J. M. TCHUENCHE

∇ =
v2w6µHΛHβM (w2 + w3) + v5w3µHΛV βV (w1 + w2 + w3)

v5w3w4µV ΛHβV

,

and,

b = v2w6bM > 0.

Hence, it follows (from Theorem 7 above) that the malaria-only model (10) un-
dergoes backward bifurcation at RM = 1 whenever

a =
−2bMµHv5w3w4βV (∇− 1)

ΛH

> 0. (19)

This result is summarized below.

Theorem 8. The malaria-only model (10) undergoes a backward bifurcation at
RM = 1 whenever inequality (19) holds.

The backward bifurcation phenomenon is illustrated (Figure 2) by simulating
the malaria-only model system (10) with the following set of parameter values
(note that the parameters are chosen in order to illustrate the backward bifur-
cation, and may not all be realistic epidemiologically (see [32] for some comments
on whether or not backward bifurcation, in the context of TB disease, can occur
with realistic parameter values)): ΛH = 0.00099,ΛV = 0.0089, βM = 0.07833, βV =
0.0057233, bM = 0.58, γH = 100, γV = 0.981, µH = 0.00049139, µV = 0.009, φ1 =
0.00656, δM = 0.0013945392. Using the above set of parameter values, it follows
that RM = 0.9823256562 and a = 0.3354 with b = 0.58 (so that the inequality (19)
is satisfied).

Although the phenomenon of backward bifurcation has been observed in nu-
merous epidemiological settings, such as those for behavioural responses to per-
ceived risk, multi-groups, vaccination, TB dynamics with exogenous re-infection
(see [13, 18, 19, 21, 23, 32, 29, 42, 43] and the references therein), this is, probably,
the first time such a phenomenon has been established in malaria transmission dy-
namics (Garba et al. [21] also established backward bifurcation in dengue disease,
another vector-borne disease).

Finally, it is worth stating that, unlike in the HIV-only model, the DFE of the
malaria-only model (EM0) is not globally-asymptotically stable when the associated
reproductive number (RM ) is less than unity, owing to the phenomenon of backward
bifurcation. Consequently, this study shows that the control of malaria spread in a
population when RM < 1 will depend on the initial sizes of the sub-populations of
the malaria-only model (10).

5. Analysis of the HIV-malaria model.

5.1. Local stability of the disease-free equilibrium. Having analysed the dy-
namics of the two sub-models, the full HIV-malaria model (4) is now considered.
Its DFE is given by,

E0 =
(

SH , EM , IM , IH , EHM , IHM , AH , EAM , AHM , SV , EV , IV )

=
(ΛH

µH

, 0, 0, 0, 0, 0, 0, 0, 0,
ΛV

µV

, 0, 0
)

.

(20)
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It is easy to show, using the next generation method (as in Sections 3 and 4), that
the associated reproduction number for the full HIV-malaria model (4) (denoted by
RHM ) is given by

RHM = max{RH ,RM}, (21)

so that the following results follows from Theorem 2 of [46].

Theorem 9. The DFE of the HIV-malaria model (4), given by (20), is LAS if
RHM < 1, and unstable if RHM > 1.

Like in the case of the malaria-only model (10), the full HIV-malaria model (4)
also undergoes backward bifurcation. We claim the following (see Appendix A for
proof)

Theorem 10. The full model (4) undergoes backward bifurcation at RHM = 1
whenever inequality (23) is satisfied.

The backward bifurcation phenomenon of the full HIV-malaria model (4) is il-
lustrated by depicting time series plots, based on simulating the transformed model
(22) with various initial conditions, showing convergence to either the DFE (E0)
or an endemic equilibrium (Figure 3). With the parameter values used in these
simulations, the coefficient a in the inequality (23) is given by a = 0.0006 (and b is
always positive).

6. Numerical simulations and concluding remarks. In order to illustrate
some of the analytical results in this paper, numerous numerical simulations of
the full model (4) were carried out, using a set of parameter values given in Ta-
ble 1. Figure 4 illustrates the solution profiles of the populations of symptomatic
individuals infected with malaria only (IM ), HIV only (IH), both diseases (IHM )
and the symptomatic mosquito population (IV ), using various initial conditions.
Simulating the model using the parameter values in Table 1 with βV = 0.2 and
βH = 0.0001 (so that RH = 0.3076, RM = 0.4065 and RHM = 0.4065 < 1) shows
convergence to the disease-free equilibrium (Fig. 4), in line with Theorem 7. Simi-
larly, choosing βH = 0.001 and βV = 0.9 (so that, RH = 3.0765, RM = 0.8624 and
RHM = 3.0765) shows convergence to an endemic equilibrium (Fig. 5). Although
the stability analysis of the endemic equilibrium of the HIV-malaria model (4) has
not been carried out in this study, this result is certainly expected (since the DFE
is unstable in this case, and, typically, the disease persists when the reproduction
threshold (RHM ) exceeds unity; as is the case in these particular simulations).

Simulations for the case where the two reproduction numbers exceed unity are
carried out and depicted in Figure 6. These figures illustrate that for RH and RM

greater than unity, there is always co-existence of the two diseases no matter which
of the reproduction numbers is greater. Further, the simulations illustrate that the
population of symptomatic individuals infected with malaria only (IM ) always has a
higher steady-state value than that of the population of individuals in the HIV class
IH for 1 < RM > RH , 1 < RH < RM and RM = RH (it should be stated that in
each of the pictures depicted in Figure 6, the steady-state value of the population of
individuals in the IH class is non-zero). In other words, these simulations suggest
that, for the set of parameter values used, there would always be more cases of
malaria at steady-state than cases of HIV infection in the community.

The effect of reduction in sexual activity by individuals with malaria symptoms
(IM ) exposed to HIV is monitored by varying the parameter σ. Figure 7B shows
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that while the cumulative number of new cases of malaria infection increases with
decreasing σ, the cumulative number of new cases of HIV (Fig. 7A) and that of
the mixed (HIV-malaria) infection (Fig. 7C) decrease as σ decreases from 1 to 0.
That is, as individuals with symptoms of malaria decrease their risk of acquiring
HIV infection (by decreasing their effective contact rate σλH , with 0 < σ ≤ 1), the
cumulative number of new cases of HIV and the mixed infection decrease; while the
cumulative number of new cases of malaria rises.

Simulations were carried out to monitor the effect of the assumed increase in
susceptibility to malaria infection in individuals infected with HIV, by varying the
associated parameter ϑ. The simulations, depicted in Figure 8, show that such an
increase in susceptibility has marginal effect on the number of new cases of HIV
(alone) and malaria infection (since the curves in Figure 8A and Figure 8B seem to,
generally, coincide). However, for the case of the mixed infection, Figure 8C shows
significant increase in the number of new cases as malaria susceptibility is increased
by about 10-fold (the increase in the number of new cases remains constant as ϑ is
increased further).

The effect of increase in AIDS-related mortality in individuals dually-infected
with HIV and malaria (with symptoms of malaria) is also monitored, by varying
ψ. Figure 9 shows an increase in HIV mortality as ψ increases and a decrease in
mortality for individuals with the dual infection. This parameter seems to have no
effect on the mortality of individuals infected with malaria only (albeit it shows a
marginal decrease in mortality as ψ increases).

In summary, a deterministic compartmental model for the transmission dynamics
of HIV and malaria in a given community is designed and rigorously analyzed. The
model considered the epidemiologic synergy between sexually transmitted HIV and
malaria in the context of Abu-Raddad et al. [1]. The HIV-only and malaria-
only models were qualitatively examined, first of all. The main theoretical results
obtained are as follows:

(i) The HIV-only model has a globally-asymptotically stable disease-free equi-
librium whenever a certain epidemiological threshold (RH) is less than unity
(see also [42, 43]); and unstable if this threshold exceeds unity;

(ii) The HIV-only model has a unique endemic equilibrium whenever the afore-
mentioned threshold exceeds unity. For the case where no AIDS-related mor-
tality is considered, this endemic equilibrium is globally-asymptotically stable
whenever it exists;

(iii) Unlike the HIV-only model, the malaria-only model undergoes the phenom-
enon of backward bifurcation, where the associated stable disease-free equi-
librium co-exists with a stable endemic equilibrium when the corresponding
reproduction number (RM ) is less than unity;

(iv) The full HIV-malaria model is shown to have a locally-asymptotically stable
disease-free equilibrium when its reproductive threshold is less than unity, and
unstable if the threshold exceeds unity. It also undergoes the phenomenon of
backward bifurcation under certain conditions;

Numerical simulations of the full HIV-malaria model show the following:

(a) The two diseases co-exist whenever the reproduction number of each of the
two diseases exceed unity (regardless of which number is larger);

(b) The number of new cases of malaria at steady state seems to always exceeds
that of HIV;
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(c) The assumed reduction in sexual activity of individuals with malaria symp-
toms results in decrease in the number of new cases of HIV and the mixed
HIV-malaria infection, while increasing the number of new cases of malaria;

(d) The HIV-induced increase in susceptibility to malaria infection has marginal
effect on the number of new cases of HIV, but significantly increases the
number of new cases of the dual HIV-malaria infection.

This study provides the first in-depth mathematical analysis of a comprehensive
model for the transmission dynamics of HIV and malaria in a population. There are
a number of ways this study can be extended, including incorporating preventive and
therapeutic strategies for HIV (such as the use of anti-retroviral therapy, condom
use, voluntary HIV testing and screening) and malaria (such as the use of treatment
and prophylactic drugs, vector-reduction strategies and personal protection against
mosquito bites) and the acquisition of malaria immunity for adults in malaria-
endemic settings, following repeated exposure (the latter would be somewhat of
a daunting task since both diseases affect the immune system). It would also be
interesting to consider the possible consequences of HIV-Malaria co-infection in
mother-to-child transmission of HIV.
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Appendix A: Proof of Theorem 10.

Proof. The proof is also based on using the Centre Manifold theory on the HIV-
malaria model (4). As in Section 4.2, let SH = x1, EM = x2, IM = x3, IH =
x4, EHM = x5, IHM = x6, AH = x7, EAM = x8, AHM = x9, SV = x10, EV = x11,
and IV = x12, so that N c

H = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 and
N c

M = x10 +x11 + x12. Further, by adopting the same vector notation as in Section

4.2 with x = (x1, x2, · · · , x12)
T , the model (4) can be written in the form dx

dt
= F (x),

where F = (f1, f2, · · · , f12)
T , as follows:

dx1

dt
= f1 = ΛH + φ1x3 − λc

Hx1 − λc
Mx1 − µHx1,

dx2

dt
= f2 = λc

Mx1 − λc
Hx2 −K1x2,
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dx3

dt
= f3 = γHx2 − σλc

Hx3 −K2x3,

dx4

dt
= f4 = λc

Hx1 + φ2x6 − ϑλc
Mx4 −K3x4,

dx5

dt
= f5 = λc

Hx2 + ϑλc
Mx4 −K4x5,

dx6

dt
= f6 = σλc

Hx3 + ǫγHx5 −K5x6,

dx7

dt
= f7 = κx4 + φ3x9 − ϑλc

Mx7 −K6x7,

dx8

dt
= f8 = ϑλc

Mx7 −K7x8 + κx5,

dx9

dt
= f9 = ξκx6 + ǫγHx8 −K8x9,

dx10

dt
= f10 = ΛV − λc

V x10 − µV x10,

dx11

dt
= f11 = λc

V x10 −K9x11,

dx12

dt
= f12 = γV x11 − µV x12,

(22)

where,

K1 = γH + µH ,K2 = µH + δM + φ1,K3 = µH + κ,K4 = ǫγH + µH + κ,

K5 = µH + τδM + φ2 + ξκ,K6 = µH + δH ,K7 = ǫγH + µH + δH ,

K8 = µH + φ3 + τδM + ψδH , K9 = µV + γV ,

and,

λc
H = βH

{x4 + ηHM (x5 + θHMx6) + ηA [x7 + ηHM (x8 + θHMx9)]}

N c
H

,

λc
M =

βM bM
N c

H

x12,

λc
V =

βV bM
N c

H

[x3 + ηV (x6 + θV x9)] .

It can be shown, by computing the eigenvalues of the associated Jacobian of the
system (22) at the DFE (denoted by J(E0)), that RHM = max{RH ,RM} as before.
For convenience, we re-write



DYNAMICS OF HIV-MALARIA CO-INFECTION 351

RH =
βH(δH + κηA + µH)

K3K6
and RM =

√

b2MβMβV γHγV µHΛV

ΛHµ2
V K1K2K9

.

Consider the case when RHM = 1 (that is, RM < RH = 1). Suppose, further,
that βH = β∗ is chosen as a bifurcation parameter. Solving for βH from RH = 1
gives

βH = β∗ =
K3K6

(δH + κηA + µH)
.

Eigenvectors of Jβ∗ :

For the case when RHM = 1, it can be shown that the matrix J(E0) evaluated
at βH = β∗, denoted by Jβ∗ , has a right eigenvector given by

w = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12]
T ,

where,

w1 =
φ1w3 − β∗w4 − β∗ηAw7 − βMbMw12

µH

,

w2 = w2,

w3 =
γHw2

K2
,

w4 = w4,

w5 = 0,

w6 = 0,

w7 =
κw4

K6
,

w8 = 0,

w9 = 0,
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w10 = −
βV bMµHΛVw3

ΛHµ2
V

,

w11 =
µVw12

γV

,

w12 =
K1w2

βMbM
.

Further, the matrix Jβ∗ has a left eigenvector

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12],

where,

v1 = 0,

v2 = v2,

v3 =
K1v2
γH

,

v4 = v4,

v5 =
β∗ηHMv4 + ǫγHv6 + κv8

K4
,

v6 =
(β∗ηHMθHM + φ2)v4

K5
+
βV bMηV µHΛV v11

ΛHµVK5
+
ξκv9
K5

,

v7 =
β∗ηAv4
K6

,

v8 =
β∗ηAηHMv4 + ǫγHv9

K7
,

v9 =
β∗ηAηHM θHMΛHµV v4 + ΛHµV φ3v7 + βV bMηV µHΛV θV v11

ΛHµV K8
,

v10 = 0,

v11 =
K2v3ΛHµV

βV bMµHΛV

,

v12 =
βM bMv2
µV

.

Computations of a and b :

It can be shown, after some tedious manipulations, that
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a = −
2µH

Λ2
HµV

(v4w
2
4βHΛHµV + v11w

2
3βV bMµHΛV

+ v11w1w3βV bMµHΛV + v11w2w3βV bMµHΛV + v11w3w4βV bMµHΛV

+ v11w3w7βV bMµHΛV + v2w2w4βHΛHµV + v2w2w7βHηAΛHµV

+ v2w2w12βM bMΛHµV + v2w3w12βM bMΛHµV + v2w4w12βMbMΛHµV

+ v2w7w12βM bMΛHµV + v3w3w4σβHΛHµV + v3w3w7σβHηAΛHµV

+ v4w2w4βHΛHµV + v4w2w7βHηAΛHµV + v4w3w4βHΛHµV

+ v4w3w7βHηAΛHµV + v4w4w12ϑβM bMΛHµV + v4w
2
7βHηAΛHµV

− v5w2w4βHΛHµV − v5w2w7βHηAΛHµV − v5w4w12ϑβMbMΛHµV

− v6w3w4σβHΛHµV − v6w3w7σβHηAΛHµV + v7w7w12ϑβM bMΛHµV

− v8w7w12ϑβM bMΛHµV − v11w3w10βV bMΛHµV + v4w4w7βHΛHµV

+ v4w4w7βHΛHµV ηA),

and,

b = v4w4 + v4w7ηA > 0.

Thus, it follows from Theorem 7 that the full HIV-malaria model (4) undergoes
backward bifurcation at RHM = 1 whenever

a > 0. (23)

Table 1. Model parameters and their interpretations
Parameter Symbol Value Source

Recruitment rate of humans ΛH 5× 10−2 day−1 Assumed

Recruitment rate of mosquitoes ΛV 6 day−1 [15]

Natural death rate of humans µH 3.9 × 10−5 day−1 [8]

Natural death rate of mosquitoes µV 0.1429 day−1 [16]

HIV-induced death rate δH 9.13 × 10−4 day−1 [36]

Malaria-induced death rate δM 3.454 × 10−4 day−1 [16]
Effective contact rate for HIV infection βH Variable Variable

Transmission probability for malaria in humans βM 0.8333 day−1 [16]
Transmission probability for malaria in vectors βV (0,1) -

Biting rate of mosquitoes bM (0.25, 1) day−1 Assumed
Modification parameters ηA, ηHM , ξ 1.4, 1.5, 1.002 Assumed
Modification parameters θHM , σ, τ 1.002, 1.00, 1.001 Assumed
Modification parameters ǫ, ϑ, ψ 1.02, 1.002, 1.002 Assumed
Recovery rate of humans from malaria φ1, φ2, φ3 0.00556, 0.002, 0.0005 Assumed
Modification parameters ηV , θV 1.5, 1.5 Assumed

Rate of progression to AIDS stage κ 0.000548 day−1 Assumed

Rate at which humans exposed to malaria γH 0.08333 day−1 [16]
develop clinical symptoms

Rate at which vectors exposed to malaria γV 0.1 day−1 [16]
develop symptoms
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Figure 7. Simulations of the model (4) showing the effect of re-
duction in sexual activity (σ) by individuals with malaria symp-
toms exposed to HIV. The figures give the cumulative number of
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Figure 8. Simulations of the model (4) showing the effect of in-
crease in susceptibility to malaria infection in individuals with HIV
infection (ϑ). The figures give the cumulative number of new cases
of (A) HIV, (B) malaria and (C) the mixed infection, as a func-
tion of time. The parameter values used are as in Table 1, with
βV = 0.9, bM = 0.25, βH = 0.0007 and varying values of ϑ.
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Figure 9. Simulations of the model (4) showing the effect of in-
crease in HIV mortality in individuals dually-infected with HIV
and malaria (ψ). The figures give the cumulative number of new
cases of (A) HIV, (B) malaria and (C) the mixed infection, as a
function of time. The parameter values used are as in Table 1, with
βV = 0.9, bM = 0.25, βH = 0.0007 and varying values of ψ.
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