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Abstract. A compartmental model is developed, in the form of a nonau-
tonomous system of delay differential equations subject to impulses at specific
times, for mosquito-born disease control involving larvicides and insecticide
sprays. Sufficient conditions in terms of the frequencies and rates of larvicides
and insecticide sprays are derived, and numerical simulations are provided to
illustrate the sharpness of these disease eradication conditions.

1. Introduction. Culling has been a common method for pest control and ecosys-
tem management. In particular, culling has been used widely to control vector-borne
diseases in the hope that culling the vector at carefully chosen times may inter-
vene the disease transmission cycle and reduce the infection. A specific example is
the larvicides and insecticide sprays as techniques in the war against mosquitoes,
the vector for many mosquito-born diseases including West Nile virus (WNv) and
Dengue fever.

Simons and Gourley [6] developed a time-dependent, stage-structured, single
species population model to address the situation where the adults are subject to
culling or trapping, which occurs at certain times. Their model takes the form of a
nonautonomous scalar delay differential equation where time dependence arises due
to the specific sequence of times when culling takes place. This model was extended
by Gourley, Liu and Wu [2] to consider the West Nile virus management-motivated
problems when immature mosquitoes are controlled by larviciding, and such an
extension leads to a system of delay differential equations with impulses. The
work [2] discussed the feasibility and effectiveness of either larvicides or insecticide
sprays but not both. However, existing WNv control strategies normally involve a

2000 Mathematics Subject Classification. Primary: 34K45, 34K25; Secondary: 92D30, 34K60.
Key words and phrases. Culling, West Nile virus, structured population, disease eradication,

delay.
This research was partially supported by NNSF of P. R. China (10871120), China Scholar-

ship Council and the Science & Technology Development Funds of Shandong Education Commit-
tee(J08LI10)(YL), by Natural Sciences and Engineering Research Council of Canada and Mathe-
matics for Information Technology and Complex Systems (JW), and by the Canada-China Disease
Thematic Program sponsored via Network of Centers of Excellence and International Development
Research Center (XH, YL JW). The corresponding author is Yansheng Liu.

301

http://dx.doi.org/10.3934/mbe.2009.6.301


302 XINLI HU, YANSHENG LIU AND JIANHONG WU

combination of reducing the mosquito population at both the immature and mature
levels. Therefore, in this paper we formulate a model that deals with the disease
transmission dynamics when the vector (mosquito) is subject to culling at both
the immature and mature levels, but possibly with different frequencies and rates.
This model thus permits us to analyze the complementary impact of larvicides and
insecticide sprays for an effective disease control program.

The model is formulated in Section 2. A brief discussion about the nonnegative
property of model solutions is given and then disease eradication conditions are
derived in Section 3, and are illustrated numerically in Section 4. Section 4 also
contains some comments.

2. Model derivation.

2.1. Single-species population with culling. We consider a single-species pop-
ulation, with its density at age a and time t denoted by u(t, a). We assume the
maturation time is a constant τ > 0 and use b : R → R to denote the function rep-
resenting the birth rate. Therefore, u(t, a) with a < τ is the density of immatures
while u(t, a) with a > τ corresponds to the density of matures. We also assume
that both the immature and adult individuals are subject to culling: the immatures
are culled at times

0 < t1 < t2 < t3 < · · · < tj < . . . , and tj → ∞ as j → ∞ (2.1)

at the rate bj ∈ [0, 1] (note that bj is the culling rate while function b is the birth
rate), while the adults are culled at times

0 < s1 < s2 < s3 < · · · < sj < . . . , and sj → ∞ as j → ∞ (2.2)

at the rates cj ∈ [0, 1].
Then we have, for the immature population, that

∂u

∂t
+

∂u

∂a
= −µ(a)u −

∞
∑

j=1

bj(a)u(t−j , a)δ(t − tj), 0 < a < τ, (2.3)

where δ is the usual delta function, µ(a) is the natural death rate for immatures,
and the boundary condition is given by

u(t, 0) = b(um(t)), um(t) =

∫ ∞

τ

u(t, a)da. (2.4)

We can integrate (2.3) from t−j to t+j to obtain

u(t+j , a) = (1 − bj(a))u(t−j , a). (2.5)

We also have, for the mature population, that

∂u

∂t
+

∂u

∂a
= −µmu −

∞
∑

j=1

cju(s−j , a)δ(t − sj), a > τ, (2.6)

where µm is the intrinsic death rate of the mature population. Therefore, using
u(t,∞) = 0, we obtain

dum(t)

dt
=

∫ ∞

τ

(

− ∂u
∂a

− µmu(t, a) −
∞
∑

j=1

cju(s−j , a)δ(t − sj)
)

da

= u(t, τ) − µmum(t) −
∞
∑

j=1

cjum(s−j )δ(t − sj).

(2.7)
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The maturation rate can be derived from (2.3)-(2.4) (see (2.15) in [2]) as, for t ≥ τ ,

u(t, τ) = u(t − τ, 0)exp
(

−

∫ τ

0

µ(s)ds
)

i(t)
∏

j=k(t)

(

1 − bj(τ − (t − tj))
)

, (2.8)

or

u(t, τ) = b(um(t − τ))exp
(

−

∫ τ

0

µ(s)ds
)

i(t)
∏

j=k(t)

(

1 − bj(τ − (t − tj))
)

, (2.9)

where

i(t) = max{i : ti ≤ t}, k(t) = min{i : ti > t − τ}.

In summary, we get the following delay differential equation for the mature popu-
lation um(t):

dum(t)

dt
= S(t)b(um(t− τ))exp

(

−

∫ τ

0

µ(s)ds
)

− µmum(t)−

∞
∑

j=1

cjum(s−j )δ(t − sj),

(2.10)
where

S(t) =

i(t)
∏

j=k(t)

(

1 − bj(τ − (t − tj))
)

. (2.11)

2.2. West Nile virus control via mosquito culling. West Nile virus belongs to
a family of viruses called Flaviviridae. It is spread by mosquitoes that have fed on
the blood of infected birds. People, horses, and most other mammals are not known
to develop infectious-level viremias very often, and thus are probably dead-end or
incidental hosts.

To formulate a mathematical model for the West Nile virus dynamics between
mosquitoes and birds when mosquitoes (including immature and mature) are culled,
we consider three state variables MS(t), MI(t), and BI(t) for the total numbers of
susceptible adult mosquitoes, infected adult mosquitoes, and infected birds, respec-
tively.

Continuing the notation from last section, we use u(t, a) to denote the density
of immature mosquitoes at age a and assume the maturation length is a constant
τ > 0. We also assume that mosquitos at the immature stage are subject to culling
at times tj described in (2.1), and that both susceptible and infected mosquitoes
may lay eggs but the virus is not passed on to their offsprings. The birth rate u(t, 0)
of mosquitoes is therefore assumed to be a function of the total number of adult
mosquitoes MS(t) + MI(t), so that

u(t, 0) = b(MS(t) + MI(t)),

where b(·) is the birth rate function. We further assume there is no vertical trans-
mission between mosquitoes, so the uninfected mosquitoes population is increased
via the maturation rate u(t, τ). It is diminished by infection, which may be acquired
when uninfected mosquitoes feed from the blood of infected birds, by natural death
at a rate dS , and by culling at the times sj as described in (2.2). Thus, susceptible
adult mosquitoes satisfy an equation of the form

dMS(t)

dt
= u(t, τ) − γMSBI − dSMS −

∞
∑

j=1

cjMS(s−j )δ(t − sj), (2.12)
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where γ is the contact rate between uninfected mosquitoes and infected birds: γ

equals the multiplication of the biting rate of mosquitoes and the transmission
possibility between uninfected mosquitoes and infected birds.

Using the same argument leading to (2.9), we obtain

u(t, τ) = u(t − τ, 0)S(t)exp
(

−
∫ τ

0
µ(s)ds

)

= b(MS(t − τ) + MI(t − τ))S(t)exp
(

−
∫ τ

0
µ(s)ds

)

,

with S(t) given by (2.11). Thus, the equation for the susceptible mosquitoes is

dMS(t)

dt
= b(MS(t − τ) + MI(t − τ))S(t)exp

(

−
∫ τ

0 µ(s)ds
)

− γMSBI − dSMS

−
∞
∑

j=1

cjMS(s−j )δ(t − sj).

(2.13)
The infected mosquito population is generated via the infection of uninfected

mosquitoes by infected birds and diminished by natural death at a rate dI and
culling at the times sj . Thus,

dMI(t)

dt
= γMSBI − dIMI −

∞
∑

j=1

cjMI(s
−
j )δ(t − sj). (2.14)

Note that the above formulation is based on the assumption that the uninfected
mosquitoes and infected mosquitoes are equally mixed, so that at each cull the
proportions of each class removed are the same.

We assume the total number of birds in an area is some constant NB > 0.
Birds are divided into two classes: uninfected birds BS and infected BI , so that
BS = NB−BI . Then the change rate of infected birds is increased through infection
of uninfected birds when they are bitten by infected mosquitoes and reduced by the
natural death and disease-induced death (at a rate dB). Thus,

dBI(t)

dt
= β(NB − BI)MI − dBBI , (2.15)

while β is the contact rate between infected mosquitoes and uninfected birds (β
equals the multiplication of the biting rate of mosquitoes and the transmission
possibility between infected mosquitoes and uninfected birds). Thus β(NB−BI)MI

is the rate at which susceptible birds become infected birds, assumed to be given
by the law of mass action.

3. Dynamics and disease eradication criteria. Now we consider the dynamics
of the impulsive nonautonomous system constituting of (2.13)-(2.15) for t > 0,
where S(t) is given by (2.11). The system is solved [4] subject to the following
initial data:

MS(θ) = M0
S(θ), θ ∈ [−τ, 0],

MI(θ) = M0
I (θ), θ ∈ [−τ, 0],

BI(θ) = B0
I ∈ [0, NB],

(3.1)

where M0
S(θ), M0

I (θ) and B0
I are prescribed, and these initial functions (values) are

assumed to be continuous and nonnegative. Throughout the remaining part of this
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paper, we always assume that the birth function b(·) satisfies b(0) = 0 and b(M) > 0
for all M > 0.

By integrating (2.13) and (2.14) from s−j to s+
j , the following alternative version

of model (2.13)-(2.15), when t ≥ τ , is obtained:


























































































dBI(t)

dt
= β(NB − BI)MI − dBBI ;

dMS(t)

dt
= b(MS(t − τ) + MI(t − τ))S(t)exp

(

−

∫ τ

0

µ(s)ds
)

−γMSBI − dSMS;

MS(s+
j ) = (1 − cj)MS(s−j );

dMI(t)

dt
= γMSBI − dIMI ;

MI(s
+
j ) = (1 − cj)MI(s

−
j ).

(3.2)

We first state as in [2] the following proposition on non-negativity of solutions.
Proposition 3.1 The solution of system (3.2) subject to (3.1) satisfies

MS(t) ≥ 0, MI(t) ≥ 0, BI(t) ∈ [0, NB] for t ∈ (0, +∞).

Proof. Similarly to the argument of [[2], Proposition 3.1], we can show that
BI(t) ≤ NB for all t > 0. Now we show MS(t) ≥ 0 for all t > 0. This will be
finished by the method of steps.

If τ < s1, as in [2], we know

MS(t) ≥ M0
S(0)exp

(

−

∫ t

0

(γBI(ξ) + dS)dξ
)

, (3.3)

and so MS(t) ≥ 0 for all t ∈ (0, τ ].
If there are some positive integer k such that s1 < s2 < · · · < sk ≤ τ < sk+1,

then (3.3) holds and so MS(t) ≥ 0 for all t ∈ (0, s1]. Notice that MS(s+
1 ) =

(1 − c1)MS(s−1 ). Therefore,

MS(t) ≥ MS(s+
1 )exp

(

−

∫ t

s1

(γBI(ξ) + dS)dξ
)

,

and so MS(t) ≥ 0 for all t ∈ (s1, s2]. Repeating this analysis shows that Ms(t) ≥ 0
for all t ∈ (0, τ ].

The above argument can be continued to prove that Ms(t) ≥ 0 for all t ∈
(τ, 2τ ], (2τ, 3τ ], · · · , and so it holds for all t > 0.

Now we are in position to show that MI(t) ≥ 0 and BI(t) ≥ 0 for t > 0. As in [2],
the variable (MI(t), BI(t)) can be interpreted as satisfying a monotone dynamical
system [7] in [0, s1], which means MI(t) ≥ 0 and BI(t) ≥ 0 for t ∈ [0, s1]. Notice
that MS(s+

1 ) = (1 − c1)MS(s−1 ) = (1 − c1)MS(s1) ≥ 0 and BI(s
+
1 ) = BI(s1) ≥ 0.

One can again obtain that (MI(t), BI(t)) satisfies a monotone dynamical system in
[s1, s2], and so on so forth. We eventually obtain MI(t) ≥ 0 and BI(t) ≥ 0 for all
t > 0.
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For convenience, we introduce

S∞ = lim supt→∞ S(t),
b′max = sup

m≥0
b′(m), bmax = sup

m≥0
b(m).

Furthermore, we write

d =: min(dI , dS), α(ε) =: (S∞ + ε)b′maxexp
(

−
∫ τ

0
µ(s)ds

)

,

cinf =: inf
j≥1

cj, δinf = inf
j≥1

(sj+1 − sj), δsup = sup
j≥1

(sj+1 − sj).
(3.4)

We assume in the remaining part of this paper, δsup < ∞.

Theorem 3.1. Suppose one of the following conditions holds:

(C1) d > α(0);
(C2) d ≤ α(0), cinf ∈ (0, 1), 0 < δinf < δsup ≤ τ , and

(1 − cinf ) +
α(0)

d

(

1 − exp(−dδsup)
)

< 1.

(C3) d ≤ α(0), cinf ∈ (0, 1), δsup > τ , and
[

1 +
α(0)

d

(

1 − exp(−dδsup)
)]n1−1

·

[

(1 − cinf ) +
α(0)

d

(

1 − exp(−dδsup)
)]

< 1,

where n1 is a positive integer satisfying n1τ ≥ δsup > (n1 − 1)τ .

Then for any solution of (3.1)-(3.2), we have BI(t) → 0 and MI(t) → 0 as t → +∞.

Proof. Denote the total number of adult mosquitoes by MT (t) = MS(t) + MI(t).
Notice by Proposition 3.1 that















dMT (t)

dt
≤ b(MT (t − τ))S(t)exp

(

−

∫ τ

0

µ(s)ds
)

− dMT (t);

MT (s+
j ) = (1 − cj)MT (s−j ).

(3.5)

Suppose now that condition (C1) holds. Let ε > 0 be sufficiently small that

d > α(ε). (3.6)

Therefore, there exists T1 > 0 sufficiently large that

MT (t) ≤ M̂T (t), t ≥ T1, (3.7)

where M̂T (t) satisfies

dM̂T (t)

dt
= α(ε)M̂T (t − τ) − dM̂T (t). (3.8)

Combining this with (3.6) and the well known results (see [3]), by virtue of (3.7),
we know MT (t) → 0 as t → +∞. Hence also MI(t) → 0, and this enables us to
conclude from (3.2) that BI(t) → 0 as t → +∞.

Next assume condition (C2) is satisfied. Then there exists ε > 0 such that

(1 − cinf ) +
α(ε)

d

(

1 − exp(−dδsup)
)

< 1. (3.9)

Similarly as above, there exists T1 > 0 such that (3.7) and (3.8) hold. Consider
equation (3.8) subject to

M̂T (s+
j ) = (1 − cj)M̂T (s−j ). (3.10)
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Under condition (C2), there exists a positive number n satisfying nδinf ≥ τ > (n−

1)δinf . Without loss of generality, suppose s1 ≥ T1 and let M1 =: sup
t∈[sn−τ,sn]

M̂T (t).

Then from (3.8) it follows that

dM̂T (t)

dt
≤ M1α(ε) − dM̂T (t), t ∈ (sn, sn+1]. (3.11)

Multiplying (3.14) by exp(d(t− sn)) and then integrating it from sn to t, we obtain

M̂T (t) ≤ M̂T (s+
n )exp(−d(t − sn)) + M1α(ε)

d
(1 − exp(−d(t − sn))

≤ M1

[

(1 − cn) + α(ε)
d

(1 − exp(−dδsup)
]

≤ M1

[

(1 − cinf ) + α(ε)
d

(1 − exp(−dδsup)
]

≤ M1, t ∈ (sn, sn+1],

where (3.9) is used. This, together with δsup ≤ τ and (3.8), means that (3.11) also
holds for t ∈ (sn+1, sn+2]. Analogously, it follows that

M̂T (t) ≤ M̂T (s+
n+1)exp(−d(t − sn+1)) +

M1α(ε)

d
(1 − exp(−d(t − sn+1))

≤ M1

[

(1 − cinf ) +
α(ε)

d
(1 − exp(−dδsup)

]

≤ M1, t ∈ (sn+1, sn+2],

and inductively,

M̂T (t) ≤ M̂T (s+
2n−1)exp(−d(t − s2n−1)) +

M1α(ε)

d
(1 − exp(−d(t − s2n−1))

≤ M1

[

(1 − cinf ) +
α(ε)

d
(1 − exp(−dδsup)

]

, t ∈ (s2n−1, s2n].

Consequently,

M̂T (t) ≤ M1

[

(1 − cinf ) +
α(ε)

d
(1 − exp(−dδsup)

]

, t ∈ (sn, s2n]. (3.12)

Notice that s2n−sn ≥ nδinf ≥ τ . This, together with (3.8) and (3.12), guarantees
that

dM̂T (t)

dt
≤ M1α(ε)

[

(1− cinf )+
α(ε)

d
(1− exp(−dδsup)

]

−dM̂T (t), t ∈ (s2n, s2n+1].

Similarly, we can obtain that

M̂T (t) ≤ M1

[

(1 − cinf ) +
α(ε)

d
(1 − exp(−dδsup)

]2

, t ∈ (sn, s2n],

and inductively, for k ≥ 1, that

M̂T (t) ≤ M1

[

(1 − cinf ) +
α(ε)

d
(1 − exp(−dδsup)

]k

, t ∈ (skn, s2kn].

This implies M̂T (t) → 0 as t → +∞. By virtue of (3.7), the claimed result follows
under condition (C2).

Finally, we consider the case where (C3) is satisfied. Then there exists ε > 0
such that

[

1 +
α(ε)

d

(

1 − exp(−dδsup)
)]n1−1

·
[

(1 − cinf ) +
α(ε)

d

(

1 − exp(−dδsup)
)]

< 1.
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Similarly as above, there exists T1 > 0 such that (3.7) and (3.8) hold. We consider
equation (3.8) subject to (3.10). Without loss of generality, we suppose s1 ≥ T1

and let

M[s1−τ,s1] =: sup
t∈[s1−τ,s1]

M̂T (t).

If s2 − s1 ≤ τ , then by (3.12) it follows that

dM̂T (t)

dt
≤ M[s1−τ,s1]α(ε) − dM̂T (t), t ∈ (s1, s2]. (3.13)

From this we can obtain

M̂T (t) ≤ M[s1−τ,s1]

[

(1 − cinf ) +
α(ε)

d
(1 − exp(−dδsup))

]

, t ∈ (s1, s2]. (3.14)

If s2 − s1 > τ , then (3.13) and (3.14) hold for t ∈ (s1, s1 + τ ]. In this case, let k0

be the integer such that (k0 − 1)τ < s2 − s1 ≤ k0τ . Then k0 ≤ n1. From (3.8) and
(3.14) it follows that

dM̂T (t)

dt
≤ M[s1−τ,s1]

[

(1 − cinf ) +
α(ε)

d
(1 − exp(−dδsup))

]

α(ε) − dM̂T (t)

for t ∈ (s1 + τ, s1 + 2τ ]. Multiplying this inequality by exp(d(t− s1 − τ)) and then
integrating from s1 + τ to t yields

M̂T (t) ≤ M̂T (s1 + τ)exp(−d(t − s1 − τ))

+
M[s1−τ,s1]

[

(1 − cinf ) + α(ε)
d

(1 − e−dδsup)
]

α(ε)

d
(1 − e(−d(t−s1−τ))

≤ M[s1−τ,s1]

[

(1 − cinf ) +
α(ε)

d
(1 − e(−dδsup))

][

1 +
α(ε)

d
(1 − e(−dδsup))

]

for t ∈ (s1 + τ, s1 + 2τ ].
Repeating this analysis yields that

M̂T (t) ≤ M[s1−τ,s1]

[

(1−cinf )+
α(ε)

d
(1−e−(−dδsup))

]

·
[

1+
α(ε)

d
(1−e(−dδsup))

]k0−1

for t ∈ (s1 + (k0 − 1)τ, s2]. As k0 ≤ n1, we have

M̂T (t) ≤ M[s1−τ,s1]

[

(1− cinf )+
α(ε)

d
(1− e(−dδsup))

]

·
[

1+
α(ε)

d
(1− e(−dδsup))

]n1−1

(3.15)
for t ∈ (s1, s2]. From (3.14) it is easy to see that (3.15) also holds when s2−s1 ≤ τ .

Inductively, we obtain that

M̂T (t) ≤ M[s1−τ,s1]

{[

(1−cinf )+
α(ε)

d
(1−e(−dδsup))

]

·
[

1+
α(ε)

d
(1−e(−dδsup))

]n1−1}k

for t ∈ (sk, sk+1] and for k = 1, 2, 3, · · · . This means M̂T (t) → 0 as t → +∞. By
virtue of (3.7), the result follows.

We now consider some special cases.

Theorem 3.2. Assume d ≤ α(0). In addition, assume one of the following condi-
tions holds:

(C4) sj = jτ , j = 1, 2, · · · ; and there exists ε > 0 such that

+∞
∏

j=1

[

(1 − cj) +
α(ε)

d
(1 − exp(−dτ))

]

= 0.
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(C5) there exists some integer m such that sj+1 = sj +
τ

m
, cj ≡ c ∈ (0, 1), j =

1, 2, · · · , and one of the following conditions holds:

(C51) (1 − c) +
α(0)

d
(1 − exp(−

dτ

m
)) < 1;

(C52) ρ(A) < 1, where ρ(A) is the spectral radius of the matrix A given below

















q(0) 0 0 · · · 0 (1 − c)

q(0)(1 − c) q(0) 0 · · · 0 (1 − c)2

q(0)(1 − c)2 q(0)(1 − c) q(0) · · · 0 (1 − c)3

· · · · · · · · · · · · · · · · · ·

q(0)(1 − c)m−2 q(0)(1 − c)m−3 q(0)(1 − c)m−4
· · · q(0) (1 − c)m−1

q(0)(1 − c)m−1 q(0)(1 − c)m−2 q(0)(1 − c)m−3
· · · q(0)(1 − c) q(0) + (1 − c)m

















,

with q(ε) := α(ε)
d

(1 − exp(−d τ
m

)), ∀ε ≥ 0.

Then BI(t) → 0 and MI(t) → 0 as t → +∞, where BI(t) and MI(t) satisfy (3.1)-
(3.2).

Proof. As in the proof of Theorem 3.1, there exists T1 > 0 such that (3.7) and (3.8)
hold. We still consider equation (3.8) subject to (3.10). Without loss of generality,

suppose s1 ≥ T1 and M1 =: sup
t∈[s1−τ,s1]

M̂T (t).

Consider the case where (C4) holds. From (3.8) it follows that

dM̂T (t)

dt
≤ M1α(ε) − dM̂T (t), t ∈ (s1, s2]. (3.16)

Multiplying (3.16) by exp(d(t − s1)) and then integrating it from s1 to t leads to

M̂T (t) ≤ M̂T (s+
1 )exp(d(t − s1)) +

M1α(ε)

d
(1 − exp(−d(t − s1))

≤ M1

[

(1 − c1) +
α(ε)

d
(1 − exp(−dτ))

]

, t ∈ (s1, s2].

By induction, we can obtain that

M̂T (t) ≤ M1

k
∏

j=1

[

(1 − cj) +
α(ε)

d
(1 − exp(−dτ))

]

for t ∈ (sk, sk+1]. From (C4) and (3.7), we conclude that BI(t) → 0 and MI(t) → 0
as t → +∞ in this case.

Next we suppose (C51) holds. Then there exists ε > 0 such that

c̄ := (1 − c) +
α(ε)

d
(1 − exp(−

dτ

m
)) < 1. (3.17)

Using similar arguments as above, and noticing that sj+1 = sj +
τ

m
, cj ≡ c ∈ (0, 1),

j = 1, 2, · · · , we have

M̂T (t) ≤ M1

[

(1 − c) +
α(ε)

d
(1 − exp(−d

τ

m
))

]

, t ∈ (s1, s2];

and

M̂T (t) ≤ M1

[

(1 − c)2 +
α(ε)

d
(1 − exp(−d

τ

m
))((1 − c) + 1)

]

, t ∈ (s2, s3].
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Inductively, we have

M̂T (t)

≤ M1

[

(1 − c)m−1 +
α(ε)

d
(1 − exp(−d

τ

m
))((1 − c)m−2 + (1 − c)m−3 + · · · + 1)

]

≤ M1

[

(1 − c)m−1 +
α(ε)

c · d
(1 − exp(−d

τ

m
))

]

, t ∈ (sm−1, sm].

Let

M2 =: M1

[

(1 − c)m−1 +
α(ε)

c · d
(1 − exp(−d

τ

m
))

]

.

Then M̂T (t) ≤ M2 for t ∈ (s1, sm]. Furthermore, we have

M̂T (t) ≤ M2

[

(1 − c) +
α(ε)

d
(1 − exp(−d

τ

m
))

]

= M2c̄, t ∈ (sm, sm+1];

and

M̂T (t) ≤ M2

[

(1 − c)2 +
α(ε)

d
(1 − exp(−d

τ

m
))((1 − c) + 1)

]

= M2[c̄ + (1 − c)(c̄ − 1)], t ∈ (sm+1, sm+2].

Inductively, we have

M̂T (t)

≤ M2

[

(1 − c)m +
α(ε)

d
(1 − exp(−d

τ

m
))((1 − c)m−1 + (1 − c)m−2 + · · · + 1)

]

= M2

{

c̄ + [(1 − c)m−1 + (1 − c)m−2 + · · · + (1 − c)](c̄ − 1)
}

, t ∈ (s2m−1, s2m].

Since c̄ < 1, we have

M̂T (t) ≤ M2c̄, t ∈ (sm, s2m].

Inductively, we have

M̂T (t) ≤ M2c̄
k, t ∈ (skm, s(k+1)m].

From this, together with (3.17), it follows that BI(t) → 0 and MI(t) → 0 as
t → +∞.

Finally, we suppose (C52) holds. Since ρ(A) < 1, there exists ε > 0 such that
ρ(A(ε)) < 1, where A(ε) is given by

















q(ε) 0 0 · · · 0 (1 − c)

q(ε)(1 − c) q(ε) 0 · · · 0 (1 − c)2

q(ε)(1 − c)2 q(ε)(1 − c) q(ε) · · · 0 (1 − c)3

· · · · · · · · · · · · · · · · · ·

q(ε)(1 − c)m−2 q(ε)(1 − c)m−3 q(ε)(1 − c)m−4
· · · q(ε) (1 − c)m−1

q(ε)(1 − c)m−1 q(ε)(1 − c)m−2 q(ε)(1 − c)m−3
· · · q(ε)(1 − c) q(ε) + (1 − c)m

















Let

Mi,j := sup
(sim+j−1,sim+j ]

M̂T (t), i = 1, 2, . . . ; j = 1, 2, · · · , m.

From (3.8) we know

dM̂T (t)

dt
≤ α(ε)M1,1 − d · M̂T (t), t ∈ (s2m, s2m+1];

and
dM̂T (t)

dt
≤ α(ε)M1,2 − d · M̂T (t), t ∈ (s2m+1, s2m+2];
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and so on so forth. Finally, we have

dM̂T (t)

dt
≤ α(ε)M1,m − d · M̂T (t), t ∈ (s3m−1, s3m].

From these inequalities it follows that

M̂T (t) ≤ x(s+
2m) + M1,1q(ε) ≤ M1,m(1 − c) + M1,1q(ε), t ∈ (s2m, s2m+1];

M̂T (t) ≤ x(s+
2m+1) + M1,2q(ε) ≤ M2,1(1 − c) + q(ε)M1,2 t ∈ (s2m+1, s2m+2];

and

M̂T (t) ≤ x(s+
3m−1) + M1,mq(ε) ≤ M2,m−1(1 − c) + q(ε)M1,m, t ∈ (s3m−1, s3m].

Therefore,

M2,1 ≤ M1,m(1 − c) + M1,1q(ε);

M2,2 ≤ q(ε)(1 − c)M1,1 + q(ε)M1,2 + (1 − c)2M1,m;

M2,3 ≤ q(ε)(1 − c)2M1,1 + q(ε)(1 − c)M1,2 + q(ε)M1,3 + (1 − c)3M1,m;

...

M2,j ≤ q(ε)(1 − c)j−1M1,1 + q(ε)(1 − c)j−2M1,2 + · · ·

+q(ε)(1 − c)M1,j−1 + q(ε)M1,j + (1 − c)jM1,m;

...

M2,m ≤ q(ε)(1 − c)m−1M1,1 + q(ε)(1 − c)m−2M1,2 + · · ·

+q(ε)(1 − c)M1,m−1 +
(

q(ε) + (1 − c)m
)

M1,m.

That is


















M2,1

M2,2

M2,3

...
M2,m−1

M2,m



















≤ A(ε)



















M1,1

M1,2

M1,3

...
M1,m−1

M1,m



















.

By induction, we obtain that


















Mn+1,1

Mn+1,2

Mn+1,3

...
Mn+1,m−1

Mn+1,m



















≤ A(ε)



















Mn,1

Mn,2

Mn,3

...
Mn,m−1

Mn,m



















,

where n ≥ 1 is positive integers.
Since ρ(A(ε)) < 1, we have Mn,j → 0 as n → +∞, j = 1, 2, · · · , m. This shows

BI(t) → 0 and MI(t) → 0 as t → +∞. The proof is complete.

Theorem 3.3. Suppose one of the following conditions holds:

(C6) dIdB > γβNBM∗∗, where

M∗∗ =
S∞bmaxexp

(

−
∫ τ

0 µ(s)ds
)

(1 − cinfe−d)

d
;
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(C7) dIdB ≤ γβNBM∗∗, but

sup
j≥1

[

(

λ2(1 − cj) − λ1

)

eλ1δj +
(

λ2 + (cj − 1)λ1)e
λ2δj + cjdI(e

λ2δj − eλ1δj

− (λ2 − λ1)(1 − cj)e
−(dB+dI)δj

]

< λ2 − λ1,

(3.18)
where λ1 < 0 and λ2 ≥ 0 satisfy

λ2 + (dB + dM )λ + (dBdM − γβNBM∗∗) = 0. (3.19)

Then BI(t) → 0 and MI(t) → 0 as t → +∞, where BI(t) and MI(t) satisfy (3.1)-
(3.2).

Proof. Suppose condition (C6) holds. We now deduce some growth estimation in
this case. Notice that for each ε > 0, there exists T1 > 0 such that S(t) ≤ S∞ + ε

as t ≥ T1. Therefore,

dMT (t)

dt
≤ (S∞ + ε)exp

(

−

∫ τ

0

µ(s)ds
)

bmax − dMT (t), t ≥ T1.

This, together with MT (s+
j ) = (1 − cj)MT (s−j ) and the fact that ε is arbitrary,

guarantees that

lim sup
t→∞

MT (t) ≤
S∞bmaxexp

(

−
∫ τ

0
µ(s)ds

)

d
.

On the other hand, notice that dIdB > γβNBM∗∗. By (C6), there exists ε0 > 0
such that

dIdB > γβNBM∗∗
ε0

, (3.20)

where

M∗∗
ε0

=
(S∞ + ε0)bmaxexp

(

−
∫ τ

0
µ(s)ds

)

(1 − cinfe−d)

d
. (3.21)

Also for such ε0, there exists T2 > 0 such that

S(t) ≤ S∞ + ε0 and MT (t) ≤
(S∞ + ε0)bmaxexp

(

−
∫ τ

0 µ(s)ds
)

d
as t ≥ T2.

So from (3.2) it follows that














dMT (t)

dt
≤ (S∞ + ε0)exp

(

−

∫ τ

0

µ(s)ds
)

bmax − dMT (t), t ≥ T2;

MT (s+
j ) = (1 − cj)MT (s−j ).

(3.22)

For sj > T2 and t ∈ (sj , sj+1], from (3.22) we know

MT (t) ≤ MT (s+
j )e−d(t−sj) +

(S∞ + ε0)bmaxexp
(

−
∫ τ

0 µ(s)ds
)

d

(

1 − e−d(t−sj)
)

for t ∈ (sj , sj+1]. This, together with

MT (s+
j ) = (1 − cj)MT (s−j ) ≤ (1 − cj)

(S∞ + ε0)bmaxexp
(

−
∫ τ

0 µ(s)ds
)

d
,
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guarantees that

MT (t) ≤
(S∞ + ε0)bmaxexp

(

−
∫ τ

0 µ(s)ds
)

d

(

1 − cje
−d(t−sj)

)

=
(S∞ + ε0)bmaxexp

(

−
∫ τ

0 µ(s)ds
)

d
(1 − cinf e−dδsup)

=: M∗∗
ε0

, t ∈ (sj , sj+1]. (3.23)

From (3.23) and (3.7), we conclude that MI(t) ≤ M̄I(t) and BI(t) ≤ B̄I(t) for
t ≥ T2, where M̄ and B̄ satisfy



































dB̄I(t)

dt
= βNBM̄I − dBB̄I , t ≥ 0;

dM̄I(t)

dt
= γM̄∗∗

ε0
BI − dIM̄I , t 6= sj ;

M̄I(s
+
j ) = (1 − cj)M̄I(s

−
j ).

(3.24)

Using a similar argument to that in [Theorem 3.5, [2]], we can show that (3.20)
and (3.24) imply that M̄I(t) → 0 and B̄I(t) → 0 as t → +∞, and so MI(t) → 0
and BI(t) → 0 as t → +∞.

Finally we assume condition (C7) is satisfied. Choose ε sufficiently small so that
(3.18) holds as well if we replace λ1 and λ2 with λε

1 and λε
2 respectively, where

λε
1 < 0 and λε

2 > 0 satisfy

λ2 + (dB + dM )λ + (dBdM − γβNBM∗∗
ε ) = 0.

Notice here that this equation is changed from (3.19) by replacing M∗∗ with M∗∗
ε ,

which is defined as in (3.21).
Using a procedure similar to that developed in the proof of [Theorem 3.6, [2]],

we obtain the desired result.

4. Simulations and discussions. We now carry out some simulations to examine
the effectiveness of different combinations of immature culling and adult culling
strategies for the system (3.1)-(3.2). Notice that all information about immature
culling is embodied in the function S(t) defined by (2.11). The parameter values
and interpretations to be used in the simulations are given in Table 1.

Table 1: Parameter values used for the simulations. The data are taken from
references [1, 2, 5, 8].

Para. Meaning value
dL Per capita death rate of mosquito larva (per day) 0.1
τ Maturation time of mosquito larva (days) 10
dM Per capita natural death rate of mosquito (per day) 0.05
dB Disease-induced death rate of infected bird (per day) 0.1
NB Total number of birds b 500
β Transmission rate from infected mosquitos to susceptible birds 0.0144/NB

γ Transmission rate from infected birds to susceptible mosquitos 0.0792/NB

b Maximum per capita daily egg production rate 10
1/a Size of mosquito population at which egg laying is maximized 2500
bj Fraction of larva removed at the cull at time tj variable
cj Fraction of adult mosquito removed at the cull at time sj variable
1/△t larva culling frequency variable
1/△s adult culling frequency variable

In the simulations we take the birth function of mosquitoes as b(M) = bMe−aM .
The initial conditions are assumed to be MS(t) = 5000, MI(t) = 600, BI(t) = 100
for t ∈ [−τ, 0]. In all simulations, the larva culls and adult culls are at equally
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Figure 1. Minimal rates of culling and their relationship in order
to eradicate the disease for different culling frequencies (cull the
larval every ∆t (days) and cull the adult every ∆s) (days): (a).
△t = 7,△s = 14; (b). △t = 3.5,△s = 14; (c). △t = 3.5,△s = 7;
(d). △t = 3,△s = 5. All other parameters have values specified in
Table 1.

spaced. The distance between two consecutive larva culls is denoted by △t, so the
larva cull times are given by tj = t0 + j△t, j = 1, 2, 3, · · ·with t0 = 4. The distance
between two consecutive adult culls is denoted by △s, and the adult cull times are
thus given by sj = s0 + j△s, j = 1, 2, 3, · · ·with s0 = 4.

In Figure 1, in the space of (b∗, c∗), where b∗ = bj, c
∗ = cj for all j ≥ 1, the

shaded area gives the region when the disease dies out. It shows that when the
culling frequencies are low and when a single strategy of culling the immature or
the adult mosquitos is implemented, the culling rate must be very large. The
minimal culling rate to eliminate the disease by culling the adult mosquitos only
is 0.92, 0.62, 0.5 when △s = 14, 7, 5 respectively, while the minimal culling rate
to eliminate the disease by culling the immature mosquitos only is 0.96, 0.72, 0.68
when △s = 7, 3.5, 3 respectively. A combination of culling mosquitos at both the
immature and adult stages requires much lower culling rates: with a combination
such that (△t,△s) = (3.5, 14), the rates (b∗, c∗) = (0.5, 0.6) of culling will be
sufficient.

Figure 2 shows a situation when a combination of larvicide and adulticide sprays
eradicates the disease but neither larvicide nor adulticide can do so alone. Figure
3 shows that even if a combination of larvicide and adulticide cannot eradicate the
disease, this strategy can substantially reduce the numbers of infected birds and
infected mosquitos. Figure 4 illustrates a case where culling with low frequencies
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has no effect on disease spread and oscillatory patterns of disease outbreak occurs.
Figure 5 gives a comparison between condition (C51) (right) and the precise disease
eradication (left, obtained through numerical simulation) for a wide range of culling
frequencies. This indicates that our sufficient conditions are far from optimal.

In summary, our analysis and simulations show that a combination of of larvi-
cide and adulticide is much more effective than a single approach alone. A single
approach of either larvicide or adulticide for West Nile virus eradication requires
an extremely high culling rate that cannot be achieved in a real situation, but an
optimal combination of both is feasible. Such a combination, even if it fails to
eradicate the disease, can substantially reduce the numbers of infected birds and
infected mosquitos.

Delay differential equations with impulses have been intensively investigated re-
cently. Our study shows that such equations arise naturally from consideration of
some human intervention strategies for disease control. However, we also show the
great challenge to derive sharp disease eradication condition, in comparison with
the case without impulses where disease eradication condition is normally associated
with the the basic reproduction number for which there is a standard algorithm.
Due to the hybrid nature of the model and the modeled biological reality, a shape
eradication condition must involve the estimation of growth/decay of the infection
during the two consecutive culling times, that is described by a continuous flow,
and the culling rates in a sequence of times which can be regarded as resetting
the phase. Precise disease eradication conditions cannot be obtained without con-
sidering the iteration of curves (during the culling intervals). This proves to be a
very difficult task, and the involvement of time delay due to the biological struc-
ture of mosquitos and the corresponding human intervention makes this much more
challenging. Nevertheless, sufficient conditions derived here ensure the success of a
combinational strategy of larvicide and adulticide, although their derivation from a
sharp and necessary condition of disease eradication implies that more cost-effective
strategies can be designed if further progress improving the sufficient conditions is
achieved.
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Figure 2. A combination of larvicide and adulticide sprays can
eradicate the disease but neither larvicide nor adulticide can do so
alone. Parameter values are △t = 10,△s = 20, bj = 0.80, cj = 0.80
and other parameters have the values shown in Table 1.
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Figure 3. Even if a combination of larvicide and adulticide cannot
eradicate the disease, this strategy can substantially reduce the
numbers of infected birds and infected mosquitos. Parameter values
are △t = 10,△s = 20, bj = 0.65, cj = 0.65 and other parameters
have the values shown in Table 1.
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Figure 4. Culling with lower frequencies has little impact on dis-
ease spread, and disease outbreak seems to be recurrent. Param-
eter values are △t = 50,△s = 50, bj = 0.95, cj = 0.95 and other
parameters have the values shown in Table 1.
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Figure 5. Comparison between condition (C51) (right) and the
precise disease eradication (left, obtained through numerical simu-
lation) for a wide range of culling frequencies(cull the larval every
∆t (days) and cull the adult every ∆s) (days)). This indicates
that our sufficient conditions are far from optimal. Parameter val-
ues are (a). △t = 3,△s = 2.5; (b). △t = 3,△s = 1.25; (c).
△t = 1.2,△s = 1.25, and other parameters have the values shown
in Table 1.
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