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ABSTRACT. We formulate and study epidemic models with differential sus-
ceptibilities and staged-progressions, based on systems of ordinary differen-
tial equations, for disease transmission where the susceptibility of susceptible
individuals vary and the infective individuals progress the disease gradually
through stages with different infectiousness in each stage. We consider the
contact rates to be proportional to the total population or constant such that
the infection rates have a bilinear or standard form, respectively. We derive
explicit formulas for the reproductive number R, and show that the infection-
free equilibrium is globally asymptotically stable if Rg < 1 when the infection
rate has a bilinear form. We investigate existence of the endemic equilibrium
for the two cases and show that there exists a unique endemic equilibrium for
the bilinear incidence, and at least one endemic equilibrium for the standard
incidence when Ry > 1.

1. Introduction. Variation of susceptible individuals, possibly caused by genetic
factors, age, health, vaccination, or past exposure to the disease, many lead to their
differentiation of susceptibility to infection. For example, the efficacy of available
vaccinations for many infectious diseases is not perfect. Vaccinated individuals may
still contract the disease and the susceptibility varies from individual to individual.
Differential susceptibility of infection can occur after vaccination is administered
for infectious diseases. Rubeola, more commonly known as the “red measles,” is
a highly contagious exanthematous viral illness. Prevention of disease is the most
effective method of handling rubeola. Despite widespread vaccination programs,
however, many women remain susceptible [16].

Implementation of the WHO guidelines for vaccination is universally recognized
as one of the most efficient ways of preventing hepatitis B (HB) on a global scale.
Vaccinated individuals impose life-threatening conditions on the virus. The induced
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anti-HBs is generally able to clear an invasion quickly and efficiently. However, if the
virus produces mutants (vaccine escape mutants) that are not recognized by these
antibodies and prevent them from eliminating the invaders, the vaccine is only
partially effective. As a result, vaccinated individuals may still be differentially
susceptible to the infection [6].

There is substantial biological evidence demonstrating that the presence of other
sexually transmitted diseases (STDs) increases the likelihood of both transmitting
and acquiring HIV. Individuals who are infected with other STDs are at least two to
five times more likely than uninfected individuals to acquire HIV if they are exposed
to the virus through sexual contact. In addition, if an HIV-infected individual is
also infected with another STD, that person is more likely to transmit HIV through
sexual contact than other HIV-infected persons [1, 19, 5].

Compartmental differential susceptibility (DS) susceptible-infective-removed
(SIR) models were studied in [8] to gain insight into the transmission dynamics
of diseases with differential susceptibility whereas it was assumed that the infec-
tives are homogeneous such that there is one group of infectives. While this is true
for some diseases, great variability in the infectiousness among infected individuals
has also been shown in many studies of infectious diseases [10]. To include both
variabilities of susceptibility and infectiousness, we formulate compartmental SIR
models with differential susceptibility and staged progression (DSSP) in Section 2.
We derive explicit formulas for the reproductive number Ry using the method of
next generation operator in Section 3. As the reproductive number Ry < 1, we
show that the infection-free equilibrium is not only locally, but also globally asymp-
totically stable for models with bilinear incidence by using a Liapunov function in
Section 4. We also investigate existence of the endemic equilibrium whose compo-
nents are all positive in Section 5. We discuss how the DSSP models can be applied
to various situations in Section 6.

2. The model formulation. Suppose that an infectious disease spreads in a pop-

ulation consisting of susceptible, infective (exposed), and removed or recovered in-

dividuals. The susceptibles are divided into n groups based on their susceptibilities.

A constant influx SY enters these susceptible groups and is distributed, based on

the inherent susceptibilities of the individuals, in such a way that the input flow

into group S; is p;S?, with " | p; = 1. We assume that the infectives from sus-

ceptible group S; progress through m infection staged-subgroups, I;1, Ii2, -+, Lim,

i =1,---,n, with different infection rates, such that the infected susceptible indi-

viduals enter the first subgroup I;; and then gradually progress from subgroup I;;

finally to subgroup I;;,,. We formulate our models such that if exposed individuals

need to be considered in the model, the first subgroup I;; stands for them with

zero infectivity. The model, shown in Figure 1, can be described by the system of
differential equations

dsS;

dt

dl;

dt

dl;;

dt

dR;

dt

:Mz(dlso_sz)_)\lslu Z:]w y 1,

=NSi — (i +va ) ln, i=1,---,n,
(2.1)

=vij—1lij—1 — (pij +7vj)Lij, t=1,---,n, j=2,---,m,

= YimLim — 0 Ry,
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FIGURE 1. In this model, susceptible individuals are divided into
n groups based on their susceptibilities. A constant influx S is
distributed into the n groups of susceptibles, based on their inher-
ent susceptibility. After susceptibles in group i, ¢ = 1,--- ,n, are
infected, they enter the infection group I;; with infection rate \;,
and progress through a series of stages where the progression rates
vi; and infectivity [;; vary. Since the transmissions caused by in-
dividuals in groups R; are neglected, groups R; are not shown in
this schematic diagram.

where p; is the natural death rate for susceptible individuals in group 7, u;; is
the sum of the natural death rate and the disease-induced death rate for infected
individuals in group ¢ with infection stage j, A; is the rate of infection to susceptibles
Si, 7ij is the average rate of progress from subgroup I;; to subgroup I; jyi, for
j=1,--- ;m—1, and ~;, is the rate at which infectives in subgroup I, removed or
recovered. We assume that the removed or recovered individuals, R;, with the death
rate J;, are no longer involved in the disease transmission or that their transmissions
are negligible. We write d; = p;/pi, i = 1,...,n, for convenience.

The rate of infection, \;, is the rate at which a susceptible individual in group
S; gets infected and progresses to stage ;1. It can be determined as

where ¢(N) is the average number of contacts per individual per unit of time that
can be density-dependent, «; is the susceptibility of the individuals in susceptible
group S;, B; is the infectivity of infectives in group Ix;, I;/N is the proportion

m
of infectives in group Iy;, Ny = Sk + > I; is the total number of individuals in
=1

n
group k active for the disease transmission, and N = > Ny is the total number of
k=1
active individuals involving the disease transmission.
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If the contact rate is constant, denoted ¢(N) := r, the rate of infection has the

standard form
m

= ra; Z > Pri Ik]

k=1 j=1

If the contact rate is proportional to the total active population N, such that
¢(N) := ¢N, the rate of infection has the bilinear form

/\i — CalZZ/BkJIkJ

k=1 j=1

The rate of change of all the infectives in group i is

d — m .
EZI@ = N\iS; — E wijlij — YimTim, 1=1,--+,n,
Jj=1 i

and the rate of change of the total population in group i satisfies

dN; 0 - 0o~ :
7 pi (d:S° — i)—jzzluijfij—%mfim <piS” =Ny, i=1,---,n,
where fi; = min’", yi;5, i = 1,--- ,n. Hence the set ) defined by

Q.= {0 < N; < SO%, 1=1,--- ,n} is a global attractor for N; > 0,71 =1,--- ,n,
and positively invariant for system (2.1) such that, if N; initially satisfies 0 < N; <
SOZi - then it remains in this range. We restrict our investigation of the dynamics
of system (2.1) in set  hereafter.

3. The reproductive number. System (2.1) has an infection-free equilibrium of
which infective components are all zero and susceptible components are positive.
Denote this infection-free equilibrium by Ey. The local stability of Ey determines
epidemic threshold conditions under which the number of infectives will either in-
crease or decrease to zero as a small number of infectives introduced into a fully
susceptible population. These threshold conditions are characterized by the repro-
ductive number, denoted by Ry. The formula of Ry can be determined by either
investigating the eigenvalues of the linearized system about the infection-free equi-
librium [7, 12, 17] or the next-generation operator method [3, 2, 18]. We derive an
explicit formula for Ry for the models with the standard incidence form as follows.
The Jacobian matrix at the infection-free equilibrium Ey = (5S¢, 59,---, 59, 7},
I9), -+ 10 10y Iy v IOy e (IO T9 ,Igm) where SY = d;5°, Iin =0,
i=1,---,n, j=1,---,m, has the form

Joo O
0o J)’

where Jyo = diag(—p1, -+, —fin) and
Pu+Ji1 P2 Pi3 - Pigpo Pip
Jo1 Ja2 0 ... 0 0
J= 0 Jsz Jzz - 0 0 1, (3.1)

0 0 0 e Jm,mfl Jmm



DIFFERENTIAL SUSCEPTIBILITY AND STAGED PROGRESSION MODELS
with Jjj = dlag(—alj,
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Jjj—1 = diag(y1,5-1,

,=0Onj), j = 1,---,m, where 0y 1= pi; + vij,
: 7777,,_]’—1)7 .7 = 27' e, m, and

ardifBry  aadi By

ardi B
r Oé2d251j 02d262j a2d26nj .
Pj== ) ) ) , =1 m.
D : : :
O‘ndnﬁlj andnﬁzj andnﬁnj
Here we write D := Y_ d.

=1

The local stability of the infection-free equilibrium is determined by matrix J.
Using the next generation operator method, we define matrices F' and V by

Py P Pi3

le
0 0 0o ... 0
F = . . . . )
0 0 0 0
—J11 0 0 0 0
—Jo1  —Jag 0 0 0
0 —J3g  —Js3 0 0
V —= . . . . . . (32)
0 0 0 ..

- T dm—1m—1 0
0 0 0 oo =Imm—1 —JImm
Then F' is a nonnegative matrix and V' is an M-matrix. The reproductive number
Ry equals the spectral radius of the next generation operator F'V 1 [18]:

Ro=p(FV').

The inverse matrix V=1, as shown in [9], is the lower triangular matrix given by

Vi 0

0
o Vo1 Vao 0
V= = . . . , (3.3)
le Vm2 e me
where
‘/'Li:_‘]izla izla"'vmv
and V;; are defined recursively by
Vij=—=JiiciViergJy ' i=2,0m, j<i. (3.4)
Since
> PV YD PiiVie ... PinVim
=1 =2
Fy-1 = 0 0 0 ,
0 0 0
we have

p(FV Y =p | P,Vi
j=1
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It follows from (3.4), iteratively, that

7 v “1_ 7 7 -1 -1 _ ...
Vin=—Jj-1Viandy = Jjadj-1-2Vi—end; 0 ;4050 =

J J J J
=17 T Jer—1Var [T 7t = 17 T e I 70t
k=2 k=2 k=2 k=1

i1 i1 (3.5)
Vik IT vk
—di k=1 k=1
=dlag j P j )
Il o II onr
k=1 k=1
for 7 > 2. Hence
m m bl‘ b
P Vi = -di e A LA
> = 3 s (24 32
j=1 j=1 J J
D s Do s b
Oéldl —61] 1 Oéldl—ﬁ% 27 aldl—ﬁ J
O'lg O'Qg' Unbj
r m Oégdg—ﬁij llj agdg—ﬁz _2J agdg—ﬁg _nj
J=1 : : :
ndn ﬁljblj ndn ﬁ2jb2j v andn ﬁnjbnj
Ulj O'Qj Unj
where
j—1 )
bzy = - ik E = 17 , M,
k—1 Hik + Yik
0
and ] - =1 by convention.
k=1
Note that
m 11 ... 1\ .,
r . . . .
ZPUVJl:EDl oo ZD%
j=1 11 ... 1) 3=l
D s b
where D; := diag (a1d1, -+, and,) and Dy, := diag (ﬁl] L e B J)' Then
015 Onj

the rank of Z;n:l P1;V;1 is one, and hence the spectral radius of Z;n:l Py;Vj1 equals
its trace. Therefore the reproductive number for system (2.1) has the explicit for-
mula

j=11i=1 v i=1 j=1

Theorem 3.1. Let the reproductive number Ry be defined as in (3.6). Then if
Ry < 1 the infection-free equilibrium FEqy is locally asymptotically stable, and if
Ry > 1 the infection-free equilibrium FEy is unstable.

The mean duration of infection in group ¢ is

=1 Oij j=1 iz + Vij
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If we define the mean transmissibility for group ¢ as

7 . % - ﬁijbij
Bi = = TIPS
Ti =1 i T Vij
and the reproductive number for group ¢ by
ROi = Tﬁ_ifiv i:172a"'5n7
then the reproductive number for the entire population is a weighted average of the
reproductive numbers for these groups such that

Ry = Z} %Rm.

It is similar to derive a formula of Ry for the models with bilinear incidence form

as
Ry = 8" iy Y P50 = 05 iy
i=1 j=1 Y i=1

4. Global stability of the infection-free equilibrium. We show that if Ry < 1,
the infection-free equilibrium is not only locally but also globally asymptotically
stable for models with the bilinear incidence form.

Let S := (S1,---,8)", T:= (Ii1, Loy s Tims -+ 3 Doty Iz -+ 5 Inm) . We can
then write the infection rate \; as

)\i = caiUBI,
where
i1 oo Pm O ... 0 ... 0 ... 0
0o ... 0 Bo1 ... PBom ... 0 ... 0
B:= . . , : e R™*™M™,
0o ... 0 0o ... 0 cor Bu1 oo Bam
and U := (1,1,---,1) e R™".
Define matrices
051 0 0 0
—Yi1 Oi2 ... 0 0
L; = ceR™™, i=1,---,n,
0 0 0i,m—1 0
O O e _'-Yi,mfl Tim

L := diag(L1, Lo, -+, Ly), and
P := (ra151,0, -+ ,0,70252,0,- -+ ,0,7a,5,,0,- - =O)T e R"™,
such that
F:= (\51,0,---,0,X252,0,---,0,A,8,,0,--- 70)T = PUBL

Then the infective components of system (2.1) satisfy the system

% =—-L1+F=-L1+PUBL
Let
C = (61170127" 5 Clm,y ,Cn1,Cn2, " 0 7Cnm) = UBL—l'
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Then C' > 0 is a positive vector. We consider the Liapunov function

V =C1,
which is positive definite for I > 0. The derivative of V along the system (2.1)
equals

av

o = — CLI+ CPUBI = —UBI + UBL 'PUBI

(2.1)
~ (UBL™'P - 1) UBL
It follows from (3.3), (3.4), and (3.5) that

T
L;lP = (calSlaﬂ}, e ,calsla{l} e ,canSnaii?}, e ,calsla{n}) ,

mlo ml
where
j—1
{i} szl Yik - .
aj = S t=1,---n, j=1---,m.
k=1 Oik
Then

UBL'P=c> ;8 Y all ;.
i=1 j=1

It follows from (2.1) that
S; < d;S° + S;(0)e Hit,
Hence . .
UBL7'P <S> aidi Y aly Bij +e1(t) = Ro + &1 (1),
i=1 j=1

where lim; o £1(t) = 0.
If Ry < 1, then
dv 4
e (UBL P - 1) UBI < (Ry — 1)UBI + £5(t) <0,
. . dv ) . .
where lim;_,o €2(t) = 0. Notice that — = 0 only if I = 0, in set Q, if Ry < 1.

Therefore the infection-free equilibrium is globally asymptotically stable.

5. Endemic equilibrium. As the infection-free equilibrium becomes unstable and

the disease spreads in the population, there possibly exists an endemic equilibrium

with all components positive. We explore its existence for model (2.1) as follows.
The components of an endemic equilibrium for (2.1) must satisfy

ui(diSO — SZ) = )\181, (51&)
AiSi = (par + i) Li, (5.1b)
Yij—1lij—1 = (pig +vij)lij,  §=2,---,m. (5.1c)
For models with the bilinear incidence, we let W :=¢ > > §;;1;;. Then A\; =
i=17=1
WO[Z'.
Solving (5.1a) for S;, we have
id; 5"
g = Hd2 iy (5.2)

N ui—l—aiW’
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Substituting (5.2) into (5.1b) and solving for I;;, we have
uilaidiSOW

I, = facdio W 5.3
© o (i + W) (5:3)
Solving (5.1¢) recursively, we have
I, = VigoVigm2 g Ebw]“ —ouliLy, i=1,--,n, j=2--,m,
0ij0ij—1"""Ti2 Tij
(5.4)

where A;; := b;;/0;j. Notice Aj; = 1/0;1. Then substituting (5.3) into (5.4), we

have

/J,iOéid/iSOAijW
wi + ;W

Substituting (5.2), (5.3), and (5.5) into W yields

_ CZ Z ﬁz]Mzail jﬂ;‘/UW
=1 j=1

I = , i=1,---,n, j=1,---,m. (5.5)

Define function
ii Bijpic;d; S0 Ajj _1
oo Mt aW

Note that M}linoo G(W)=-1,G(0) = Ry — 1, and

7_Cii 17/141 az dSQAw <0.

= (it aW)

Then, if Ry < 1 there exists no endemic equilibrium, and if Ry > 1 there exists a
unique endemic equilibrium for model (2.1).

For models with the standard incidence, we let W :=r Z Z Bij1ij /N without
confusion. Then \; = Wa;. T

Solutions for S; and I;; have the same formulas as in (5.2) and (5.5). Then
substituting them into W, we obtain

.d; S0 s d; SON W Bijpricid; SO AW
P 1w + oW ZZ”O‘ —l—aV[; - ZZ Jua—i—azWJ ’

«
Nz""z =1 j=1 =1 j=1

n

Define function

Q(W) _ n de S Z Z Nzazd S AUW Z Z ﬁwulazd S A”

—1“14—0‘Z i=1 j=1 pi +aiW i=1 j=1 pi + aiW
m
SOZ +OZ 1+0412(W—T6U)AJ
pi + ;W =

We ha\/e
1H1 Q S ‘LLZ 17 > O
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and
Q(0) :Sozdz‘ 1—7"061'251'in3' =5S°D (1 - Ry).
i=1 j=1

Then if Ry > 1 there exists at least one positive W such that Q(W) = 0. That is,
there exists at least one endemic equilibrium for model (2.1).
Moreover, it follows from

4 f— 0 - uidial - . .o . - .. ..
Q(W)_S ;m ;UZAW +T061j;61JA1J_1

= ,Uidiai ks
= SO Y — ZA’L R [ 1 )
; (i + a;W)2 ;H j + Ro

m

that if > p;Ai; + Roi > 1, especially if Ry; > 1, for all ¢ = 1,---,m, then the
j=1
endemic equilibrium is unique.

In summary, we have

Theorem 5.1. If the infection rate has the bilinear form for model (2.1), then there
ezists no endemic equilibrium provided Ry < 1, and a unique endemic equilibrium
provided Ry > 1. If the infection rate has the standard form for model (2.1), then
there exists at least one endemic equilibrium provided Ry > 1.

6. Concluding remarks. We have formulated the compartmental differential sus-
ceptibility and staged-progression DSSP epidemic models with either the standard
or bilinear incidence. The models are a combination of the DS and the SP models,
which have been studied intensively but separately.

We derived explicit formulas for the reproductive number Ry for the models with
either the standard or the bilinear incidence, using the next generation operator
method. The explicit formulas of Ry for the models well fit in the calculations of
Ry for a variety of epidemiological models in the literature (7, 2, 13, 4]. That is, the
reproductive number for each subgroup, Ry;, is defined as a product of the mean
number of contacts, the mean infectivity, and the mean duration of infection, and
then the reproductive number for the entire population, Ry, is defined as a weighted
average of those Ry;.

For the models with the bilinear incidence, we showed that the infection-free
equilibrium is not only locally but also globally asymptotically stable when Ry < 1
by using a Liapunov function. We also showed that for these models, if Ry < 1
there exists no endemic equilibrium, and if Ry > 1 there exists a unique endemic
equilibrium. Therefore, we exclude the possibility of the backward bifurcation. For
the models with the standard incidence, we showed that if Ry > 1 there exists at
least one endemic equilibrium.

The DSSP model formulated in this paper can be applied to modeling of various
disease transmissions. For example, suppose that HIV/AIDS spreads in a popu-
lation with two groups, one of which consists of individuals who are infected with
other STDs and one of which consists of individuals who are free of STDs before
first engaging in sexual activities. As shown in [1, 19, 5], the presence of other STDs
increases the likelihood of both transmitting and acquiring HIV. Individuals who
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are infected with other STDs are at least two to five times more likely than unin-
fected individuals to acquire HIV, and if an HIV-infected individual is also infected
with another STD, that person is more likely to transmit HIV through sexual con-
tact than other HIV-infected persons. We denote the two groups as group 1 and 2,
respectively, and assume that all infectives go through 4 infection stages: an early,
highly infectious pre-antibody phase, two chronic stages at low infectivities, and a
final stage at higher infectiousness [10, 14, 11, 15].

Let ay > g and 1; > (25, j = 1,---,4, be the corresponding susceptibilities
and infectivities. Then the reproductive number of infection is given by

Ry = diRor + daRoz _ ppaRoi + (1 — p)p1 Roz
dy + dy pp2 + (1 —p)u

(6.1)

where
4

4
Bij Vik .
Ry = roy , 1=1,2,
’ ’ Z Wij + Vij oy Mik + Yik

j=1
are the reproductive numbers for the two groups, and p is the fraction of the input
flow of susceptibles into the group of individuals with infection of other STDs.

Based on the formula of the reproductive number in (6.1), it is clear that a
strategy to reduce the infection is to decrease the reproductive number for each
group, in particular, for the group with the cofactor of other STDs. Meanwhile, it
can help bring the transmission under control if the distribution of the input flow
into group 1 is reduced which implies that more routinely screening for STDs should
be advised for preventing the transmission of HIV/AIDS.

Due to the fact that the efficacy of available vaccinations for many infectious
diseases is not perfect. Vaccinated individuals may still contract the disease and
their susceptibility varies from individual to individual. To model such a situation,
we can divide a population into two groups, one of which has all vaccinated individ-
uals and one of which has all unvaccinated individuals. The infectives may progress
the disease through several infection stages. Model (2.1) can be applied and the
explicit formulas for the reproductive number can provide helpful guidance for the
strategies of control and prevention for the disease.
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