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Abstract. We formulate and study epidemic models with differential sus-
ceptibilities and staged-progressions, based on systems of ordinary differen-
tial equations, for disease transmission where the susceptibility of susceptible
individuals vary and the infective individuals progress the disease gradually
through stages with different infectiousness in each stage. We consider the
contact rates to be proportional to the total population or constant such that
the infection rates have a bilinear or standard form, respectively. We derive
explicit formulas for the reproductive number R0, and show that the infection-
free equilibrium is globally asymptotically stable if R0 < 1 when the infection
rate has a bilinear form. We investigate existence of the endemic equilibrium
for the two cases and show that there exists a unique endemic equilibrium for
the bilinear incidence, and at least one endemic equilibrium for the standard
incidence when R0 > 1.

1. Introduction. Variation of susceptible individuals, possibly caused by genetic
factors, age, health, vaccination, or past exposure to the disease, many lead to their
differentiation of susceptibility to infection. For example, the efficacy of available
vaccinations for many infectious diseases is not perfect. Vaccinated individuals may
still contract the disease and the susceptibility varies from individual to individual.
Differential susceptibility of infection can occur after vaccination is administered
for infectious diseases. Rubeola, more commonly known as the “red measles,” is
a highly contagious exanthematous viral illness. Prevention of disease is the most
effective method of handling rubeola. Despite widespread vaccination programs,
however, many women remain susceptible [16].

Implementation of the WHO guidelines for vaccination is universally recognized
as one of the most efficient ways of preventing hepatitis B (HB) on a global scale.
Vaccinated individuals impose life-threatening conditions on the virus. The induced
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anti-HBs is generally able to clear an invasion quickly and efficiently. However, if the
virus produces mutants (vaccine escape mutants) that are not recognized by these
antibodies and prevent them from eliminating the invaders, the vaccine is only
partially effective. As a result, vaccinated individuals may still be differentially
susceptible to the infection [6].

There is substantial biological evidence demonstrating that the presence of other
sexually transmitted diseases (STDs) increases the likelihood of both transmitting
and acquiring HIV. Individuals who are infected with other STDs are at least two to
five times more likely than uninfected individuals to acquire HIV if they are exposed
to the virus through sexual contact. In addition, if an HIV-infected individual is
also infected with another STD, that person is more likely to transmit HIV through
sexual contact than other HIV-infected persons [1, 19, 5].

Compartmental differential susceptibility (DS) susceptible-infective-removed
(SIR) models were studied in [8] to gain insight into the transmission dynamics
of diseases with differential susceptibility whereas it was assumed that the infec-
tives are homogeneous such that there is one group of infectives. While this is true
for some diseases, great variability in the infectiousness among infected individuals
has also been shown in many studies of infectious diseases [10]. To include both
variabilities of susceptibility and infectiousness, we formulate compartmental SIR
models with differential susceptibility and staged progression (DSSP) in Section 2.
We derive explicit formulas for the reproductive number R0 using the method of
next generation operator in Section 3. As the reproductive number R0 < 1, we
show that the infection-free equilibrium is not only locally, but also globally asymp-
totically stable for models with bilinear incidence by using a Liapunov function in
Section 4. We also investigate existence of the endemic equilibrium whose compo-
nents are all positive in Section 5. We discuss how the DSSP models can be applied
to various situations in Section 6.

2. The model formulation. Suppose that an infectious disease spreads in a pop-
ulation consisting of susceptible, infective (exposed), and removed or recovered in-
dividuals. The susceptibles are divided into n groups based on their susceptibilities.
A constant influx S0 enters these susceptible groups and is distributed, based on
the inherent susceptibilities of the individuals, in such a way that the input flow
into group Si is piS

0, with
∑n

i=1 pi = 1. We assume that the infectives from sus-
ceptible group Si progress through m infection staged-subgroups, Ii1, Ii2, · · · , Iim,
i = 1, · · · , n, with different infection rates, such that the infected susceptible indi-
viduals enter the first subgroup Ii1 and then gradually progress from subgroup Ii1

finally to subgroup Iim. We formulate our models such that if exposed individuals
need to be considered in the model, the first subgroup Ii1 stands for them with
zero infectivity. The model, shown in Figure 1, can be described by the system of
differential equations

dSi

dt
= µi(diS

0
− Si) − λiSi, i = 1, · · · , n,

dIi1

dt
= λiSi − (µi1 + γi1)Ii1, i = 1, · · · , n,

dIij

dt
= γi,j−1Ii,j−1 − (µij + γij)Iij , i = 1, · · · , n, j = 2, · · · , m,

dRi

dt
= γimIim − δiRi,

(2.1)
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Figure 1. In this model, susceptible individuals are divided into
n groups based on their susceptibilities. A constant influx S0 is
distributed into the n groups of susceptibles, based on their inher-
ent susceptibility. After susceptibles in group i, i = 1, · · · , n, are
infected, they enter the infection group Ii1 with infection rate λi,
and progress through a series of stages where the progression rates
γij and infectivity βij vary. Since the transmissions caused by in-
dividuals in groups Ri are neglected, groups Ri are not shown in
this schematic diagram.

where µi is the natural death rate for susceptible individuals in group i, µij is
the sum of the natural death rate and the disease-induced death rate for infected
individuals in group i with infection stage j, λi is the rate of infection to susceptibles
Si, γij is the average rate of progress from subgroup Iij to subgroup Ii,j+1, for
j = 1, · · · , m−1, and γim is the rate at which infectives in subgroup Iim removed or
recovered. We assume that the removed or recovered individuals, Ri, with the death
rate δi, are no longer involved in the disease transmission or that their transmissions
are negligible. We write di = pi/µi, i = 1, . . . , n, for convenience.

The rate of infection, λi, is the rate at which a susceptible individual in group
Si gets infected and progresses to stage Ii1. It can be determined as

λi(t) = c(N)αi

n∑

k=1

m∑

j=1

βkj

Ikj(t)

N(t)
,

where c(N) is the average number of contacts per individual per unit of time that
can be density-dependent, αi is the susceptibility of the individuals in susceptible
group Si, βkj is the infectivity of infectives in group Ikj , Ikj/N is the proportion

of infectives in group Ikj , Nk = Sk +
m∑

j=1

Ikj is the total number of individuals in

group k active for the disease transmission, and N =
n∑

k=1

Nk is the total number of

active individuals involving the disease transmission.
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If the contact rate is constant, denoted c(N) := r, the rate of infection has the
standard form

λi(t) = rαi

n∑

k=1

m∑

j=1

βkj

Ikj(t)

N(t)
.

If the contact rate is proportional to the total active population N , such that
c(N) := cN , the rate of infection has the bilinear form

λi(t) = cαi

n∑

k=1

m∑

j=1

βkjIkj(t).

The rate of change of all the infectives in group i is

d

dt

m∑

j=1

Iij = λiSi −

m∑

j=1

µijIij − γimIim, i = 1, · · · , n,

and the rate of change of the total population in group i satisfies

dNi

dt
= µi

(
diS

0
− Si

)
−

m∑

j=1

µijIij − γimIim ≤ piS
0
− µ̂iNi, i = 1, · · · , n,

where µ̂i = minm
j=1 µij , i = 1, · · · , n. Hence the set Ω defined by

Ω :=
{
0 < Ni < S0 pi

µ̂i

, i = 1, · · · , n
}

is a global attractor for Ni > 0, i = 1, · · · , n,

and positively invariant for system (2.1) such that, if Ni initially satisfies 0 < Ni <
S0 pi

µ̂i

, then it remains in this range. We restrict our investigation of the dynamics

of system (2.1) in set Ω hereafter.

3. The reproductive number. System (2.1) has an infection-free equilibrium of
which infective components are all zero and susceptible components are positive.
Denote this infection-free equilibrium by E0. The local stability of E0 determines
epidemic threshold conditions under which the number of infectives will either in-
crease or decrease to zero as a small number of infectives introduced into a fully
susceptible population. These threshold conditions are characterized by the repro-
ductive number, denoted by R0. The formula of R0 can be determined by either
investigating the eigenvalues of the linearized system about the infection-free equi-
librium [7, 12, 17] or the next-generation operator method [3, 2, 18]. We derive an
explicit formula for R0 for the models with the standard incidence form as follows.

The Jacobian matrix at the infection-free equilibrium E0 =
(
S0

1 , S0
2 , · · · , S0

n, I0
11,

I0
21, · · · , I0

n1, I
0
12, I

0
22, · · · , I0

n2, · · · , I0
1m, I0

2m, · · · , I0
nm

)
, where S0

i = diS
0, I0

ij = 0,
i = 1, · · · , n, j = 1, · · · , m, has the form

(
J00 0
0 J

)
,

where J00 = diag(−µ1, · · · ,−µn) and

J =





P11 + J11 P12 P13 · · · P1,m−1 P1m

J21 J22 0 . . . 0 0
0 J32 J33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Jm,m−1 Jmm




, (3.1)
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with Jjj = diag(−σ1j , · · · ,−σnj), j = 1, · · · , m, where σij := µij + γij ,
Jj,j−1 = diag(γ1,j−1, · · · , γn,j−1), j = 2, · · · , m, and

P1j =
r

D̄





α1d1β1j α1d1β2j . . . α1d1βnj

α2d2β1j α2d2β2j . . . α2d2βnj

...
...

. . .
...

αndnβ1j αndnβ2j . . . αndnβnj




, j = 1, · · · , m.

Here we write D̄ :=
n∑

l=1

dl.

The local stability of the infection-free equilibrium is determined by matrix J .
Using the next generation operator method, we define matrices F and V by

F :=





P11 P12 P13 . . . P1m

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




,

V :=





−J11 0 0 . . . 0 0
−J21 −J22 0 . . . 0 0

0 −J32 −J33 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −Jm−1,m−1 0
0 0 0 . . . −Jm,m−1 −Jmm





. (3.2)

Then F is a nonnegative matrix and V is an M -matrix. The reproductive number
R0 equals the spectral radius of the next generation operator FV −1 [18]:

R0 = ρ
(
FV −1

)
.

The inverse matrix V −1, as shown in [9], is the lower triangular matrix given by

V −1 =





V11 0 . . . 0
V21 V22 . . . 0
...

...
. . .

...
Vm1 Vm2 · · · Vmm




, (3.3)

where

Vii = −J−1
ii , i = 1, · · · , m,

and Vij are defined recursively by

Vij = −Ji,i−1Vi−1,jJ
−1
ii , i = 2, · · · , m, j < i. (3.4)

Since

FV −1 =





m∑
j=1

P1jVj1

m∑
j=2

P1jVj2 . . . P1mVmm

0 0 . . . 0
...

...
. . .

...
0 0 · · · 0




,

we have

ρ
(
FV −1

)
= ρ




m∑

j=1

P1jVj1



 .
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It follows from (3.4), iteratively, that

Vj1 = − Jj,j−1Vj−1,1J
−1
jj = Jj,j−1Jj−1,j−2Vj−2,1J

−1
j−1,j−1J

−1
jj = · · ·

=(−1)j−1

j∏

k=2

Jk,k−1V11

j∏

k=2

J−1
kk = (−1)j

j∏

k=2

Jk,k−1

j∏

k=1

J−1
kk

=diag





j−1∏
k=1

γ1k

j∏
k=1

σ1k

, · · · ,

j−1∏
k=1

γnk

j∏
k=1

σnk




,

(3.5)

for j ≥ 2. Hence
m∑

j=1

P1jVj1 =
m∑

j=1

P1jdiag

(
b1j

σ1j

, · · · ,
bnj

σnj

)

=
r

D̄

m∑

j=1





α1d1
β1jb1j

σ1j

α1d1
β2jb2j

σ2j

. . . α1d1
βnjbnj

σnj

α2d2
β1jb1j

σ1j

α2d2
β2jb2j

σ2j

. . . α2d2
βnjbnj

σnj

...
...

. . .
...

αndn

β1jb1j

σ1j

αndn

β2jb2j

σ2j

. . . αndn

βnjbnj

σnj





,

where

bij :=

j−1∏

k=1

γik

µik + γik

, j = 1, · · · , m,

and
0∏

k=1

· = 1 by convention.

Note that

m∑

j=1

P1jVj1 =
r

D̄
D1




1 1 . . . 1
...

...
. . .

...
1 1 . . . 1




m∑

j=1

D2j ,

where D1 := diag (α1d1, · · · , αndn) and D2j := diag

(
β1jb1j

σ1j

, · · · ,
βnjbnj

σnj

)
. Then

the rank of
∑m

j=1 P1jVj1 is one, and hence the spectral radius of
∑m

j=1 P1jVj1 equals

its trace. Therefore the reproductive number for system (2.1) has the explicit for-
mula

R0 =
r

D̄

m∑

j=1

n∑

i=1

αidiβijbij

σij

= r

n∑

i=1

diαi

D̄

m∑

j=1

βijbij

σij

. (3.6)

Theorem 3.1. Let the reproductive number R0 be defined as in (3.6). Then if

R0 < 1 the infection-free equilibrium E0 is locally asymptotically stable, and if

R0 > 1 the infection-free equilibrium E0 is unstable.

The mean duration of infection in group i is

τ̄i :=
m∑

j=1

bij

σij

=
m∑

j=1

bij

µij + γij

.
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If we define the mean transmissibility for group i as

β̄i :=
αi

τ̄i

m∑

j=1

βijbij

µij + γij

,

and the reproductive number for group i by

R0i := rβ̄iτ̄i, i = 1, 2, · · · , n,

then the reproductive number for the entire population is a weighted average of the
reproductive numbers for these groups such that

R0 =
n∑

i=1

di

D̄
R0i.

It is similar to derive a formula of R0 for the models with bilinear incidence form
as

Rb
0 = cS0

n∑

i=1

αidi

m∑

j=1

βijbij

σij

= S0
n∑

i=1

diR0i.

4. Global stability of the infection-free equilibrium. We show that if R0 < 1,
the infection-free equilibrium is not only locally but also globally asymptotically
stable for models with the bilinear incidence form.

Let S := (S1, · · · , Sn)
T
, I := (I11, I12, · · · , I1m, · · · , In1, In2, · · · , Inm)

T
. We can

then write the infection rate λi as

λi = cαiUBI,

where

B :=





β11 . . . β1m 0 . . . 0 . . . 0 . . . 0
0 . . . 0 β21 . . . β2m . . . 0 . . . 0

...
...

. . .
...

0 . . . 0 0 . . . 0 . . . βn1 . . . βnm




∈ IRn×nm,

and U := (1, 1, · · · , 1) ∈ IR1×n.
Define matrices

Li :=





σi1 0 . . . 0 0
−γi1 σi2 . . . 0 0

...
...

. . .
...

...
0 0 . . . σi,m−1 0
0 0 . . . −γi,m−1 σim




∈ IRm×m, i = 1, · · · , n,

L := diag(L1, L2, · · · , Ln), and

P := (rα1S1, 0, · · · , 0, rα2S2, 0, · · · , 0, rαnSn, 0, · · · , 0)
T
∈ IRnm×1,

such that

F := (λ1S1, 0, · · · , 0, λ2S2, 0, · · · , 0, λnSn, 0, · · · , 0)
T

= PUBI.

Then the infective components of system (2.1) satisfy the system

dI

dt
= −LI + F = −LI + PUBI.

Let

C := (c11, c12, · · · , c1m, · · · , cn1, cn2, · · · , cnm) = UBL−1.
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Then C > 0 is a positive vector. We consider the Liapunov function

V = CI,

which is positive definite for I > 0. The derivative of V along the system (2.1)
equals

dV

dt

∣∣∣∣
(2.1)

= − CLI + CPUBI = −UBI + UBL−1PUBI

=
(
UBL−1P − 1

)
UBI.

It follows from (3.3), (3.4), and (3.5) that

L−1
i P =

(
cα1S1a

{1}
11 , · · · , cα1S1a

{1}
m1 , · · · , cαnSna

{n}
11 , · · · , cα1S1a

{n}
m1

)T

,

where

a
{i}
j1 =

∏j−1
k=1 γik∏j

k=1 σik

, i = 1, · · · , n, j = 1, · · · , m.

Then

UBL−1P = c

n∑

i=1

αiSi

m∑

j=1

a
{i}
j1 βij .

It follows from (2.1) that

Si ≤ diS
0 + Si(0)e−µit.

Hence

UBL−1P ≤ cS0
n∑

i=1

αidi

m∑

j=1

a
{i}
j1 βij + ε1(t) = R0 + ε1(t),

where limt→∞ ε1(t) = 0.
If R0 < 1, then

dV

dt
=

(
UBL−1P − 1

)
UBI ≤ (R0 − 1)UBI + ε2(t) ≤ 0,

where limt→∞ ε2(t) = 0. Notice that
dV

dt
= 0 only if I = 0, in set Ω, if R0 < 1.

Therefore the infection-free equilibrium is globally asymptotically stable.

5. Endemic equilibrium. As the infection-free equilibrium becomes unstable and
the disease spreads in the population, there possibly exists an endemic equilibrium
with all components positive. We explore its existence for model (2.1) as follows.

The components of an endemic equilibrium for (2.1) must satisfy

µi(diS
0
− Si) = λiSi, (5.1a)

λiSi = (µi1 + γi1)Ii1, (5.1b)

γi,j−1Ii,j−1 = (µij + γij)Iij , j = 2, · · · , m. (5.1c)

For models with the bilinear incidence, we let W := c
n∑

i=1

m∑
j=1

βijIij . Then λi =

Wαi.
Solving (5.1a) for Si, we have

Si =
µidiS

0

µi + αiW
, i = 1, · · · , n. (5.2)
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Substituting (5.2) into (5.1b) and solving for Ii1, we have

Ii1 =
µi1αidiS

0W

σi1(µi1 + αiW )
, i = 1, · · · , n. (5.3)

Solving (5.1c) recursively, we have

Iij =
γi,j−1γi,j−2 · · ·γi1

σijσi,j−1 · · ·σi2
Ii1 =

σi1

σij

bijIi1 = σi1∆ijIi1, i = 1, · · · , n, j = 2, · · · , m,

(5.4)
where ∆ij := bij/σij . Notice ∆i1 = 1/σi1. Then substituting (5.3) into (5.4), we
have

Iij =
µiαidiS

0∆ijW

µi + αiW
, i = 1, · · · , n, j = 1, · · · , m. (5.5)

Substituting (5.2), (5.3), and (5.5) into W yields

W = c

n∑

i=1

m∑

j=1

βijµiαidiS
0∆ijW

µi + αiW
.

Define function

G(W ) := c

n∑

i=1

m∑

j=1

βijµiαidiS
0∆ij

µi + αiW
− 1.

Note that lim
W→∞

G(W ) = −1, G(0) = R0 − 1, and

G′(W ) = −c

n∑

i=1

m∑

j=1

βijµi(αi)
2diS

0∆ij

(µi + αiW )
2 < 0.

Then, if R0 < 1 there exists no endemic equilibrium, and if R0 > 1 there exists a
unique endemic equilibrium for model (2.1).

For models with the standard incidence, we let W := r
n∑

i=1

m∑
j=1

βijIij/N without

confusion. Then λi = Wαi.
Solutions for Si and Iij have the same formulas as in (5.2) and (5.5). Then

substituting them into W , we obtain

W




n∑

i=1

µidiS
0

µi + αiW
+

n∑

i=1

m∑

j=1

µiαidiS
0∆ijW

µi + αiW



 = r

n∑

i=1

m∑

j=1

βijµiαidiS
0∆ijW

µi + αiW
.

Define function

Q(W ) :=

n∑

i=1

µidiS
0

µi + αiW
+

n∑

i=1

m∑

j=1

µiαidiS
0∆ijW

µi + αiW
− r

n∑

i=1

m∑

j=1

βijµiαidiS
0∆ij

µi + αiW

=S0
n∑

i=1

µidi

µi + αiW



1 + αi

m∑

j=1

(W − rβij)∆ij



 .

We have

lim
W→∞

Q(W ) = S0
n∑

i=1

µidi

m∑

j=1

∆ij > 0,



330 JAMES M. HYMAN AND JIA LI

and

Q(0) = S0
n∑

i=1

di



1 − rαi

m∑

j=1

βij∆ij



 = S0D̄ (1 − R0) .

Then if R0 > 1 there exists at least one positive W such that Q(W ) = 0. That is,
there exists at least one endemic equilibrium for model (2.1).

Moreover, it follows from

Q′(W ) = S0
n∑

i=1

µidiαi

(µi + αiW )2




m∑

j=1

µi∆ij + rαi

m∑

j=1

βij∆ij − 1





= S0
n∑

i=1

µidiαi

(µi + αiW )2




m∑

j=1

µi∆ij + R0i − 1



 ,

that if
m∑

j=1

µi∆ij + R0i > 1, especially if R0i > 1, for all i = 1, · · · , m, then the

endemic equilibrium is unique.
In summary, we have

Theorem 5.1. If the infection rate has the bilinear form for model (2.1), then there

exists no endemic equilibrium provided R0 < 1, and a unique endemic equilibrium

provided R0 > 1. If the infection rate has the standard form for model (2.1), then

there exists at least one endemic equilibrium provided R0 > 1.

6. Concluding remarks. We have formulated the compartmental differential sus-
ceptibility and staged-progression DSSP epidemic models with either the standard
or bilinear incidence. The models are a combination of the DS and the SP models,
which have been studied intensively but separately.

We derived explicit formulas for the reproductive number R0 for the models with
either the standard or the bilinear incidence, using the next generation operator
method. The explicit formulas of R0 for the models well fit in the calculations of
R0 for a variety of epidemiological models in the literature [7, 2, 13, 4]. That is, the
reproductive number for each subgroup, R0i, is defined as a product of the mean
number of contacts, the mean infectivity, and the mean duration of infection, and
then the reproductive number for the entire population, R0, is defined as a weighted
average of those R0i.

For the models with the bilinear incidence, we showed that the infection-free
equilibrium is not only locally but also globally asymptotically stable when R0 < 1
by using a Liapunov function. We also showed that for these models, if R0 < 1
there exists no endemic equilibrium, and if R0 > 1 there exists a unique endemic
equilibrium. Therefore, we exclude the possibility of the backward bifurcation. For
the models with the standard incidence, we showed that if R0 > 1 there exists at
least one endemic equilibrium.

The DSSP model formulated in this paper can be applied to modeling of various
disease transmissions. For example, suppose that HIV/AIDS spreads in a popu-
lation with two groups, one of which consists of individuals who are infected with
other STDs and one of which consists of individuals who are free of STDs before
first engaging in sexual activities. As shown in [1, 19, 5], the presence of other STDs
increases the likelihood of both transmitting and acquiring HIV. Individuals who
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are infected with other STDs are at least two to five times more likely than unin-
fected individuals to acquire HIV, and if an HIV-infected individual is also infected
with another STD, that person is more likely to transmit HIV through sexual con-
tact than other HIV-infected persons. We denote the two groups as group 1 and 2,
respectively, and assume that all infectives go through 4 infection stages: an early,
highly infectious pre-antibody phase, two chronic stages at low infectivities, and a
final stage at higher infectiousness [10, 14, 11, 15].

Let α1 > α2 and β1j > β2j , j = 1, · · · , 4, be the corresponding susceptibilities
and infectivities. Then the reproductive number of infection is given by

R0 =
d1R01 + d2R02

d1 + d2
=

pµ2R01 + (1 − p)µ1R02

pµ2 + (1 − p)µ1
, (6.1)

where

R0i = rαi

4∑

j=1

βij

µij + γij

4∏

k=1

γik

µik + γik

, i = 1, 2,

are the reproductive numbers for the two groups, and p is the fraction of the input
flow of susceptibles into the group of individuals with infection of other STDs.

Based on the formula of the reproductive number in (6.1), it is clear that a
strategy to reduce the infection is to decrease the reproductive number for each
group, in particular, for the group with the cofactor of other STDs. Meanwhile, it
can help bring the transmission under control if the distribution of the input flow
into group 1 is reduced which implies that more routinely screening for STDs should
be advised for preventing the transmission of HIV/AIDS.

Due to the fact that the efficacy of available vaccinations for many infectious
diseases is not perfect. Vaccinated individuals may still contract the disease and
their susceptibility varies from individual to individual. To model such a situation,
we can divide a population into two groups, one of which has all vaccinated individ-
uals and one of which has all unvaccinated individuals. The infectives may progress
the disease through several infection stages. Model (2.1) can be applied and the
explicit formulas for the reproductive number can provide helpful guidance for the
strategies of control and prevention for the disease.
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