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Abstract. Chronic HBV affects 350 million people and can lead to death
through cirrhosis-induced liver failure or hepatocellular carcinoma. We ana-

lyze the dynamics of a model considering logistic hepatocyte growth and a

standard incidence function governing viral infection. This model also consid-
ers an explicit time delay in virus production. With this model formulation

all model parameters can be estimated from biological data; we also simulate

a course of lamivudine therapy and find that the model gives good agreement
with clinical data. Previous models considering constant hepatocyte growth

have permitted only two dynamical possibilities: convergence to a virus free

or a chronic steady state. Our model admits a third possibility of sustained
oscillations. We show that when the basic reproductive number is greater than

1 there exists a biologically meaningful chronic steady state, and the stability
of this steady state is dependent upon both the rate of hepatocyte regeneration

and the virulence of the disease. When the chronic steady state is unstable,

simulations show the existence of an attracting periodic orbit. Minimum hepa-
tocyte populations are very small in the periodic orbit, and such a state likely
represents acute liver failure. Therefore, the often sudden onset of liver failure

in chronic HBV patients can be explained as a switch in stability caused by
the gradual evolution of parameters representing the disease state.

1. Introduction. Hepatitis B virus (HBV) causes an enormous amount of human
suffering, particularly in Asia, sub-Saharan Africa, parts of the Arabian Peninsula,
the South Pacific, tropical South America, and arctic North America [1]. Currently,
about two billion people—roughly 30% of the human population—have been in-
fected by HBV. The virus targets the liver, and about 17.5% (350 million) of those
who harbor an active HBV infection suffer chronic hepatitis [34]. Up to 0.06%
of HBV-infected persons are likely to die from complications associated with the
disease within the year [21]. But mortality is not the only way HBV impacts the
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human population. All who suffer HBV infection experience significant morbidity,
ranging from weeks to months of nausea, fatigue, jaundice, and joint pain associ-
ated with acute disease to liver cirrhosis or hepatocellular carcinoma characteristic
of late-stage chronic infection.

Primarily because of HBV’s significance as a global public health threat, the virus
and its associated disease have attracted considerable attention from mathematical
and theoretical biologists [10, 27, 29, 30, 7, 6]. The models typically used to study
HBV dynamics within the host tend to focus on healthy cells, free virus, and in-
fected cells. Most of these models formulate viral infection as a mass action process
between free virions and healthy cells. Some further assume a constant influx of
healthy cells from an outside source. For example, the following phenomenological
model has been widely used in the study of HBV and other viral diseases, including
HIV: 

dx

dt
= r − dx− βvx,

dy

dt
= βvx− ay,

dv

dt
= ky − µv.

(1.1)

The number or mass of healthy cells is represented by x, that of infected cells by y,
and that of the free virion load by v. Healthy hepatocytes enter the liver from an
outside source at rate r, and hepatocytes die at rate d.

The mass action term used to model infection of healthy hepatocytes by free
virions is biologically problematic in several ways. Gourley et al. [10] showed
that this assumption causes the basic reproductive number, R0, to depend upon
the homeostatic liver size, r/d. Thus, this model makes the dubious prediction
that individuals with smaller livers should be less susceptible to HBV infection.
Furthermore, the mass action constant, β, has no clear biological meaning.

Gourley et al. [10] extended model (1.1) by assuming HBV infection of healthy
cells is governed not by mass action but by a standard incidence function. In
particular, the mass action term in (1.1) is replaced by

βv
x

T
, (1.2)

where T is the total number of liver cells, infected or not. Under their formulation
R0 loses its dependence on liver size. Also, β in (1.2) has a clear biological meaning.
It can be interpreted either as the maximum rate at which virions infect healthy
cells, or as the probability that a single virion infects any cell in a healthy liver in
a unit interval of time.

A shortcoming of both model (1.1) and the Gourley et al. formulation is the
assumption that healthy hepatocytes are replenished at a constant rate. Mathemat-
ically, this assumption limits the allowed asymptotic behaviors to only two generic
cases [10, 27, 29, 30]: if R0 < 1 then the homeostatic set-point, (r/d, 0, ..., 0), is
globally asymptotically stable, but if R0 > 1 then a persistent chronic steady state
is approached in all cases.

On biological grounds, this assumption of constant hepatocyte influx is clearly in-
appropriate. It is well established that liver regeneration following injury is achieved
by widespread hepatocyte proliferation [26, 19, 31], not “reseeding” from an out-
side source. Also, as we argue below, complete liver regeneration following partial
hepatectomy in animal models implies that hepatocyte proliferation depends on



THE DYNAMICS OF A DELAY MODEL OF HBV INFECTION 285

liver mass. Therefore, we propose an alternative model of HBV dynamics in which
hepatocyte proliferation rate is described by a logistic function. We show that this
assumption can produce rich, biologically significant dynamics when R0 > 1. In
particular, the asymptotic behavior can switch from a stable chronic equilibrium
to an attracting periodic orbit, with an unstable chronic equilibrium, and that this
switch is governed by both the virulence of the infection and the rate at which hep-
atocytes regenerate. We argue that the gradual evolution of parameters describing
liver regeneration and HBV virulence over the course of chronic infection can lead
to a sudden change in disease dynamics as the stability switch is crossed. Since this
switch can occur for realistic parameter values, the model predicts that the onset of
acute liver failure can be predicted by the sudden onset of oscillations in viral load.

A further advantage of this model is that all parameters can be estimated directly
from empirical biological data. To validate our approach, we model a course of
lamivudine therapy and find that empirically determined parameter values yield
dynamics in close agreement with clinical data.

2. Full model. The liver has a remarkable ability to regenerate following injury.
This regeneration is driven by normal hepatocytes, which unlike the terminally dif-
ferentiated cells dominating most other tissues, retain an inherent “steminess.” That
is, mature hepatocytes can still divide and replenish others lost in a fully developed
liver. Furthermore, this regeneration occurs at an extremely fast rate. For example,
rat livers completely regenerate within a week following experimental hepatectomy
of two-thirds of the organ (2/3 PHx) [26]. Regeneration is accomplished by several
cycles of mitosis involving a large fraction of mature hepatocytes, although pro-
gressively fewer hepatocytes participate in each subsequent cycle [26, 31]. Precisely
how these regenerative cycles are initiated and controlled is still under debate, but
hemodynamics appears to play a definitive role. A 2/3 PHx exposes hepatocytes
to a threefold increase in portal vein blood flow, which appears to lower hepatocyte
apoptosis rates [25] and perhaps increases their exposure to growth factors [26].

The results of Lambotte et al. [19] indicate that early changes in hemodynamics
following both 2/3 PHx or a “temporary” partial hepatectomy “prime” hepatocytes
for proliferation. However, regenerative proliferation occurs only when the actual
liver mass is reduced. Following a 1/3 PHx, the regenerative response can increase
following further resection, at least 10 hours later. Also, regeneration can decrease
in response to a liver graft (increase in liver mass) up to 18 hours after the initial
resection. These results strongly indicate that hepatocyte proliferative activity is
controlled by the actual mass of the liver and that hemodynamics play a role in
preparing hepatocytes for proliferation. Therefore, we conclude that the growth
signal for hepatocytes is directly proportional to the total liver cell population
and that signal strength is approximately uniform throughout the entire liver. We
choose, as a reasonable approximation of the cellular response to such a signal, a
logistic term to represent hepatocyte proliferation rate.

Like Gourley et al. [10] we employ a standard incidence function to describe
virion infection of healthy cells and explicitly consider a delay between viral infection
and production. These considerations produce the following model:

dx

dt
= rx(t)

(
1− T (t)

K

)
− dx(t)− βv(t)

x(t)
T (t)

, (2.1)
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dp

dt
= −dp(t) + βv(t)

x(t)
T (t)

− βe−dτv(t− τ)
x(t− τ)
T (t− τ)

, (2.2)

dy

dt
= βe−dτv(t− τ)

x(t− τ)
T (t− τ)

− ay(t), (2.3)

dv

dt
= ky(t)− µv(t), (2.4)

where

T (t) = x(t) + y(t) + p(t).

To simplify analysis we define

r̂ = r − d,

K̂ =
K(r − d)

r
,

and rewrite equation (2.1) as

dx

dt
= r̂x(t)

(
1− T (t)

K̂

)
− βv(t)

x(t)
T (t)

. (2.5)

The number of healthy hepatocytes is x(t), p(t) is the number of healthy cells
that have been infected but are not yet producing virions (latent infection), y(t) is
the number of infected cells actively producing virions (productively infected cells),
and v(t) is the number of free virions.

2.1. Healthy hepatocytes. Equation (2.1) describes the behavior of healthy hep-
atocytes, which proliferate according to a signal that takes on a logistic form, with
maximum per-capita proliferation rate r, and homeostatic liver size K. We assume
that hepatocytes die at constant per-capita rate d. They are infected by free virions
at maximum rate β, according to a standard incidence function. In equation (2.5), r̂

equates to an ecologist’s maximum intrinsic rate of increase, and K̂ is the observed
equilibrium mass of a healthy liver.

2.2. Latently infected hepatocytes. Equation (2.2) describes the behavior of
hepatocytes that have been infected, but are not yet actively producing virions. We
assume that all infected cells initially enter a period of latent infection that lasts
exactly τ days. Like healthy hepatocytes, latently infected cells die at background
rate d. This assumption is based on an implicit assumption that latently infected
cells are not targeted by the immune response. After τ days, latently infected cells
become productively infected. Therefore, all cells infected t− τ days ago, where t is
the current time, will either transition to the productive class (proportion 1−e−dτ )
or die in the meantime (proportion e−dτ ). Thus, the delay term can be constructed
directly from the underlying biology, although it is also possible to derive this term
more rigorously using an age-structured approach, as in [10].



THE DYNAMICS OF A DELAY MODEL OF HBV INFECTION 287

2.3. Productively infected hepatocytes. Equation (2.3) describes the behav-
iors of hepatocytes that are actively producing virions. The transition from the
latent to productive infection has already been described. Productively infected
hepatocytes die at rate a, where typically a ≥ d since, in addition to background
mortality, productive cells are visible to the immune system. Indeed, both inflam-
matory and cytotoxic immunity appear to play definitive roles in HBV pathogenesis
[12, 16]. Since we are considering only the case in which the immune response is
sub-optimal, leading to chronic infection, we posit no immune-induced mortality
beyond a constant rate of attrition.

2.4. Free virions. Equation (2.4) expresses the dynamics of free virions. They
are produced at rate k per productively infected hepatocyte per unit time, and
disintegrate or are cleared by immune attack at rate µ.

A straightforward calculation gives the following expression for the basic repro-
ductive number in model (2.1) – (2.4):

R0 =
βke−dτ

aµ
.

3. Model properties. In this section we establish the positivity of model (2.1) –
(2.4), and we describe the model equilibria and their local stability properties. We
end the section with a computational exploration of the model’s behavior.

3.1. Initial data. As in [10], initial data for the system has the form

x(s) = x0(s) ≥ 0, y(s) = y0(s) ≥ 0, v(s) = v0(s) ≥ 0, p(s) = p0(s) ≥ 0, (3.1)
K ≥ T (s) = x(s) + p(s) + y(s) > 0, y(0) > 0, s ∈ [−τ, 0]. (3.2)

and

p0(0) = β

∫ 0

−τ

edsv0(s)x0(s)
x0(s) + y0(s) + p0(s)

ds.

The form for p0 follows from the implicit solution for p(t)

p(t) = β

∫ t

t−τ

e−d(t−s)v(s)x(s)
x(s) + y(s) + p(s)

ds. (3.3)

The case of T (0) = 0 represents the case of total loss of liver function which is
mathematically trivial and of no practical interest.

3.2. Positivity. We show below that the solution of system (2.1) – (2.4), subject
to (3.1), remains bounded (and hence exists for all time) and is nonnegative for all
t > 0.

Proposition 1. Each component of the solution of system (2.1) – (2.4), subject to
(3.1), remains bounded and nonnegative for all t > 0.

Proof. Notice that system (2.1) – (2.4) is locally Lipschitzian at t = 0. Hence the
solution of system (2.1) – (2.4), subject to (3.1), exists and is unique on [0, b) for
some b > 0. Observe that if x(0) = 0, then x(t) ≡ 0 for all t > 0. Hence we assume
below that x(0) > 0. Notice also that if v(0)=0, then v′(0) = ky(0) > 0, which
implies that for small t > 0, we have v(t) > 0. Hence we may simply assume below
that v(0) > 0.
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Assume first that there is a b > t1 > 0 such that x(t1) = 0 and x(t) > 0, p(t) >
0, y(t) > 0, v(t) > 0 for t ∈ (0, t1). Observe that

dT

dt
= rx(t)

(
1− T (t)

K

)
− dx(t)− dp(t)− ay(t).

It is easy to show that 0 < T (t) ≤ K for t ∈ [0, t1]. In fact, we can see that
dT
dt ≥ −(d + a)T (t) for t ∈ [0, t1], which yields

T (t) ≥ T (0)e−(d+a)t1 .

Clearly y(t) ≤ K for t ∈ [0, t1], which implies that v(t) ≤ V ≡ max{v(0), kK/µ}
for t ∈ [0, t1]. These observations imply that for t ∈ [0, t1], we have

dx(t)
dt

≥ −(d + βV e(d+a)t1/T (0))x(t).

Hence
x(t1) ≥ x(0)e−(d+βV e(d+a)t1/T (0))t1 > 0,

a contradiction.
Assume now that there is a b > t1 > 0 such that p(t1) = 0 and x(t) > 0, p(t) >

0, y(t) > 0, v(t) > 0 for t ∈ (0, t1). Since p(t) = β
∫ t

t−τ

e−d(t−s)v(s)x(s)
x(s) + y(s) + p(s)

ds, we

have

p(t1) = β

∫ t1

t1−τ

e−d(t−s)v(s)x(s)
x(s) + y(s) + p(s)

ds > 0,

a contradiction.
Assume now that there is a b > t1 > 0 such that y(t1) = 0 and x(t) > 0, p(t) >

0, y(t) > 0, v(t) > 0 for t ∈ (0, t1). Equation (2.3) implies that y′(t) ≥ −ay(t) for
t ∈ [0, t1] which yields y(t1) > y(0)e−at1 > 0, also a contradiction.

Finally, we assume that here is a b > t1 > 0 such that v(t1) = 0 and x(t) >
0, p(t) > 0, y(t) > 0, v(t) > 0 for t ∈ (0, t1). Clearly, this case is similar to the case
of y(t1) = 0 and a contradiction can be obtained.

The above contradictions together show that components of the solution of sys-
tem (2.1) – (2.4), subject to (3.1), are nonnegative for all t ∈ [0, b). This together
with the uniform boundedness of T (t) and v(t) on [0, b) imply that b = ∞. This
completes the proof of the proposition.

3.3. Steady states. There exist three steady states: E0 = (0, 0, 0, 0),
Ef = (K̂, 0, 0, 0), and E∗ = (x∗, p∗, y∗, v∗). E0 is biologically meaningless except,
perhaps, in the context of a developing liver, and Ef represents a healthy, mature
liver. E∗ is a state of persistent, chronic HBV infection. Explicitly, E∗ requires

x∗ =
K̂aM

r̂βke−dτN
,

p∗ = −K̂aM(−aµ + kβe−dτ + aµe−dτ − kβe−2dτ )
r̂βkµe−dτN2

,

y∗ =
K̂d(aµ− kβe−dτ )M

r̂βkµN2
,

v∗ =
MK̂d(aµ− kβe−dτ )

r̂βµ2N2
,
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where

M = (−daµ− aµr̂ + e−dτ (−dµr̂ + dβk + aµr̂)),

N = (−a− de−dτ + ae−dτ ).

3.4. Stability. Here we focus on the stability of the biologically relevant equilibria
and their bifurcation behavior. In particular, we show that the disease-free state,
Ef , is asymptotically stable when R0 < 1, as required by biological intuition. The
equilibrium representing chronic infection, E∗, is treated computationally. This
analysis leads to the most important biological result of the research, viz. that E∗

undergoes a clinically relevant bifurcation. That is, for clinically relevant parameter
values this fixed point experiences a stability switch as certain parameters change.
This bifurcation should be clinically evident in certain cases as the sudden onset of
oscillations in viral load and liver damage.

3.4.1. Mathematical results. The local asymptotic stability of a steady state can
usually be determined from the roots of the characteristic equation, det(P +Qe−λτ−
λI). However, due to the form of the standard incidence function, we cannot deter-
mine the local stability of E0 with the linearized equations. We do determine that
Ef is locally asymptotically stable when R0 < 1 and unstable when R0 > 1. For
our model

P =



r̂ −
2r̂x

K̂
−

βv(y + p)

(x + y + p)2
βvx

(x + y + p)2
βvx

(x + y + p)2
−

βx(x + y + p)

(x + y + p)2

βv(y + p)

(x + y + p)2
−d−

βvx

(x + y + p)2
−

βvx

(x + y + p)2
βx(x + y + p)

(x + y + p)2

0 0 −a 0

0 0 k −µ


,

and

Q =



0 0 0 0

−βe−dτv(y + p)

(x + y + p)2
βe−dτvx

(x + y + p)2
βe−dτvx

(x + y + p)2
−βe−dτx(x + y + p)

(x + y + p)2

βe−dτv(y + p)

(x + y + p)2
− βe−dτvx

(x + y + p)2
− βe−dτvx

(x + y + p)2
βe−dτx(x + y + p)

(x + y + p)2

0 0 0 0


.

At Ef , the characteristic equation is

(r̂ + λ)(d + λ)(λ2 + (a + µ)λ + (aµ− kβe−(d+λ)τ )) = 0, (3.4)

where the roots are λ1 = −r̂, λ2 = −d, and λ3,4 are given by the solution of

λ2 + (a + µ)λ + (aµ− kβe−(d+λ)τ ) = 0. (3.5)

Observe that λ = 0 when aµ− kβe−dτ = 0. Rewriting this as

kβe−dτ

aµ
= 1 = R0

confirms our calculation of R0.
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Proposition 2. When R0 < 1, the virus-free equilibrium, Ef , is locally asymptot-
ically stable.

Proof. We apply the results of Beretta and Kuang [2]. Let (3.5) be written as

D(λ, τ) := λ2 + a(τ)λ + b(τ)λe−λτ + c(τ) + d(τ)e−λτ , (3.6)
where a(τ) = a + µ, b(τ) = 0, c(τ) = aµ, and d(τ) = −kβe−dτ .

Since c(τ) + d(τ) 6= 0 and for any τ , b(τ) and d(τ) are not simultaneously zero,
we can use the results presented in Section 4 of [2]:

∆ = (2aµ− (a + µ)2)2 − 4(a2µ2 − k2β2e−2dτ )2, (3.7)

and

ω2
+ =

1
2
((2aµ− (a + µ)2) +

√
∆), ω2

− =
1
2
((2aµ− (a + µ)2)−

√
∆). (3.8)

Since ∆ < 0, ω2
± do not exist. By Theorem 1.4 in [17], there is no stability

switch when R0 < 1. For τ = 0, the characteristic equation becomes λ2 + (a +
µ)λ + (aµ − kβ) = 0. Since aµ > kβ when R0 < 1, the virus-free equilibrium is
locally asymptotically stable. Since it can’t switch stability, the equilibrium must
be locally asymptotically stable for any τ , provided R0 < 1.

Proposition 3. When R0 < 1, the virus-free equilibrium, Ef , is globally asymp-
totically stable, provided the initial data satisfies (3.1).

Proof. We have that y and v satisfy the differential inequality
dy

dt
≤ βe−dτv(t− τ)− ay(t),

dv

dt
≤ ky(t)− µv(t).

Therefore, we can apply Theorem 3.2 of [10] and conclude that (y(t), v(t)) → 0 as
t →∞ when R0 < 1. It is clear from equations (1.1) and (1.2) that if (y(t), v(t)) → 0
then x(t) → K̂ and p(t) → 0. Thus, Ef is globally attractive.

Proposition 4. When R0 > 1 the virus-free equilibrium, Ef , is unstable.

Proof. When R0 > 1, ∆ > 0, ω2
+ exists and ω2

− does not. Since that signifies a
switch in stability, Ef must become unstable.

3.4.2. Computational results. Numerical solutions show that the stability of the
equilibrium representing chronic infection is determined by r and the parameters a,
β, d, k, µ, and τ , which collectively determine R0. The only parameter that does
not have an effect is K, the homeostatic set point for liver size. In other words,
the liver’s ability to recover from damage, along with the virulence of the virus,
determine the final disease state—a reasonable conclusion on biological grounds.
When the chronic disease steady state becomes unstable, we observe the formation
of a stable, periodic orbit, provided R0 > 1. Figure 1 shows bifurcation diagrams
using r, k, β, and a as bifurcation parameters. The observed bifurcations occur
for reasonable values of all parameters (see below). Shown is the stability of the
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(a) r (b) β

(c) k (d) a

Figure 1. Bifurcation diagrams for r, k, β, and a. Fixed parame-
ters are d = 0.0039, µ = 0.693, τ = 1, and K = 2×1011. The other
parameters used are (a) a = 0.0693, β = 0.0014, and k = 200,
(b) r = 0.7, a = 0.0693 , and k = 300, (c) r = 1.0, a = 0.0693,
β = 0.0012, (d) r = 0.675, β = 0.0014, and k = 200.

chronic disease steady state and the minimum and maximum values observed for
the periodic orbit.

Bifurcations are observed for realistic values of r, k, and β over a fairly broad
range of other parameter values. However, varying a leads to a bifurcation over
a narrower range of other parameters. That is, in order for the death rate of
productively infected cells, a, to alter the stability of the chronic disease state, the
system must already be “close” to the bifurcation point. This suggests that as long
as hepatocytes retain good regenerative capacity, the liver can survive even when
the immune response is very weak. It is also likely that the value of a is more
important in more virulent infections. Increasing d greatly, indicating a very high
rate of natural (i.e., nonpathogenic) hepatic apoptosis or necrosis, can also induce
a switch in stability. The switch to a periodic orbit, for every parameter but τ ,
occurs as the parameters change to represent a more virulent infection or a weaker
liver.

Stability is least sensitive to τ ; that is, reasonable values for τ influence stability
only when the chronic steady state is already very close to unstable. However, τ
has a unique effect on the bifurcation picture. The chronic steady state switches
from stable to unstable, and a periodic orbit arises, as τ increases. But, increasing τ
further causes the steady state to regain stability. This unusual bifurcation picture
is shown in Figure 2.
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Figure 2. Bifurcation diagram for τ . Note that the chronic steady
state is very “close” to unstable, as determined by the other pa-
rameter values, which are fixed at r = 0.55, d = 0.0039, µ = 0.693,
τ = 1, K = 2× 1011, a = 0.0693, β = 0.0014, and k = 200.

3.5. Parametrization. A baseline range of values for all parameters can be de-
termined from empirical data already in the literature (Table 1). In this model we
assume r ≤ 1.0 day−1. This value is consistent with the results of Ciupe et al. [6]
and the observation that hepatocyte proliferation can be blocked in cases of severe
liver damage [26]. This choice is also supported by experimental liver resection in
rats, in which rat livers recover to normal mass within 5–7 days after 2/3 partial
hepatectomy. In humans, recovery from similar trauma occurs in 8–15 days [26].

MacDonald [24] measured normal hepatocyte life-span to be between 200 and
400 days, whereas more recent estimates place it between 150 and 450 days [4].
Therefore, we assume the half-life of healthy hepatocytes is 180 days (6 months),
giving d = .0039 day−1. The latency period of infection is reported to be between 1
and 2 days [28], and was assumed by Walley et al. to be 1 day [32]. We use the same
value. The life-span of infected hepatocytes in chronic HBV infection is reported to
range between 10 and 100 days in [30], giving a between .0693 and .00693 day−1.

The adult liver contains approximately 2× 1011 hepatocytes [30]. Therefore we
take K = 2× 1011 cells since, given the tiny value of d, K ≈ K̂.

A half-life of 1 day for free virus has been widely used in other models [29, 30].
In [32], the mean half-life of free virions was estimated to be (1.2± 0.6) days with
a median of 1.1 days. However, the authors considered this to be an overestimate,
and in [28], it was estimated that the half-life of free virus is only 4 hours. The
maximum rate of daily virion production during acute HBV infection was measured
to be between 200 and 1000 virions per infected cell [32].

Walley et al. [32] estimate the value of R0 for several HBV patients in the acute
phase of infection under the assumption of a 1 day half-life for free virions and a 1
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Table 1. Parameters, their symbols and default values used in
model (2.1) – (2.4).

Param. Meaning Value Reference

a Infected hepatocyte death rate .0693–.00693 day−1 [30]
β Rate of virion infection of 3.6× 10−5–1.8× 10−3

hepatocytes cells virion−1 day−1 [32]
d Normal death rate for hepatocytes .0039 day−1 [24, 4]
k Virion production per infected cell 200–1000 virions cell−1

day−1 [32]
K Hepatocyte carrying capacity 2× 1011 cells [30]
r Maximum hepatocyte growth rate ≤ 1.0 day−1 [26, 6]
τ Latency period of infection 1 day [28, 32]
µ Free virion half life .693 day−1 [32]

day latency period. Using these estimates of R0 and the parameter values in Table
1, we can derive an estimate for the value of β. From a mean value obtained for
3 patients, Whalley et al. estimated R0 = 5, with the maximum R0 = 7.5, which
they considered to be the most accurate. Therefore, assuming R0 = 7.5, µ = .693,
d = .0039, τ = 1, a ∈ [.0693, .00693], and k ∈ [200, 1000], we arrive at β between
3.6× 10−5 and 1.8× 10−3 cells virion−1 day−1.

4. Computational exploration of lamivudine chemotherapy. Figure 3 shows
the evolution of two infectious episodes from initial exposure to chronic HBV in-
fection. In the first, r = 1.0. A disease latency period of about 50 days is followed
by an acute infection phase, itself leading to damped oscillations converging to a
chronic steady state. In the second, r = 0.7, and the solution converges to a pe-
riodic orbit representing chronically repeating episodes of liver damage associated
with oscillations in viral load.

We present a brief validation of the model by comparing the results of lamivudine
treatment in a clinical study to model predictions. Lamivudine is a nucleoside
analogue that interferes with viral replication within infected cells [8]. Typically,
an oral dose of 100 mg is administered daily over the course of treatment and
generally results in a reduction in viral load of 3 to 4 orders of magnitude. However,
lamivudine therapy often fails because the virus develops resistance to the drug [8].

Lau et al. [20] present data from a clinical study of patients suffering chronic
HBV infection but undergoing a course of lamivudine treatment, and Min et al.
[27] fit a basic virus infection model to this data. In Lau’s study, treatment lasted
48 weeks, and the patients were monitored for an additional 24. Viral loads were
reduced by 4 to 5 orders of magnitude during the course of treatment, but quickly
rebounded following cessation of therapy. As lamivudine interferes only with viral
replication within the cell it is not expected to affect viral infection of healthy cells.
Therefore, within our model, we assume that lamivudine treatment only reduces
virion production by infected cells. The modified model follows:
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(a) r = 1.0 (b) r = 1.0

(c) r = 0.7 (d) r = 0.7

Figure 3. Simulations of two new infections leading to chronic
HBV under different values of r. Other parameter values are r = 1,
a = .0693, β = .0018, d = .0039, k = 200, µ = .693, τ = 1, and
K = 2× 1011.

dx

dt
= rx(t)

(
1− T (t)

K

)
− dx(t)− βv(t)

x(t)
T (t)

, (4.1)

dp

dt
= −dp(t) + βv(t)

x(t)
T (t)

− βe−dτv(t− τ)
x(t− τ)
T (t− τ)

, (4.2)

dy

dt
= βe−dτv(t− τ)

x(t− τ)
T (t− τ)

− ay(t), (4.3)

dv

dt
= k(1− γ)y(t)− µv(t), (4.4)

where γ represents the effect of treatment.
Since patients had chronic hepatitis B, we assume that they were at the chronic

disease steady state, E∗, before the initiation of treatment. For at least one set
of parameter values within the ranges presented in Table 1, namely γ = .9999,
a = .011, d = .0039, β = 4.8 × 10−5, k = 200, K = 2 × 1011, r = 1, τ = 1, and
µ = .693, we find excellent qualitative agreement between the model and actual
data (Figure 4).

5. Discussion. The choice of logistic growth for healthy hepatocyte proliferation
is somewhat arbitrary, but its qualitative form fits well with biologically realistic
liver growth. To place this formal choice on more solid biological grounds, we
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Figure 4. Comparison of model results to clinical results for a
course of lamivudine therapy.

Figure 5. An example of a switch in stability resulting from a
stepwise reduction in r over the course of 5,000 days (13.7 years).

posit that it represents a growth signal uniformly distributed throughout the liver,
that is somehow inversely proportional to liver mass. The concentration of this
signal and the cells’ limited ability to respond to it—proliferation rates have upper
limits set by cell biochemistry—justify, at least heuristically, the choice of a logistic
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term. Note that this term explicitly excludes normal hepatocyte mortality, although
from a mathematical point of view that detail is irrelevant (compare equation (2.1)
with (2.5)). While models using a constant infusion can fit the hepatocyte growth
parameter to data, it has little real biological meaning and therefore becomes much
more difficult to interpret and validate clinically.

As argued by Gourley et al. [10], the use of mass action for viral infection requires
a parameter, namely β in model (1.1), that has a troublesome biological interpreta-
tion and also causes the basic reproductive number to depend on healthy liver size
[10]. Using a standard incidence function to represent infection dynamics eliminates
this artifact and gives the infection β a clearer biological meaning, allowing a direct
estimate of its value from existing literature, as we have done here.

Introduction of logistic proliferation increases the richness of the resulting dy-
namics. In addition to the two well known asymptotic behaviors—convergence to
a virus-free equilibrium or an equilibrium representing chronic infection—we now
have the possibility of convergence to a periodic orbit. Sustained oscillations are a
dynamical possibility that has not been admitted by previous models. As in previ-
ous models, the virus free equilibrium in our model, Ef , is both locally and globally
asymptotically stable when R0 < 1 and unstable when R0 > 1. Clinically, then,
our model predicts that infection will flair whenever

aµ < βke−dτ . (5.1)

In this model, if relation (5.1) holds then the disease becomes chronic. Depending
upon r and R0, that chronic infection may be either a steady state or oscillatory.
Either asymptotic possibility can occur for biologically realistic parameter values.
In the parameter region in which E∗ is stable, the model predicts chronic disease
with a constant viral load. However, when R0 > 1 and E∗ is unstable, oscillations in
the hepatocyte population would arise, which would manifest clinically as repeated
rounds of acute liver damage followed by periods of recovery. In fact, the model
predicts that most rounds of liver damage would be profound enough to be diag-
nosed as acute liver failure (ALF). Clinically, ALF often occurs with little warning,
and previously healthy individuals can approach death in a manner of days. ALF is
characterized by wide-spread hepatocyte necrosis followed by massive immune acti-
vation and viral clearance [22]. Following ALF, the liver can spontaneously recover
[22, 31]. The periodic behavior in our model largely mimics these cycles of massive
liver failure, viral clearance, and spontaneous recovery.

Since both steady state and oscillatory asymptotic behavior occur in realistic
regions of parameter space, it appears possible that a steady state chronic infection
can suddenly change to oscillations if parameters wander across the stability switch
boundary. If this occurs, the bifurcation diagrams suggest that oscillations could
rapidly evolve into increasingly wild swings between ALF and recovery as param-
eters continued to wander. Possible mechanisms leading to this sudden onset of
oscillations include gradual degradation in the regenerative capabilities of hepato-
cytes (decrease in r), an increase in necrosis or apoptosis of healthy hepatocytes
caused by mechanisms besides the virus (increase in d), a weakening of immune re-
sponse (decrease in a), and an increase in virus virulence (increase of β or k). The
first of these possibilities, reduction in the regenerative capabilities of hepatocytes,
has in fact been suggested as a mechanism for the onset of acute liver failure in HBV
patients. It is well established that severe liver damage impairs hepatocyte regen-
eration [31]. Also, HBV can inhibit hepatocyte regeneration directly [35]. However,
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high levels of proliferative activity have been observed in hepatocytes in fulminant
hepatitis [33, 11], suggesting that liver failure is more likely driven by hepatocyte
necrosis. Changes in blood flow due to an inflammatory immune response may also
cause apoptosis and ischemic damage [23] that is only indirectly associated with the
virus.

In all, then, a number of mechanisms exist that could cause a change in asymp-
totic behavior in chronic HBV. In all cases, changes tending to promote oscillations
are associated with late-stage hepatitis B. Therefore, we predict that the sudden
onset of oscillations in liver damage and viral load may herald the rapid deteriora-
tion and ALF of patients who die from liver damage directly induced by HBV or
the cytotoxic immune response against it. Figure 5 shows an example of such dete-
rioration that can occur from stepwise decay of the basic hepatocyte proliferation
rate, r, over the course of a 5,000-day simulation.

In addition to this steady physiological decay, an increase in HBV virulence driven
by selective forces could also cause a switch in stability, leading to the oscillatory
behavior and rapid deterioration in health just described, or vice versa. A future
line of investigation may examine the effect of two competing viral strains to see
if natural selection can induce a stability switch. It could then be determined if,
and under what circumstances, the immune response can spontaneously change the
dynamics back to a more stable state through its own alterations of the selective
pressures.

Increasing the latency period from the time of hepatocyte infection to active
virion production always increases R0, implying a less virulent infection. Based on
a similar result for an HIV model, increasing this delay has been proposed as a
novel therapeutic target [36]. However, we have found that modifying the delay, τ ,
does not have such a straightforward effect and that modest increases in the delay
can push the dynamics from a chronic equilibrium into more dangerous oscillations;
further increases in the delay cause the dynamics to switch back to a less dangerous
equilibrium (see Figure 2). Thus, τ influences the dynamics through more than a
linear impact on R0, and any novel therapy would have to take this into account. We
note, however, that changing τ only has a significant effect on the dynamics when
the other parameters are such that the system is already “close” to the bifurcation
point. Therefore, we expect that the proposed novel therapies would only have a
meaningful effect in later stage diseases.

Two aspects of hepatocyte proliferation and liver recovery from damage from
HBV infection could be examined using extensions of the model studied here. Fol-
lowing trauma, liver regeneration tends to overshoot the normal mass. Homeostatic
liver size is recovered then by a small wave of hepatocyte apoptosis [26]. This ob-
servation implies a possible delay in the growth signal, which could be modeled by
delayed logistic growth, leading to a two delay model.

It is also well known that per-capita hepatocyte proliferation rate is a function of
the amount of trauma the liver suffers. Above 2/3 HPx, more trauma yields lower
per-capita proliferation rates. In fact, above 90% PHx, hepatocyte proliferation
ceases as metabolic demands on surviving hepatocytes become too great [31, 11].
On the other hand, per-capita proliferation also declines for resection masses below
2/3 PHx [31]. So, maximum per-capita hepatocyte recovery occurs when the sur-
viving liver is 1/3 its normal mass. Our model could be improved by altering the
proliferation function to accommodate this more complex growth response.
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We have modeled the latency period from infection to virion production with
a single discrete delay. In reality, any such delay will vary between individual
cells, yielding a distributed delay; the discrete delay we have chosen should be
understood as the mean of the actual distribution. Confirming that the behavior
and predictions of our model are robust with respect to distributed delays could be
done using techniques similar to those in [5].

The standard incidence infection term with logistic hepatocyte growth can po-
tentially generate rich dynamics, rivaling those of ratio-dependent predator-prey
models [13, 18] or simple epidemic models [3, 14, 15]; we will explore this poten-
tial in the near future. These characteristics, together with the time delay, present
many challenging mathematical questions on the global dynamics of model (2.1) –
(2.4) with complexity surpassing that of [9].

One major weakness of our model lies in how the immune system is handled.
In particular, we ignore the adaptive nature of the immune response. Both the
cytotoxic response, represented in part by a, and the humoral, represented by µ,
are linear in y and v, respectively. A more realistic form would allow both cytotoxic
attack of infected cells and humoral clearance of free virus to increase nonlinearly
with the number of productively infected cells and free virions, respectively. In fact,
our simplification of the immune response is probably the primary reason why our
model fails to replicate the most common clinical course seen in HBV patients—
namely acute, self-limiting disease. Therefore, the next generation model should
include a more realistic model of adaptive immunity.
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