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Abstract. Using daily counts of newly infected individuals, Wallinga and
Teunis (WT) introduced a conceptually simple method to estimate the number
of secondary cases per primary case (Rt) for a given day. The method requires
an estimate of the generation interval probability density function (pdf), which
specifies the probabilities for the times between symptom onset in a primary
case and symptom onset in a corresponding secondary case. Other methods

to estimate Rt are based on explicit models such as the SIR model; therefore,
one might expect the WT method to be more robust to departures from SIR-
type behavior. This paper uses simulated data to compare the quality of daily
Rt estimates based on a SIR model to those using the WT method for both
structured (classical SIR assumptions are violated) and nonstructured (classical
SIR assumptions hold) populations. By using detailed simulations that record
the infection day of each new infection and the donor-recipient identities, the
true Rt and the generation interval pdf is known with negligible error. We find
that the generation interval pdf is time dependent in all cases, which agrees with
recent results reported elsewhere. We also find that the WT method performs
essentially the same in the structured populations (except for a spatial network)
as it does in the nonstructured population. And, the WT method does as
well or better than a SIR-model based method in three of the four structured
populations. Therefore, even if the contact patterns are heterogeneous as in
the structured populations evaluated here, the WT method provides reasonable
estimates of Rt, as does the SIR method.

1. Introduction. A common assumption when modeling the transmission dynam-
ics of infectious diseases is that the population is composed of a homogeneous group
that mixes uniformly at random (homogeneous mixing in an unstructured popula-
tion). That is, each infectious individual (regardless of age, geographic location,
etc.) has the same probability of coming in contact with any susceptible individual
in the population. A model that is closer to reality incorporates the fact that the
population is probably structured, having many types of heterogeneities at the host
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level such as differences in contact rates, susceptibility, and transmissibility (see
e.g., [31, 1, 4, 38, 16, 5, 32, 21, 24]).

A key quantity in epidemiology is the basic reproduction number (R0) defined
as the number of secondary cases generated by an infectious case in an entirely
susceptible population [1, 14, 4]. In traditional large-population approximations,
if R0 > 1, an epidemic can occur whereas if R0 < 1 an epidemic cannot sustain
itself. Later in the epidemic, as the number of susceptibles decreases, the number
of secondary cases per primary case (Rt) is a useful measure of epidemic strength
and will be smaller than R0 for a given day t.

An estimate of R0 is useful because it can predict the final epidemic size in the ab-
sence of interventions and can therefore be used to assess the impact of interventions.
In an unstructured, homogeneous population, an expression for the expected final
epidemic size of the simple susceptible-infected-recovered (SIR) epidemic model,
the non-linear dynamics of which are described by depletion of susceptible indi-
viduals, was first derived by Kermack and Mckendrick (1927) [22], expressed as
Z = 1 − exp−R0Z , where Z is the cumulative fraction of infecteds (“final size”).
This final size formula for Z is robust with respect to a number of changes in the
epidemic process including having arbitrarily distributed latency periods, having
a distribution of different infectious stages, and heterogeneity in the transmission
rate (including superspreading events). In situations having adequate robustness
of the final size formula, one approach to estimate the effectiveness of interventions
is to compare the final size estimate Ẑ obtained from the final size formula using

the estimate R̂0 to the observed final size of the epidemic. However, the final size
is not robust to most contact heterogeneity, except for a special class of spatial
contact structures that assumes the transmission rate is the same within all groups
[28, 29, 30]. In situations where the final size formula is not a good approximation,
other methods are required to assess the impact of interventions.

A real-time estimate of Rt is also useful in order to assess the impact of inter-
ventions. This paper focuses on two estimation schemes to estimate the effective
reproduction number Rt at each time step t, and assumes that the number of new
infections is recorded each day. Both estimation schemes are applied to four popu-
lation structures (one unstructured and three structured).

Significant reductions in Rt can result from the implementation of public health
interventions that can reduce the transmission rate over time. Public health mea-
sures include quarantine of suspected cases, isolation of infectious individuals, pre-
and post-outbreak vaccination, prophylaxis with antivirals, and for animal infec-
tious diseases such as foot-and-mouth disease, culling of premises is the control
policy of many countries. The goal of public health interventions is to promptly
reduce Rt to a value less than one. Estimation of Rt at the beginning of an epidemic
is essential to implement interventions with the required intensity for epidemic con-
trol. Either too strong or too mild interventions can have negative consequences.
Obtaining reliable estimates of Rt as soon as possible is of high priority for public
health management, especially when dealing with emerging infectious pathogens.

Following sections include additional background, a description of the two schemes
to estimate Rt, a description of the structured and unstructured populations that
were simulated, estimation results, and conclusions. Qualitatively the two main
conclusions are: (1) the estimation scheme from [41] (Wallinga and Teunis, WT)
is surprisingly effective (robust) in most of the structured populations, and (2) the
generation interval (GI) required in the WT scheme is not constant over time, but
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the impact on the WT scheme appears minimal, except for one of the structured
populations evaluated.

2. Background. Despite its unrealistic assumptions, the classical SIR (susceptible-
infectious-removed) type models have a long history of providing useful insights into
the dynamics of infectious diseases [22, 1, 4]. Simple models are usually tractable
for parameterization and estimation from epidemic data that usually includes time
series of cases or deaths. On the other hand, complex models that account for host
heterogeneities are typically difficult to calibrate due to lack of appropriate data or
become technically intractable for parameter estimation from epidemic data.

The classical SIR model was introduced by Kermack and McKendrick [22] in
1927. This simple epidemic model has provided an established basis to model the
transmission dynamics of infectious diseases. The SIR model classifies individuals as
susceptible (S), infectious (I), and recovered (R). From the homogeneous mixing
assumption, it follows that the force of infection is given by βI(t)/N where the
transmission rate β is given by the product of the contact rate (c) and the probability
of transmission per contact (p). The fraction I(t)/N is the probability that a
random contact would be with an infectious individual. This model also assumes
no deaths or migration and hence the population size N is constant throughout the
epidemic. This model also assumes that the disease latency period is short (and
hence negligible), and that the time-scale of the epidemic is much faster than those
of demographic processes (natural birth and death). Finally, recovered individuals
from infection R(t) are assumed to acquire immunity to the disease for at least the
duration of the outbreak. This SIR transmission process (single outbreak) can then
be modeled using the following system of nonlinear differential equations:







Ṡ(t) = −βS(t)I(t)/N

İ(t) = βS(t)I(t)/N − γI(t)

Ṙ(t) = γI(t)

(1)

where the dot denotes the time derivatives.
Assuming daily counts of newly infected individuals, Wallinga and Teunis (2004)

[41] introduced the conceptually simple WT method to estimate the number of
secondary cases per primary case for a given day. The method requires an estimate
of the GI probability density function (pdf).

Other methods to estimate Rt are based on explicit models such as the susceptible-
infected-recovered (SIR) model; therefore, one might expect the WT method to be
more robust to departures from SIR-type behavior. Although some tests of the
quality of the WT method were performed using simulated data, the simulations
were limited to simple cases in which implicit modeling assumptions were nearly
met or were met exactly. For example, Wallinga and Teunis (2004) [41] perform
limited tests of the estimation procedure in simulated data using Rt = 3 for t prior
to a specified date and Rt = 0.7 after that date. Effects of nonreporting and of
a one-time change in the pdf of the GI were evaluated. However, the number of
secondary infections was simply drawn from a negative binomial distribution with
mean Rt and a variance determined by evaluation of data from a real SARS out-
break in Singapore. Therefore, model departures such as nonhomogeneous mixing
of the population were not considered.

It is important to note that there is some inconsistency in the literature in the
definition of GI and related concepts such as the serial interval [15, 40]. The GI
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is defined as the time between the infection of a primary case i and one of its
secondary cases j while the serial interval is defined as the time between occurrence
of observable events in the progress of an infectious disease (e.g., the onset of clinical
symptoms) [40]. We use the term “primary” case here to mean any donor case
during the epidemic. Therefore, a primary case could also be among the “index”
cases, which are the initially infected individuals.

Generally, it is important to distinguish among time of infection, time of symp-
tom onset, and time of infectiousness. However, infection and infectiousness are
assumed to occur at the same time in the simple SIR model used here. And, the
time of symptom onset is not a factor because our simulations do not consider
time of symptom onset. This means that the GI as defined here can also be re-
garded as the time between primary and secondary infection. Although it is of
interest to extend this study to include modified SIR-type models such as the SEIR
(susceptible-exposed-infectious-recovered) model, we do not believe it will alter our
basic conclusion that the WT method is fairly robust to structure-type violations
of SIR assumptions.

3. Methods.

3.1. WT method. Wallinga and Teunis (2004) [41] introduced a simple way to
estimate the effective reproduction number, Rt. Let f(i− j) denote the probability
density function (pdf) of the GI (e.g., 1 day, 2 days, ...) between the infection
of a primary case i1 infected on day i and one of its secondary cases i2 infected
on day j. The time of infection, onset of symptoms, and infectiousness are all
assumed to occur at the same time in our SIR model. Then the relative probability
that case i2 initially infected on day j is infected by case i1 is calculated as pij =
f(j − i)/

∑

k≤j f(j − k). The effective reproduction number Rt on day i is then

the average over all individuals who are infected on day i of
∑

j pij . Because all
individuals are probabilistically equal, this average over all individuals infected on
day i is the same as

∑

j pij .

Cauchemez et al. (2006) [8] extended Wallinga and Teunis (2004) [41] to provide
a method to estimate confidence limits when the GI pdf is constant over time and
assumed known. Cauchemez et al. (2006) [9] assumed the GI pdf was a constant-in-
time Weibull density with an unknown shape and scale parameter to be estimated
from the outbreak data. There could be many explanations for why the average
GI could change with time in real populations. Because it is unrealistic to expect
a highly accurate estimate of the GI pdf for each outbreak for various times over
the course of a given outbreak, it is important to study the effects of the time
dependence of the GI pdf on Rt.

3.2. SIR method. Denote the per-day recovery probability p, where p = 1
γ
. It

has been shown that on day i, Ri = β
∑∞

j=0
Si+j

N
(1 − p)j [3, 4], and this result is

the basis for our second method to estimate Rt on day i. The observed S, I, and
R time series can be used as described in [6] to estimate β and γ via least squares

(LS) fitting, and then using R̂t = β̂
∑∞

j=0
Si+j

N
(1 − p̂)j , where p̂ = 1

γ̂
.

Note that in practice, St

N
must be estimated, so performance of this method will

be somewhat worse than illustrated in the Results section, where it is assumed that
St

N
is known exactly.
The LS method applied to the SIR equations obviously assumes a homogeneous

contact structure. The classic SIR model in which depletion of susceptibles fully
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captures the observed dynamics is very unlikely to accurately describe any real
population, or even the idealized structured populations described below. This
makes the SIR method effective as a basis for comparison to the WT method,
which makes weaker assumptions about the contact structure.

4. Epidemics on more realistic population structures. When the population
contact structure is expected to depart from the homogeneous mixing assumption,
networks provide a natural alternative framework, in terms of nodes and relation-
ships between them. In the last few years there has been an increasing amount
of work in the context of epidemic spread in networks (see for example [32, 12]).
The substrate network on which the disease spreads can change depending on the
disease in question.

For the case of influenza and SARS, social networks (e.g., [10, 35]) provide an
appropriate description of the contact network whereas for the case of sexually
transmitted disease, the network where the disease disseminates is quite different
with a few individuals having a remarkably high number of contacts and most
individuals having just a few contacts (the so-called core group [17] or scale-free
structure [25]). Network models can help characterize and understand the underly-
ing complex system of disease transmission. In particular, network properties can
help to distinguish and compare systems. Common network characteristics include
the degree distribution [2], the average distance between nodes (or characteristic
path length [43]), and the clustering coefficient [43].

We simulated several types of population structures using R [37], as described
next. For each structure, transmission rates were either homogeneous (constant for
all individuals) or heterogeneous (vary with individual). Results are reported for
the case of heterogeneous transmission rates for all the non-SIR models, but results
for the homogeneous rates are similar. We chose homogeneous rates for the SIR
model because we wanted perfect agreement with the SIR assumptions in the base
case. The population structures were static (do not change over the course of the
epidemic) and the population size was N = 10, 000.

For this study, we chose parameters that are believed to correspond to various
influenza outbreaks. For influenza, the mean infectious period is 4.1 days [11], and

hence the reproduction number for the SIR model is R0 = β
γ

= .37/(1/4.1)) = 1.5,

which corresponds via the “final size” formula to Z = 0.58 [22].
All simulations are discrete-event simulations, recording the status (S, I, or

R) for each individual at each time step (day). All simulations were carried out
in the R statistical programming language [37] which is freely available, and our
custom R functions are available upon request. The initial number of infecteds
(randomly selected) was chosen to be 15, which was empirically determined to be
large enough that each realization would result in an outbreak (except for the spatial
network, where we found that 25 was large enough for each realization to result in an
outbreak). The index case was set to “0” for the initial group of infected individuals;
the index case for all other individuals who experience infection is some individual
described by an integer in 1, 2, . . . , 10, 000.

A susceptible individual i1 transitioned to infected with probability β × Ii1,t/N ,
at each time step (day), where Ii1,t is the number of infected contacts of individual
i1 on day t. In the network structures described below, each individual has a
unique set of contacts. In the SIR model, Iik,t = It for all individuals ik. In
general, Iik,t characterizes the network structure. Similarly, an infected individual
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transitioned to recovered with probability equal to p = 1/(mean infectious period)
= 1/γ = 1/4.1. Note that this implies that the infected period was sampled from an
geometric distribution (approximately an exponential distribution), and sampling
directly from a geometric distribution is sometimes used to simulate outbreaks. Also
note that the expression for the per-day probability of transitioning from infected
to recovered would need to be modified if γ ≤ 1.

The index case was set to “0” for the initial group of infected individuals; the
index case for all other individuals who experience infection is some individual
described by an integer in 1, 2, . . . , 10, 000.

4.1. Random network. There are many ways to generate a random network. We
generated random numbers of neighbors for each individual, sampling the number of
neighbors of individual i1 from a uniform distribution from 1 to 20 neighbors. This
implies that the average number of neighbors is 10.5. In this context a “neighbor”
of individual i1 can infect individual i1 if that neighbor is itself infected. However,
individual i1 is not necessarily eligible to infect a “neighbor” unless symmetry is
forced. Results reported here are for the asymmetric case which means that if
individual i1 can infect i2 (so i2 is in the neighborhood of i1), it does not follow
that i2 can infect i1, except by the chance assignment of i1 to the neighborhood
of i2. That is, we simply assign a random set of neighbors (potential infectors) to
each individual and do not enforce symmetry in the results reported below.

4.2. Lattice network. A lattice network has been described in, for example [21].
We used a 100-by-100 grid with the individuals at edge nodes having fewer neigh-
bors. In this network, infected individuals can only infect their neighbors. Each
node has a north, south, east, and west neighbor (4 neighbors) except for nodes
along edges, which have 2 or 3 neighbors.

For the lattice network, we also simulated a subcase in which a few individuals
(10 to 20 of 10,000) were long-ranging, as a way to allow a small amount of random
mixing. Burr and Chowell [7] report that small amounts of random mixing makes
some otherwise structured populations behave in some aspects like unstructured
(SIR-type) populations. Although beyond our scope, this is a topic that deserves
further study, perhaps as a special case of current “small world” models.

4.3. Spatial network. To construct this network, N random 2-dimensional loca-
tions are distributed uniformly in a 1-by-1 unit square and then rescaled to mean 0
and variance 1, each representing an individual. Euclidean distance between each
pair of points determined the neighborhood structure (e.g, also known as random
geometric graphs [13]). The neighbors (potential infectors) of individual i1 are any
individual within a specified distance (we used 0.7 for points in the unit square
transformed to mean 0 and variance 1). To limit the neighborhood sizes, we al-
lowed no more than 20 neighbors in any individual’s neighborhood. If more than 20
points fell within 0.7 in distance of an individual,then 20 neighbors were randomly
selected from these points. In cases where random selection of 20 points was done,
all points within 0.7 in distance were equally likely to be selected as a neighbor,
without regard to distance rankings. As with the Random network, symmetry was
not enforced, so in many cases, individual i2 was in the neighborhood of individual
i1 and so could infect i1, but not vice versa. However, there is a tendency toward
symmetry simply because if i2 is among the 20 nearest transformed points to i1
that were less than 0.7 in distance, then i1 tends to also be among the 20 nearest
points to i2.
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For the spatial network, as with the lattice network, we also simulated subcases
in which a few or many individuals mixed randomly with the entire population. Sur-
prisingly, these “spatial plus some random” cases behaved much more like “spatial
only” than like random (SIR) populations.

4.4. Results. All results reported here use a population size of N = 10, 000. To
quantify estimation performance, a simple but effective performance summary is
the mean absolute error (MAE) in the estimation errors et = R̂t − Rt on day t.
Although the root mean squared error is often used in analytical comparisons, the
MAE is less sensitive to outliers so in simulation studies is often preferred. Table 1
lists the MAE for the four population structures. Results for the lattice population
structure are given both with and without long-ranging individuals. Exploratory
data analysis suggest that the estimation errors are symmetric, and approximately
normal in distribution. Therefore, approximate 95% confidence intervals for the
true Rt can be based on using R̂t ± 2 × MAE for each case.

Recall that Rt is defined here as the expected number of secondary cases per
primary, where the expectation is taken over the population of possible outbreak
realizations. We found empirically that using N = 10, 000 gives somewhat erratic
daily estimates of Rt in a given realization. We also found that using N = 10, 000
gives larger estimation errors on average than using larger N , such as N = 50, 000
or N = 100, 000. This is partly because when more individuals are involved, more
quantities are averaged in the estimation procedures at each time step and partly
because the true Rt is relatively poorly estimated by a single realization in a popula-
tion of size N = 10, 000. However, the average MAE results over multiple outbreak
realizations given in Table 1 are reproducible to small relative uncertainties, and
the conclusions are qualitatively the same for N = 10, 000 as for any larger value
of N . Therefore, for practical purposes here, in calculating et = R̂t − Rt and the
associated MAEs, we defined Rt as the average number of cases infected by a case
with symptom onset occurring on day t in a given outbreak realization [9] without
averaging over the population of possible outbreak realizations.

As an aside, we also evaluated MAE results that used a smooth fit to the Rt

values over time to define the “true” Rt. Not surprisingly, these MAEs are smaller
than those reported in Table 1, because errors in the calculated “true” Rt values
are reduced by curve smoothing. However, our main interest is in comparing the
WT method to the SIR method so the WT MAEs relative to the SIR MAEs are
most important here. Therefore, we report in Table 1 the MAE results for only
the unsmoothed Rt values, where Rt is defined as the average number of newly
infected cases arising over days i, i + 1, . . . , per newly infected case on day i in a
given outbreak realization.

We used 100 realizations from a homogeneous (nonstructured) SIR model with
transmission rate homogeneity as a basis for comparison, and 100 realizations from
each of the structured populations described above. In the structured populations,
to model heterogeneous transmission rates, we sampled the transmission rates from
a beta distribution having a specified mean and variance. The variance was set
to 0.01 (so the standard deviation was 0.1); the mean transmission rate was 0.37
for the homogeneous SIR model, and was selected in the other population models
in order to have approximately the same final outbreak size of 60% of the total
population. Again, results are reported for the heterogeneous transmission rates
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having standard deviation of 0.1 for all the non-SIR cases (networks) and of 0 (ho-
mogeneous transmission rates) for the SIR case; however, results for homogeneous
transmission rates in the non-SIR cases are similar.

Figure 1 (top) is an example realization of the number of new infected individ-
uals in a homogeneous unstructured SIR case simulation at each time step (day).

We will denote the daily number of newly infected individuals as Ċt, where Ct is
the cumulative number of individuals who are infected by day i. Because we use
discrete-event simulation with a 1-day time step, Ċ is the first difference in the
cumulative number individuals who are ever infected. The top right, bottom left,
and bottom right plots in Figure 1 are the same as the top left, but for the random,
lattice with long ranging individuals, and spatial networks, respectively.

The plots in Figure 2 are the observed average GI at each day, averaged over 100
realizations, and the theoretical average GI based on the SIR model assumptions
(see below). The top left plot in Figure 2 is for the SIR case and the theoretical
average GI is within the 95% confidence limit of the observed average GI. The top
right, bottom left, and bottom right plots in Figure 2 are the same as the top left,
but for the random, lattice with long ranging individuals, and spatial networks,
respectively. For these three networks, the theoretical average GI is not within the
95% confidence limit of the average observed GI.

As the number of new infecteds increases (up to approximately day 40 in the top
plot), there is a relatively short average GI. Then as the number of new infecteds
decreases (after approximately day 40 in the top left plot), there is a shift toward
a longer GI. This trend is consistent with results in [23], although [23] mostly
evaluated cases having considerably larger values of R0 than the R0 = 1.57 case
considered here. Larger values of R0 will have a larger time-dependence in the GI
pdf.

More quantitatively, the theoretical average GI µi at day i can be computed as
follows. Recall that the discrete-time (one-day time steps) GI is the number of
days elapsed from the infection day of the donor individual to the infection day of
the corresponding infected individual. To compute the GI at day i, we identify all
individuals who are first infected on day i, and all individuals who are infected by
these. This gives one GI per donor-infectee pair that is used to estimate the GI pdf
via repeated simulation.

At each simulated time step (day) new infections (if any) occur first, followed by
recoveries (if any), and new infections on day i + j are not yet eligible to recover
until the next simulated day. Therefore, results in [14] using a renewal equaion with
integral kernel can be modified in the discrete time step case to obtain

µi =
∑

∞

j=0
jSi+j(1−p)j

∑

∞

j=0
Si+j(1−p)j , where p = 1/(mean infectious period) = 1/γ = 1/4.1 in our

case.
This theoretical average GI µi applies for the “forward” definition of the gen-

eration interval [40], which means that an infected individual is identified, and we
trace forward in time to find the day that any new case was infected by this indi-
vidual. Alternatively, we could trace backward in time to identify the day on which
the corresponding primary case of this infected individual became infected [40, 23].
Although the WT method is expressed using the “forward” definition, generally we
found very little difference in MAE results using the forward calculation compared
to results using the backward calculation. All results shown in Table 1 are for the
forward GI definition.
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The change in the average GI over time in our simulated examples occurs because
of the time dependent nature of Ċj , as described above. A simple explanation of

the relation between the average GI and Ċj is that as Ċj increases, there is a higher
probability of a one-day GI, which is the shortest possible GI in our discrete-time
simulations. Therefore, the average GI is a minimum when Ċj is a maximum, as
noted in comparing the top left plots in Figures 1 and 2 for the SIR (unstructured)
population. Some references either explicitly state the assumption that the GI pdf
is constant over time (e.g., [8, 44, 9, 42]), or, for example, Hugh-Jones and Tin-
line (1976) [19] empirically observed time dependence of the average serial interval
(which is the same as the GI in our SIR model) in real cattle populations infected
with foot and mouth disease, and Lipsitch et al. (2003) [26] reports a decrease in
the average GI after controls were implemented in the Singapore SARS outbreak in
humans. We also note that [9] extended WT by developing a method to estimate
unseen new infecteds during the last stages of an outbreak, thus allowing estimation
of Rt in real time, each day in an epidemic.

Kenah et al. (2007) [23] provide recent discussion on the implications of the
time-dependent aspect of the GI pdf (and hence also of the average GI). A method
involving hazard rates rather than pdfs is suggested as a way to improve the WT
method, which is described as “ingenious, but only approximately correct because
the distribution of serial intervals varies systematically over the course of an epi-
demic.” Although numerical results comparing the use of pdfs to hazard rates in the
WT method are not provided, presumably this is future work. Because our main
focus here is in evaluating the impact of ignored population structure, our results
here use pdfs as in the original WT method. We believe that the impact of ignored
population structure will be similar in the modified WT method that uses hazard
rates. This is because the hazard rate approach also ignores population structure,
yet Figure 2 suggests that the time behavior of the average GI and therefore also
the GI pdf is very different for for the nonstructured (SIR) case than for any of the
random, lattice, or spatial networks.

The top plot in Figures 3-6 shows a smooth fit to Rt, and to the WT-based and
SIR-based estimates of Rt. Because the MAE values are erratic and large at the
very beginning and ending of most outbreaks, we averaged the MAEs from day 10 to
day 70 for all outbreaks except the spatial outbreak. For the spatial outbreak, days
10 to days 25 were used to compute the average. All 100 outbreak realizations for
each case resulted in a meaningful R̂t estimate for each day within these restricted
day ranges.

Our main quantitative interests are to: (1) compare the estimates for the SIR
method to the estimates for the WT method; (2) evaluate to what extent any of
the three structured networks have different MAE values than the SIR case, and
(3) check for trend in the estimation errors for the SIR and WT methods. All
MAE values are repeatable to within ±0.01 or less. Therefore, the MAE results
in Table 1 suggest in terms of the MAE, the WT-based method is better than the
SIR-based method for the lattice network, worse than the SIR-based method for
the spatial network, and approximately the same as the SIR-based method for the
unstructured population and for the random network. Using the WT method, the
MAE is substantially higher for the spatial network than for other networks and the
MAE is slightly lower for the lattice network than for the SIR case or the random
network.
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Figure 3 (middle plot) is the average estimation error over all 100 outbreak
realizations from time step 10 to 70 for the WT method; the bottom plot is for the
SIR method. Approximate 95% confidence intervals (CI) for the average estimation
error are shown. These CIs were obtained by bootstrap sampling with replacement
from the 100 outbreak realizations, computing the average estimation error for each
bootstrap sample, and repeating for 1000 bootstrap samples.

Figures 4-6 are the same as Figure 3, but for the random, lattice, and spatial
networks, respectively. Recall from Figure 2 that the average GI is poorly estimated
for the structured networks using the result for µi given above, although each with
a fairly consistent offset from the true average GI. Because the structured networks
have non-SIR contact structure, the SIR-based calculation of µi is evidently flawed
in important ways.

Regarding the spatial network, notice in Figure 6 that Rt is less than one. How-
ever, as we discussed the final outbreak size (the cumulative number of infecteds) is
approximately 60% in all cases considered here. Therefore, the outbreak “took off”
in this spatial network despite having Rt < 1 for each day during the early stages.
This is a surprising finding that we verified in several re-initializations of the spatial
population structure. Conventional wisdom regarding interpretation of Rt suggests
that if Rt < 1 the outbreak will quickly die out. However, provided we used 25
as the initial number of infecteds, this spatial network with the chosen parameters
did have a final size of at least 50% cumulative number of infected in each of 100
realizations. This finding must involve the fact that the network involves unusual
overlapping of partially overlapping cliques (groups) of individuals [18]. It also
raises a question regarding what are the appropriate measures of epidemic strength
in structured networks.

A manuscript under review [34] extends results from network theory to show
how networks having R0 < 1 can “take off” (certainly a final epidemic size of
50% or more is an example of “taking off”) if one or more initial cases are in highly
connected nodes. This deserves additional study that is beyond our scope here. As a
preliminary test of whether adding various amounts of random mixing to the spatial
network would make the WT method performance closer to its performance in the
SIR model, we found that even with a very large portion of random mixing (such
as 50%) included with the spatial network, these “spatial plus some random” cases
behaved much more like “spatial only” than like random (SIR) populations. This
finding also deserves additional study and appears to provide a counter example to
a finding presented in [7] in which small amounts of random mixing did in some
aspects make a spatial network behave like an unstructured population.

We are focusing on simulated outbreaks in structured or unstructured popula-
tions, and the time dependence of the GI pdf implies that the estimation errors
et = R̂t − Rt could have a trend, exhibiting bias in opposite direction in the early
epidemic stage compared to the late epidemic stage. This is because the average GI
is overestimated during the early stages and underestimated during the late stages
if the average GI over the entire outbreak is used throughout the outbreak.

Visually, we found evidence of serial structure in the et values using simple
smooth (using smooth.spline in R) spline fits to the estimation errors, as illus-
trated in Figures 3-6. The trend was modest or small in all cases except for the
spatial network where the trend was strong.

As a simple test for trend in the estimation errors, we applied a t-test to the
100 average differences (over all 100 independent realizations) in the errors between
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the first half and second half. The anticipated tendency for a trend in et values is
apparent in nearly all cases, except the SIR case, with p-values from the t-test all
near 0 in the structured network cases. This strong evidence for trend in et values
is present regardless of whether Rt is smoothed or unsmoothed. All Table 1 results
are for the unsmoothed case.

Generally, except for the spatial network, although the trend in estimation errors
is statistically significant, the magnitude of the trend is not large (column 2 of table
1) and this is modest good news for the WT method in that the change over time of
the generation interval pdf appears mild enough that the procedure still performs
adequately. Of course it would be possible to estimate the GI pdf during each of
several stages (early, middle, late) of a real outbreak as a way to mitigate the impact
on the WT method. The strong trend is obvious in the spatial network in Figures
2 and 6.

For the MAE results in Table 1, the GI pdf is well estimated, because all individ-
uals (among the N = 10, 000 individuals) who infect one or more others contribute
to the estimate. More realistically, far fewer individuals would typically be used to
estimate the GI pdf. To study the effect of, in practice, using only a few individuals
to estimate the GI pdf, we subsampled far fewer individuals. Somewhat surpris-
ingly, using a small sample of either 100 or 10 GIs to estimate the GI pdf, there
was almost no impact on the MAE. For example, in the SIR case, the MAE for the
WT method increased from 0.13 (table 1 entry, using all available observed GIs)
to 0.16 (using 10 observed GIs). This suggests some robustness with respect to the
estimation of the GI’s pdf. We believe this robustness arises primarily because the
WT method involves a ratio of relative likelihoods, and so can tolerate some degree
of misspecification in these likelihoods. In addition, other auxiliary simulations de-
liberately used the “wrong” GI pdf. For example, we used the generation interval
pdf estimate based on the spatial network for a second set of 100 simulations of the
SIR (unstructured) population. The resulting MAE increased from 0.13 to 0.17 for
the WT method, and there was of course no impact on the SIR method because
it does not use the estimated GI pdf. Again, this small to modest increase in the
MAE suggests some robustness to using the “wrong” GI pdf. In practice, methods
described in [15] including contact tracing, particularly for family members, is a
common strategy for estimating the GI pdf. However, we have illustrated a time
trend in the GI pdf (Fig. 2) and recall that the WT method as implemented here
ignores that fact.
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Figure 1. A stochastic realization of the daily fraction of newly
infected individuals for (top left) unstructured population case gen-
erated using the SIR model; (top right) random network; (bottom
left) lattice network with long ranging individuals; (bottom right)
spatial network.
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left): SIR; (top right): random network; (bottom left): lattice
network with long rangers; (bottom right): spatial network.
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SIR methods for the SIR model; (middle): Estimation errors from
WT method and 95% bootstrap CIs; (bottom): Estimation errors
from SIR method and 95% bootstrap CIs.
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Table 1. Results summary for the WT and SIR methods to esti-
mate Rt. All MAE values are repeatable to within ±0.01 or less.
The average difference column is the average estimation error in
the first half of the outbreak minus the average estimation error in
the second half. The p-value column is the corresponding p-value
resulting from a t-test applied to the average differences over all
simulations. The % positive difference column is the percent of
100 simulations in which the second half average error was larger
than the first half average error. Table entries are the WT results
followed by the SIR results. Zero entries are < 10−10. All MAE
results are for the approach in which the “true” Rt is calculated
separately in each realization without curve smoothing or averaging
over simulations.

Structure MAE (WT,SIR) Avg diff p-value % pos diff
a. SIR 0.13, 0.14 0.002, -0.001 0.60, 0.76 44, 52
b. Random 0.13, 0.14 0.005, 0.05 0.16, 0 36, 13
c. Lattice- rangers 0.10, 0.17 -0.002, 0.21 0.08, 0 59, 0
Lattice- no rangers 0.10, 0.17 0.001, 0.21 0.40, 0 41, 0
d. Spatial 0.45, 0.18 3.78, 0.72 0, 0 0, 0

5. Discussion. The Results section illustrates that the GI pdf is poorly estimated
in all three of the non-SIR models. However, except for the spatial network, the
WT method appears to be somewhat robust to poor estimation of GI pdf. The
robustness extent is not yet fully understood, although deliberate use of the wrong
GI pdf did not significantly increase the MAE.

A common theme in any inference setting is the well-known bias-variance trade
off. There are many biased methods that outperform unbiased methods in terms of
mean squared error, where informally, the mean absolute error includes the effects
of both random variance and bias. This is because allowing moderate bias can
sometimes greatly reduce random variance. In this setting, to implement the WT
method, one could use a wide range of days to estimate the generation interval pdf
to reduce random variance, but because the GI pdf changes with time, this also
introduces bias. Choosing the time window to minimize the MSE would be useful
in future work.

Although we evaluated the WT and the SIR-based methods, our emphasis has not
been on fully characterizing these methods, but rather to compare their performance
as population structure changes. For that goal, the MAE results are adequate. We
remarked in the Results section that confidence limits for Rt can be based on using
R̂t±2×MAE for each case. However, this requires the MAE results in Table 1. In
practice, if confidence limits are desired, then [8] provided approximate confidence
limits for the WT method, assuming the GI pdf is known and constant (so our
results and [23] suggest that further work is needed here).

6. Conclusion and summary. We demonstrated surprisingly good robustness to
structure-based violations of the SIR model of both the WT and SIR-based methods
to estimate Rt, with the SIR-based method doing surprisingly well in all cases and
the WT method doing slightly better except in the spatial network.
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The WT method and the SIR-based method require somewhat different data
sources in order to be implemented so might not both be available in all situations.
An attractive feature of the WT method is that it can be implemented using only
the number of new infecteds each time step provided an estimate of the recovery
rate γ is available so that the GI pdf can be estimated. To date, either an auxiliary
data source such as contact tracing has been used to estimate the GI pdf using an
approximating Weibull distribution, or the hazard rate approach (“race to infect”)
as in [23] has been suggested. The hazard rate approach properly adjusts for the
time dependence of the GI pdf. In contrast, the SIR approach must estimate St

N
in

addition to the transmission rate β and the recovery rate γ.
Fortunately, the MAE of the WT method when using only 10 generation times to

estimate the GI pdf was essentially the same as when using hundreds of generation
times in the estimate. And, although the GI pdf is quite different among the
structured networks compared to the GI pdf in the unstructured population (Fig.
2), it appears not to be necessary to estimate the GI pdf for each outbreak, because
the WT method is fairly robust to using the “wrong” GI pdf estimate, even if the
estimate arises from the ”wrong” network structure. As further study, other noise
sources could be investigated, such as reporting delays or underreporting of cases
[41].

We also demonstrated that the GI pdf is not constant over time, as is also
shown in [23] in continuous time. Figure 2 showed time-dependent behavior in
the average GI, µi. A simple explanation involving the time dependent behavior
of the number of new infecteds each day was provided, leading to an accurate
calculation of µi on day i for the SIR-case. This same calculation is not accurate
for the structured populations studies. It would also be useful to explore why the
WT method, which assumes µi is constant over time, does not lead to significant
patterns in the daily estimation errors of µi in the unstructured population cases
(except in the spatial network). Perhaps such robustness arises primarily because
the WT method involves a ratio of relative likelihoods, and so can tolerate some
degree of misspecification in the GI pdf. Stronger time patterns in the GI pdf could
also be investigated by considering cases having larger R0.

Although it is also of interest to extend this study to include modified SIR-type
models such as the SEIR (susceptible-exposed-infectious-recovered) model, we do
not believe it will alter our basic conclusion that the WT method is surprisingly
robust to structure-type violations of SIR assumptions.

Finally, in small-population stochastic models, R0 is not sufficient information
to predict whether an epidemic can sustain itself [33]. For example, the simulated
spatial network has R0 < 1, yet the epidemic’s final size is approximately 60% of
the population size N , indicating that we need a better understanding of small-
population stochastic models.
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