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ABSTRACT. The strengths and limitations of using homogeneous mixing and
heterogeneous mixing epidemic models are explored in the context of the trans-
mission dynamics of tuberculosis. The focus is on three types of models: a
standard incidence homogeneous mixing model, a non-homogeneous mixing
model that incorporates ‘household’ contacts, and an age-structured model.
The models are parameterized using demographic and epidemiological data
and the patterns generated from these models are compared. Furthermore,
the effects of population growth, stochasticity, clustering of contacts, and age
structure on disease dynamics are explored. This framework is used to asses the
possible causes for the observed historical decline of tuberculosis notifications.

1. Introduction. Tuberculosis (TB) is an ancient disease that still supports huge
levels of prevalence across the world. The urbanization process that exploded after
the Industrial Revolution has played a fundamental role in the observed patterns of
TB spread in industrialized nations [37, 38, 39]. TB is a disease with slow dynamics
and consequently, TB epidemics must be studied and assessed over extremely long
windows in time. Transmission takes place primarily within small clusters of ac-
quaintances. Thus TB patterns are driven by processes whose dynamics take place
over distinct temporal, spatial and organizational scales. TB in the US is in the
declining phase of an epidemic that peaked around the middle of the nineteenth
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century. Full understanding of the actual course of TB dynamics in the US requires
an appropriate description of historical epidemic patterns. Such description requires
a sound modeling approach of epidemic processes that involve hundreds of millions
of individuals over centuries. Simple standard compartmental models with some
modifications turn out to be quite useful in the study of the long-term dynamics of
TB, particularly when the age structure of a population is included. Naturally, the
study of all processes associated with transmission do not need to be incorporated
in detail. The selection of a model is (or it should be) intimately connected to the
question. For example, a study of the competition dynamics between strains might
benefit from the incorporation of a detailed description of the network of contacts
between individuals or groups. Individual based models (which follow every indi-
vidual in a population) may provide a most useful tinkering tool in the study of the
role of social networks on TB transmission.

Different models are used to study the long-term dynamics of tuberculosis in
this manuscript. The list includes simple compartmental models with standard
incidence (extensions of the models in [3, 6]), aggregated cluster models (extensions
of the models in [1, 53]), and age structured models. We focus our attention on
the use of demographic and epidemiological data to parameterize these models
as they are used to capture the patterns of TB over long time horizons. Our
manuscript concludes with the use of these models in some preliminary applications,
a discussion on the possible reasons behind TB decline in the US, and a discussion of
challenges associated with TB dynamics. In some sense, the work in this manuscript
complements and expands the work that we published in a comprehensive review
that appeared in this Journal [21].

1.1. Basic tuberculosis epidemiology. Tuberculosis is mostly transmitted
through the air by persons coughing with pulmonary tuberculosis. The probability
of transmission per contact, per relevant unit of time is in general quite low [9, 22,
43]. Individuals at high risk of infection include those who are frequently exposed
for long period of times to infectious individuals.

Infected individuals may remain asymptomatic over their entire lives (latent TB).
Active-TB (the clinical disease) can develop into pulmonary and extrapulmonary
forms. Extrapulmonary TB is common in children while pulmonary TB is frequent
in adults. Mycobacterium tuberculosis, the causal agent of the disease, is transmit-
ted almost exclusively via pulmonary cases (exceptions could include laryngeal TB).
Cases arising within five years after infection are classified as primary tuberculo-
sis while cases arising after five years from first infection are known as secondary
tuberculosis. Endogenous reactivation cases (exacerbation of an old infection) or
exogenous tuberculosis cases (the result of TB activation due to reinfection) are
also classified as secondary tuberculosis. This distinction is standard but somewhat
arbitrary.

The number of new cases of active TB decline almost exponentially when view
as a function of age of infection [56] (see Fig. 6). In a ten year study (reviewed
in [56]) it was noted that nearly 60% of the new cases arose during the first year
following infection while the cumulative number of cases generated over the first
five years after infection accounted for nearly 95% of the total cases observed. If
this exponential decline in progression risk were to be maintained over the life time
of individuals in the population then the contribution of endogenous reactivation
to progression would be small, less than the 5%. However, increases in the risk
of endogenous reactivation in the elderly have been observed. Reactivation in the
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elderly is due to multiple reasons including those responsible for immune system
depression.

There are differences in infectiousness. Pulmonary tuberculosis cases that are
smear positive are significantly more infectious than the smear negative (culture
positive or culture negative cases) [51, 56].

Heterogeneity comes from many directions including from the variability in infec-
tious periods. However, it is known that most of the secondary infections generated
by a source case do take place within the first months following TB activation|[8].
That is, these cases are generated at a time when the disease may not be apparent.
Case fatality among untreated pulmonary TB cases is around 50%. Recovered indi-
viduals, naturally or from treatment, may develop active TB again, a phenomenon
known as TB relapse.

2. Aggregated models.

2.1. Epidemiological states. In order to capture key relevant complexities in
the study of the transmission dynamics of TB, we consider seven classes (Fig. 1).
Uninfected individuals, the U class; First-infected individuals, members of the high-
risk latent class F, that is, individuals who are assumed to be asymptomatic and
non-infectious but capable of “quickly” progressing to the clinical disease (or active-
TB) at the per-capita rate k; Individuals who do not progress to the active TB class
quickly enough from the class E are moved to the low-risk latent class L at the per
capita rate a. The use of high- and low-risk latent classes captures in a simple
way the observed patterns of fast TB progression that characterize a small fraction
of recently infected individuals (see Section 4.2 below). Individuals in the low-risk
class L progress to active TB at the per-capita rate k; where they are assumed
to be susceptible to reinfection. Re-infection may accelerate progression to active
TB. Therefore we move re-infected individuals to a new high-risk class E* where
they progress to active TB class at the per-capita rate k*. Individuals can escape
progression (returning to the class L) at the same per capita rate « as individuals
in the class E. Previous infections with M. tuberculosis afford some protection
that may translate into reduced susceptibility to reinfection and/or reduced risk
of progression to the class E*, of high-risk latent TB (k* < k). New cases of
active TB are classified as pulmonary with probability ¢, collected in the A, class.
Extrapulmonary cases (A4, ) are assumed to be not infectious. Recovered individuals
(class R) may develop active TB again (TB-relapse) at the per capita rate kgy.

Uninfected individuals are recruited at the time dependent rate B(t). Non-TB
related mortality is ¢ while d and d. represent pulmonary and extrapulmonary
tuberculosis mortalities respectively. Therefore removal rates in the pulmonary
and extrapulmonary active TB compartments are given by v = (¢ + d + r) and
Ye = (p + de + 1) where r and 7, are the corresponding recovery rates.

2.2. Cluster models. The use of a different unit, generalized household, in mod-
eling transmission has proved useful [1, 53]. The generalized household (or in short
the cluster) of an individual is by definition the group of his/her close and/or fre-
quent contacts. Members of a generalized household include close “associates” such
as house-mates, co-workers and/or classmates. Most of TB infections are generated
in active clusters, that is, in a cluster or generalized household that includes an
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FiGURE 1. Transfer Diagram. Individuals are recruited into the
uninfected class U; moved into the high-risk latent class E after
the infection from where they progress to active TB. A fraction
q develops pulmonary TB (A,) while the complementary fraction
1-q develops extrapulmonary TB (A.). E individuals move to the
low-risk latent class L or to A, or A.. L individuals may become
reinfected and move to the high-risk class E* from there they may
develop active TB, or may return to the low-risk class L. Ac-
tive cases if they recover move to the R class. Transmission is
represented in the above transfer diagram using thick arrows and
progression with dashed arrows. Progression from low-risk latent
class L to A, (at the rate gk L) and to A, (at the rate (1—q)krL)
are not shown. Infection and reinfection rates (see expressions (15)
and (16)) are also displayed.

infectious individual. It is possible to build deterministic models that account ex-
tremely well for within cluster transmission. Here, we briefly review the main ideas
behind a modeling approach that we introduced in previous works (for details see
[1, 53]).

Infectious individuals are rare in developed countries. Hence, it is reasonable to
assume that there is only one infectious individual per generalized household. That
is, we assume that new cases of active TB will appear after the recovery (or death)
of the source case, and that the probability of belonging to two or more different
active cluster at the same time is negligible. This approximation may be invalid for
countries, or historical periods, where higher incidence levels are observed.

Active generalized households are by definition households that include a single
infectious individual. N,(t) denotes the number of individuals in active clusters, the
active ‘cluster population’ at risk, from close contacts, of acquiring TB infections.
[ is used to denote the per susceptible mean risk of infection, the risk that comes
just for being a member of an active generalized household (close contacts). When
infectious individuals recover or die (at the per-capita rate 7), the risk of infection
becomes null in the corresponding generalized household. In such a case a group
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of size n + 1 (or just n if the infectious individual dies) is deactivated, that is,
group members are brought back to the ‘general population’ of size N,.(t), the
population of individuals who are not members of an active generalized households,
where n denotes the mean generalized household size. N,.(t)—individuals can only
acquire a TB (latent) infection via random (casual) contacts with members of the
overall population. We use the subscript 1 to identify non-infectious epidemiological
classes in the population of active clusters (where transmission is extremely likely
to occur), and subscript 2 for the corresponding classes in the general population
(where transmission is possible through casual, random and rare contacts). The
risk of acquiring TB infection from individuals in the general population is not zero
but very low. Latently-infected individuals do progress to the class of pulmonary
active TB at the rate q(kEs + k*E3 + kr Lo + krpR2). With the ‘birth’ of a new
infectious individual, a cluster of size n is moved, from the general population to
the population of active clusters. Extrapulmonary cases are not explicitly tracked
in the cluster formation processes but we account for them here any way. Therefore
weset N; =U;+E;+L,+E'+R;,i=1,2, No= N, +1, and N,,. = No+A.. Using
the above definitions, assumptions and notation leads to the following non-linear
system of equations for the transmission dynamics of TB in clusters and (possible)
via random, rare, casual contacts (see [1, 53])

dU
—r =B+ + F(UL,T), (1)
dE
d—tl = AUy — (a +~)Ey + F(Ey, E»), 2)
dL, i
g =a(Ey + ET) — (68 +v)L1 + F(L1, L2), (3)
d—tl =0fBL1 — (a+)Ey 4+ F(EY, E;), (4)
dR
i = "R+ F(Ry Ra), (5)
dAP * Tk
7 q(kEy + k" E5 + kLo + krpR2) — vAp, (6)
duU.
—2 = B(t) = uUs + U1 = F(Uy, V), (7)
dE
d—t2:—(u+a+k)E2+7E1—F(El,Eg), (8)
dLs .
T a(Ey + E3) + L1 — (u+ kr) Lo — F(L1, La), (9)
7t =B} — (kK" + p+ )E; — F(EY, E5), (10)
dRs
= 1Ay +ruAe + YRy — (u+ ki) Ry — F(Ry, Ry), (11)
dA, .
i (1—q)(kEs 4+ k"E3 4+ kLo + krpR2) — Ve Ae, (12)

where F'(X1, X5) is a short notation for the expression

F(Xl,Xg) = q(kEQ + k*E; + kLLQ + kRpRg)’rL(le/Nl + (1 — p)XQ/Ng). (13)
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Most new cases of active TB arise just a few years after infection or re-infection.
Therefore only a small fraction of the members of an activated generalized house-
hold, generated by the ‘birth’ of a new (source) case, may also belong to the active
generalized household where the source case was infected, overlap is possible. This
overlap between successive active households is modelled using the clustering coef-
ficient p in (13).

The contact number is defined as the average number of infections caused by
one active case (during the whole infectious period), when all contacts are with
uninfected individuals. When the clustering coefficient is zero, the contact number
obtained from the cluster (generalized household) model is

&n

Q0:1+§ (14)

where £ = (/v is the average (non-dimensional) risk of infection over the mean
infectious period 1/+. This number is not the basic reproductive ratio because only
a fraction of the infections will become actively infectious cases. When the clustering
coefficient is greater than zero, a more useful definition of the contact number may be
worded as “the number of secondary infections caused by one infectious individual
in the second generation [1, 7]”. In the generalized household case, the contact
number is effectively reduced by the effect of repeated contacts within the same
group of individuals.

Incorporation of casual infections (reinfections) is straightforward [1]. We assume
that infectious individuals also produce infections from casual contacts (the result
of random encounters) with individuals that do not belong to his/her generalized
household. The probability of casual infections among susceptible individuals who
are in an active generalized households is neglected. The rate of casual infections
produced is mﬁApJ‘?,—i while the reinfection (casual) rate is moﬁApﬁ[—Z. These terms
move individuals from the S to the E2 and from the Ly to the E3 classes, respec-
tively. The non-dimensional parameter m is related to the mean size of the network
of close casual contacts of a typical infectious individual [1] while o accounts for the
possible protection conferred to an individual from previous infections.

2.3. Standard compartmental models. Our definition of contact number re-
quires the generation of )y secondary infections by an average infectious individual
placed in a totally susceptible population. If only the fraction U/N of his/her con-
tacts is with uninfected individuals then the number of (first) infections produced
is given by QoU/N and the infection rate per unit of time is obtained by dividing
this number by the infectious period 1/v. Explicitly, when we start from a simpler
standard incidence epidemiological model, we get

U
Similarly, the re-infection rate is given by
L
07Qo A (16)

where o models the possible protection conferred by previous infections (o < 1).
A simpler aggregate deterministic model for TB transmission that includes vital
dynamics is given by the following system (see also Fig. 1)

dU

U
S = B(t) — uU ~1Qo s Ay, (17)
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dE

= = 1Qoy A,, —(k+p+a)E, (18)
dL L
= = alE + E*) — (M+kL)L_0"7QO_Ap7 (19)
dE*
el U”yQO A — (K" +p+a)E”, (20)
dAp * Tk
—F = a(kE+ K E" + ki L + krypR) — vA,, (21)
dAe * %
- == QkE+ K E +kLL+knpR) — e A, (22)
dR
E = TAp +rede — (M + kRP)R7 (23)

where v = p+d+r and 7. = pu+de+7.. In this simplified version recruitment brings
individuals only to the uninfected class. Models with immigration must include the
arrival of infected individuals (see also 4.1 below). A secondary case is expected to
share some contacts with the source case (from where he/she caught the infection),
hence the rate of first infections is in general lower than (15) while the rate of
reinfection is typically higher than (16). These discrepancies are “corrected” with
the (phenomenological) clustering parameter p (see expression (13)), a factor that
is ‘lost” in the above simpler model.

3. Age structured models. Age plays an important role in tuberculosis dynam-
ics for several reasons including the fact that most cases of active tuberculosis in
children are non infectious [30]. Furthermore, TB mortality among children less
than one year of age was extremely high before the chemotherapy era. In addition,
active tuberculosis in developed countries has been seen or assumed to be as the
result of the endogenous reactivation of old infections among primarily middle-aged
or older individuals.

An age structured version of Model (17) is obtained straightforwardly (see for
example [17]). In this version, the evolution of the dynamical variables (here only
for the uninfected population) is given by

%u(t a) + %u(t a) = /OOO V(tval)Qo(t,a/)ap(t,a’)lj\(é’(?))

where (t,a)Qo(t,a) accounts for possible variations of infectiousness and pattern
of mixing with age. Variables like u(t,a) or a,(t,a) represent the densities of in-
dividuals. Thus the number of uninfected individual with ages between a and
a + Aa is given by fa+Aa (t,b)db. The total uninfected population used in the
aggregated models (given by Equat10ns(17) ( 3)) can be recovered by integrating
the age structured model over all ages ( fo u(t,a da) under the assump-
tion that the parameters are age—independent The problem is completely spec-
ified with the inclusion of an initial age distribution (for example wu(tg,a) that
includes an initial completely uninfected population) and the renewal condition
fo N(t,a)da, where b(t, a) is the age-specific per capita birth rate
and N (t,a) is the populatlon of individuals of age a at time t. Numerical solutions
can be computed, for example, through the use of a simple forward schemes like:

da’ (24)

U(t+ At,a+ At) = s(t,a)U(t,a) — AthOI%’a) (25)
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U(t,0) = b(t)N (t)At (26)

where U(t,a) = f;JrAt u(t,a’)da’, b(t) is the time-dependent per capita birth rate,
N(t) is the total population, and s(¢,a) is the survivorship function, that is, the
function that gives the fraction of the population of age a surviving after a period
of time At. In our numerical studies, we assumed that neither v nor @ are age-
dependent. In our simulations of the age-structured model the population is divided
in A/At age classes, where A is the maximum age considered. After an initial age
distribution is specified, the numerical scheme outlined in (25)-(26) is used to follow
the time evolution of each cohort.

4. Available data and parameterization.

4.1. Demography. For the entire United States birth and death rates estimates
are available since 1900. For Massachusetts the data goes back to 1850 (U.S. Bureau
of the Census, 1908, 1975). The observed total mortality rate (per person, per year)
may be well represented by the smooth function of the calendar year ¢ (see Fig. 2,
left panel; see also [3]),

. Hf — Hi
L4 exp((t —t.)/Au)

with p; = 0.021yr~%, uy = 0.00887yr 1, t,, = 1910yr, and A, = 16yr. Parameters
w; and py are asymptotic values while ¢, and A,, determine when and how abrupt
the transition is.

Life tables for United States based on census data are available (see for example
[10]). There are also estimated life tables for the period 1850-1900 (see for example
[40]). Life tables provide an estimate of the probability of death within one year
(customarily denoted as g, with x the age class) for different age classes and for
different years. The survivorship function is estimated as s(t,a) = 1—q(t,a)At. The
values of ¢(t, a) used in our simulations are obtained through the linear interpolation
of the ¢, values, which are provided in the life tables (see Fig. 2 right panel).

pror(t) = puf (27)
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FIGURE 2. Left. Observed total mortality rates (squares) and their
approximations given by expression (27) (continuous line). Right.
Age-dependent probabilities of dying within one year (g,) from
period life tables for the United States based in the decennial census
data from 1900, 1950, and 2000.
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We computed the total mortality rate (per year, per person) with the aid of an
age structured model. Results are displayed in Figure 3 together with the reported
values. Agreement between model solutions and observed values is very good after
1900. The reason for the discrepancy in years before 1900 comes from the fact that
we used the life tables values for 1900 for all years prior to 1900. In other words,
we underestimate mortality patterns.

Since tuberculosis is mostly an urban disease, we only consider the dynamics of
urban populations. The proportion of individuals living in urban populations over
time for the U.S. and for the state of Massachusetts are available ([59], see also Fig.
4). The patterns observed in urban data are well captured by the sigmoid shaped
function (see also [3])

Py — Pyy
1 +exp((t —tp)/Ap]’

Py(t) = Pyy + (28)

which is also used for back-extrapolation. The parameters Py;; and Py are asymp-
totic values of the proportion Py while ¢tp and Ap determine when and how abrupt
the transition is.

The difference between the birth-death population growth and observed urban
population growth is considered as immigration. At the beginning of industrializa-
tion in the United States, most immigration came from rural areas, essentially free
of tuberculosis [37]. However, during the last century most of the immigrants have
arrived from countries with higher TB incidence. Models should be modified to in-
clude the influx of new individuals in the infected classes in a model that attempts
to capture the trends over the recent decades. Here, the role of arriving infected
immigrants is ignored.
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FIGURE 3. Observed mortality rates for United States (solid
squares) and those obtained with the age-structured model (open
circles).
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FIGURE 4. Proportion of urban populations for United States
(squares) and the state of Massachusetts (circles). In both cases we
fit the data to the sigmoid shaped function (28). Parameter val-
ues obtained from best least squares fit are: P; = 0.028236, Py =
0.71835, tpy = 1895.6, Ap = 30.998 for US, and P; = 0.12965,
Py =0.87949, tp = 1851.0, Ap = 16.817 for Massachusetts.

4.2. Epidemiological parameters. Estimating parameters in epidemiology is not
straightforward. Here, we make use of parameter estimates collected from the rele-
vant literature.

4.2.1. Proportion of infectious and non infectious cases. Studies show that between
50% to 85% of new TB cases are the result of progression from the high-risk latent
class to the active TB class and are pulmonary. Furthermore, between 50% to 100%
of the new cases that are the result of progression from the low-risk latent class to
the TB active class are also pulmonary (see Blower et al., 1995, and references
therein). Data from Massachusetts show that approximately 70% of the new TB
cases can be classified as pulmonary over the last few years [23, 24, 25, 26]. Hence,
we assume that on the average 70% (¢ = 0.7) of TB progressions lead to pulmonary
cases.

4.2.2. Contact number. The contact number is the total number of secondary in-
fections caused by one infectious case placed in an uninfected population. The
transmission rate is defined as the average number of infections produced by a typ-
ical infectious individual during one year. Estimates of this rate are in the range
10-15 ([56] sec. 6.2.2). The average infectious period has been estimated in the
range 0.5 to 2 years [8, 12, 33]. Using these estimates results derived estimates for
the contact number )y in the range 7 to 30. These levels of variability are not
surprising. In fact, several facts suggest that variability in the number of secondary
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cases generated through contacts with a source case is indeed high. Epidemiologi-
cal studies [41, 49] have identified infectious individuals capable of generating more
than 200 infections in periods as short a few months. Most outbreaks are in some
sense exceptional, that is, the result of the effectiveness a few super-spreaders.

Sputum-positive individuals are more infectious than-sputum negative individu-
als. In fact, the study of Rose et al. [51] has shown that their difference in infectivity
is at least 50%. Additional studies support the possibility of an even greater differ-
ence ([56] sec. 6.2.2). Here, we pre select a reasonable average value. The impact of
variation on this last average value is taken into account indirectly when we consider
a range of values for Q.

4.2.3. Infectious period length. Most of the secondary infections generated by a
source case occur within his/her first few months as infectious [8]. Hence, fixing the
mean infectious period at 0.5 years is reasonable. This choice, as it turns out, does
not play a significant role in our results. In standard models the infectious period
length determines the number of secondary cases produced by infectious individuals.
Within our modeling framework, however, this number is varied independently as
we vary the values of Q. It is possible to incorporate an explicit dependence on
mean infectious period 1/ using an expression like Expression (14).

4.2.4. TB-induced mortality and recovery rates. Records of pulmonary tuberculosis
mortality have been regularly kept in the USA since 1850 (US Bureau of the Cen-
sus, 1975). Reliable data on the incidence of active TB (pulmonary and extrapul-
monary) have been collected for all United States since 1952 but data on incidence
of pulmonary tuberculosis in Massachusetts have been available since 1915 [31].

Concern with pulmonary tuberculosis derives from the fact that there is a high
case fatality associated with it. Before the availability of treatment almost 2/3
of the active TB sputum-positive cases and about 50% of the total pulmonary
cases, died within 5 years after the onset of TB [56]. The effective mean infectious
period (1/7) account for all cases of mortality. Hence, v = p + d + r where p is
the natural per-capita mortality rate, d is the per-capita pulmonary tuberculosis
induced death rate, and r is the per-capita recovery rate. The TB-induced mortality
d is estimated from the formula d = p(y — p) and the recovery rate from the
expression r = (1 — p)(y — pu) where p is the case fatality. We set p = 0.5 for
t < 1950 (that is before the chemotherapy era) and use linear interpolation between
this value and the actual value of 0.07 for ¢ € [1950, 2000]. The values of the
general, non TB related mortality rate o used in these calculations are obtained by
subtracting the contribution to the total mortality by TB as modelled in Expression
(27) (for age-structured and aggregated models).

Age structure data do exist. The case fatality of untreated extrapulmonary tu-
berculosis in children aged less than one year is above 50%, but decrease rapidly
with age [30]. Unfortunately, mortality records are scarce. Some modelers have
set the contributions to the mortality rate from extrapulmonary TB equal to the
general (non TB related) mortality [60, 61], while others have simply disregarded
extrapulmonary TB in their models. We take the contributions of extrapulmonary
tuberculosis mortality (d.) to be somewhere between the general mortality rate u
and the pulmonary TB mortality rate d. The recovery rate is estimated through
the expression r. = 7. — u — d. where 1/7,, the mean residence time in the extra-
pulmonary TB class, is taken to be equal to the mean infectious period 1/ (see
section below).
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FIGURE 5. Observed deaths (in percentages) from pulmonary TB
in Denmark (from Styblo 1991). Continuous lines represent model
predictions (Case Fatality=0.5(1 — exp(—rt)) with d =r = ). We
take v = 0.5 and 1.

4.2.5. Risk of progression to active TB. The number of new cases of active TB
exhibit approximate exponential decline as the age of infection increases [56]. In
fact, about 60% of the new cases are the result of progression after the first year
following infection, 95% of the cases surfacing within the first five years after the
start of infection.

The decline in risk of progression as a function of age of infection is captured by
setting k + a + p = 0.8363yr—! (Fig. 6). A cohort of newly infected individuals
(t = 0) exit according to the function as E(t) = Epexp(—0.8363t) and therefore,
the generation of new cases per unit of time evolves according to the expression
k(t)E(t) which decline almost exponentially because k(t) is almost constant. Since
progression and mortality rates are time dependent, « is also time dependent. For-
tunately, setting a = 0.8363 a constant, is enough to capture the observed patterns
of TB progression as k is varied over a wide range under the constraint p + k < a.

The value of the phenomenological parameter « facilitates the reproduction of the
observed exponential decline in the risk of progression. Nevertheless, the function
k(t), must still be estimated from other data. Long term studies have shown that
only a small fraction (between 5% to 10% in developed countries) of individuals
infected with TB will ever develop active tuberculosis. Estimates of this fraction
using a standard incidence model result in a function of progression rates from
where the values of k can be estimated as it is outlined in the following heuristic
argument.

If E(t) denotes the population of recently first-time infected individuals then
the fraction of individuals who progress to active TB from E is estimated as fp =

ﬁ. The fraction of individuals who survive this latency period and do not
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FIGURE 6. Percentage of individuals progressing to active TB
after infection (log scale, taken from [56]). Continuous line is the
least squares linear fit (slope=-0.8363). Because a > p + k we
considered o = 0.8363 for all ¢.

progress to active TB is ﬁ This last group of individuals belong to the low-risk
latent class L. If we disregard reinfection then the fraction of this population that
develops active TB is estimated by kffm. Hence, roughly speaking, the fraction of
the initial population that develops active TB from the class L is fr, = ﬁ kf—fw
Since in our model the effects are additive, we can roughly say that the fraction of
individuals who develop active TB from both latent stages is

f=fe+fL=

+ « kL
k+a+p k+a+p kp+p
We use this rough approximation as a non dimensional measure of the risk of pro-
gression to active TB. Actually, the relative contributions from the high-risk and
low-risk latent classes to the active TB class is unknown. However, it is an accepted
view that the latter plays a significant role only in developed countries with low in-
cidence. In general we set f = pfr + (1 — p)fr, with p > 0.8. The values of k and
ky, are obtained from the values of fr and f, in each case. In other words, we take

_ o la+tp)
(f/Fr)p
(I=Q=p)f/FL)’

(29)

kL:(l—p)

where Fi, = /(o + k + p).

Our model of progression from the high-risk latent class E to the active TB
class account for both, primary TB and endogenous reactivation, at least during
the first ten years following infection, that is, the period for which observations
have been recorded [56]. Also including progressions from the low-risk latent class

(31)
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(kr, > 0) may phenomenologically account for possible deviations from the predicted
exponential decline in risk of progression for ages of infections greater than ten years.
Certainly, in countries where infections with HIV are extremely likely, progression
from low-risk cannot be ignored.

Possible protection conferred by previous infections with M. tuberculosis is mod-
elled through the lowering of the risk of infection (through the parameter o) and/or
the lowering of the risk of progression to active TB (though the parameter o).

The rate of TB relapse is set at the constant value kg, = 0.00008yr~! which
results in a contribution of about 5% of the total incidence, the magnitude of today’s
observed contribution in Massachusetts [23, 24, 25, 26].

4.2.6. Historical variation of epidemiological parameters. In our model formulation
two key epidemiological parameters determine the transmission-progression dynam-
ics: The contact number @y and the risk of progression f. The first controls the
transmission process while the second controls the progression process. In Section
5.1 we show that at least one of these parameters must vary in time if the goal is to
fit historical data. We use historical TB incidence and mortality data to estimate
time-dependent consistent values for Qg and f.

Incidence of active TB for the United States and the state of Massachusetts has
been recorded since 1953. There exist records on pulmonary TB mortality dating
back to 1850. We model the incidence of active TB as proportional to pulmonary
TB mortality before 1953. Data suggest that pulmonary TB mortality and the
incidence of active TB can be approximated via a 2:1 relationship before treatment
was available [31]. Hence, the assumption that pulmonary TB represents 70% of the
number of total cases corresponds to an incidence of active tuberculosis of about
2.875 times the rate of mortality tied to pulmonary TB. We, therefore, estimate the
incidence of active TB to be 2.875 times the tuberculosis mortality rates prior to
1953. Estimated and observed incidence rates are log transformed and the results
are fitted to polynomials functions in order to obtain smooth functions that capture
the trends (see the Appendix). From incidence trends (time series) we cannot obtain
simultaneously the values of Q¢ and f. We assume that one of them is estimated
independently and use the data (series) to estimate the other. For example if f is
kept constant, the values of Qo(¢) are obtained in the following way. Before 1845
we fix both parameter values in such a way that the simulated incidence of active
pulmonary TB (that is the incidence obtained with the model) match (with some
small error) the value of the smooth function (what we call Inc(t)) representing
the estimated/observed incidence of pulmonary TB at ¢ = 1845. After ¢ = 1845 we
use the time series to set the new values of Qo(t) in the following way. First we
compute the relative error

_ Simulated incidence(t) — Inc(t)
B Inc(t)

and update Qg using the expression

Qo(t +dt) = (1 —¢2)Qo(t)

after each step of the numerical integration scheme. The simulated incidence (per
10° population, per year) of active TB is estimated from the models as (kE+k* E* +
krL + kRpR)105/Nt0t, where Ny, is the total population (note that in the model
N represents the urban population). The relationship to the age structured model
comes from the obvious definitions of the variables F, E*, L, and R as the integrals
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of the corresponding densities over all ages. The above simple scheme produces

excellent results (see Fig. 7). The functions Inc(t) used in each case, USA and
Massachusetts, are described in the Appendix.
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FIGURE 7. Observed incidence of active TB (all forms, solid
squares, per year and per 100,000 population), estimated incidence
of active TB (estimated as 2.875 times TB mortality rates, open
squares), for the United States (left) and Massachusetts (right).
The simulated incidences obtained from model (17-23) are shown
in continuous lines.

5. Some results and applications.

5.1. Vital-dynamics driven epidemics and the effect of initial conditions.
In this section, we study TB dynamics when the epidemiological parameters f and
Qo remain constant in time. Results obtained with the standard model (17-23) and
the cluster model (1-12) are qualitatively similar. After a small peak (not always
observed) there is a large epidemic spanning the last two centuries. Figure 8 plots
the simulated (using the standard model) and the estimated (as 2.875 times the
observed TB mortality) solutions. The simulated time evolution of the epidemics
during the period of available data (1850-present) does not depend on the initial
conditions. In fact the effect of the initial conditions virtually vanish after about
75 simulated years.

Vital dynamics driven epidemics with constant values of f and @y may explain
part of the observed decline in tuberculosis rates (like in [12]). However they cannot
explain neither the timing nor the magnitude of the observed decline. According
to model results the only way one can explain the trends in TB decreases are from
reductions in transmission and/or progression over time.

In the aggregated model different initial conditions correspond to differences in
the time of introduction of TB. Fortunately, the differences in the time of infection
introduction are negligible after a few decades (also in the age-structured model).
However, the establishment of an stationary age profile may take over a century
since individuals in our model may live up to age 100. Furthermore, since the
birth rate and the age dependent mortality rates change with time a stationary
age profile is never reached. In order to minimize the effects of the initial age
structure we proceeded as follow. We used birth and age-dependent mortalities
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FIGURE 8. Vital dynamics driven epidemics. In one case epidemic
start in 1700 while in the other in 1750. By 1850 both solutions
are almost identical.

values for 1850 and run the simulations for 200 simulated years. We compute the
age structure at the end of each simulation and use it as the initial condition for the
next simulation. We carry out this process until variations at the end of consecutive
simulations become negligible. We then use this “last” age structure distribution
as the initial age distribution for all epidemiological simulations.

In the simulations, initial time is set at simulated year 1700 in order to minimize
the role of the initial conditions.

5.2. Stochastic effects. Current Massachusetts values for the incidence of active
TB are about 270 new cases per year. The expected stochastic fluctuations are
of the order of v/270 ~ 16, that is, they are relatively small. In fact it can be
shown that in this case the dynamics is almost deterministic [2]. Stochastic effects
are likely to have been significant at the beginning of the epidemic. We perform
standard stochastic simulations using the standard homogeneous mixing model.
Monte Carlo simulations are carried out in a standard way, that is, the right-hand
terms of model (17-23) are considered as transition rates of a stochastic process (see
for example [50]).

Since quasi-exponential population growth was common during the nineteenth
century, we consider initial infection-free populations of size 1000 and 10000 under-
going exponential growth (with parameter 0.03476 yr—1) for 150 simulated years.
In stochastic and deterministic simulations births are computed to match this pop-
ulation growth.

At the population level, stochasticity plays a role only for small populations. In
Figure 9 we plot stochastic simulations together with the deterministic solutions
when the initial population is between 10% and 10%. Eventually stochastic realiza-
tions converge to the deterministic solutions.
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FIGURE 9. Stochastic realizations together with the deterministic
solution for an initial population of 1000 (top) and 10000 (down).
Realizations converge to the deterministic solutions as the popula-
tion increase.

The likelihood of an epidemics is determined with the basic reproductive number
Ro (see Table 1). In our framework an average infectious individual placed in an
infection-free population will produce Qo secondary infections (by definition of Qg)
before he/she dies or recovers. From this number only the fraction f will become
active TB cases and only the fraction ¢ of them will develop pulmonary TB. The
estimated basic reproductive number is therefore approximated by Ro =~ ¢Qof.
Numerical simulations show that this approximation is an excellent estimate for
the model threshold (17-23). For Rg > 1 an epidemic is very likely to take place
irrespective of population size.

The minimum population size for disease persistence is known as the critical com-
munity size. Tuberculosis dynamics are inherently slow, hence population growth
must be factored in. We estimate the likelihood of tuberculosis establishment start-
ing from an infection-free population of size Ny undergoing population growth.
Because at the beginning of the epidemic an average infectious individual will pro-
duce Qo secondary infections, our initial condition includes Ny — Qo uninfected
individuals and Qg recently infected (belonging to the E class). We compute the
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TABLE 1. Frequency and time to extinction for different commu-
nity sizes. Statistics were obtained from 1000 realizations. Mean
values for time to extinction and the corresponding standard devi-
ations measured in years.

No | Frequency of Extinction | Time to extinction (SD) (years)

500 0.584 6.53 (7.7)
1000 0.594 5.97 (5.9)
10000 0.573 5.27 (4.9)

probability of extinction as the frequency of the realizations for which the infected
population (E+ E*+1I) become extinct before 100 simulated years, for different val-
ues of Ny. We also compute the time to extinction. The results of these simulations
are remarkably similar for a wide range of community sizes. In Table 1 we collect
the frequency of extinction and average times to extinction from 1000 stochastic
simulations for different values of Ny. The values of Q¢ = 10 and f = 0.22 are used
in all simulations. For these values Ry = qQof = 1.54 and the probability of TB
establishment turn out to be quite high, about 40% of the cases considered.

5.3. Clustering. Solutions for the incidence of active TB and TB-mortality ob-
tained with the cluster (1-12) and homogeneous mixing models (17-23) turn out to
be quite similar (see left panel in Fig. 10). We take the per-capita transmission
constant through time. Specifically, Q¢ is assumed to be constant in the standard
incidence model and n, 3, 7 constant in the cluster model. The value of n was
obtained from the relation [1] Q¢ = n(1 — p)WBﬂ))'y with 8 = « and clustering
coefficient p = 0.5. The initial values of f require the matching of an incidence close
to the estimated value for 1845. The values obtained (for f) are model-dependent:
0.2 for standard incidence model and 0.475 for the cluster model. The difference
comes from the fact that cluster models disregard progression to active TB in ac-
tive clusters and at the epidemic peak a large fraction of the population is in active
clusters. Therefore the contribution to active TB comes from a smaller population
in cluster models than in standard incidence models (17-23). As the incidence rate
reaches the low values observed during the past fifty years, the values of f converge
to a value of around 0.1, a value close to actual estimates.

The most important difference between homogeneous mixing and cluster models
comes from the relative contributions of reinfections and first infections to the gen-
eration of active TB cases. The standard incidence model does not account for the
clustering of contacts and the number of new reinfections and first-infections are
proportional to the populations oL and U, respectively. Cluster models, instead,
take into account the clustering (of the contacts) through the clustering coefficient
p. Therefore an infected individual has a higher probability of re-infection than a
never infected individual to be infected.

Figure 10 shows the time evolution of the ratio of reinfections to first-infections
from simulations generated by both models. The homogeneous mixing model gives
a ratio below one after 1939 reaching the value of 0.30 by 2000. The cluster model
generates a significantly higher value for this ratio. For p = 0.5 reinfections accounts
for 55% of the total by year 2000.
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FIGURE 10. (Left panel) Model solutions obtained via the mass-
action and cluster models. (Center panel) Relative contributions
of re-infections to first infections via the mass-action and cluster
models. The values of f(t) obtained in each case are shown in the
right panel. Parameter values are: n = 40, p = 0.5, § = ~ for the
cluster model and Qo = 15 for the homogenous mixing model. In
both cases o = 1. We use the data from Massachusetts.

A natural question is whether or not clustering plays a significant role in the com-
petitive interactions of M. tuberculosis strains. The results could differ significantly
from those obtained through the use of homogeneous mixing models.

5.4. Age structure. The assumption of age-independent parameters, reduce the
age-structured model to an aggregated model equivalent to the one given by the Sys-
tem (17-23). Integrating over all ages leads, for example, to the following equation
for the uninfected population

du(t *<ro 0

w0 _ / | Bu(t.0) + gt da = Blo) 1@ 0 (0)/¥0) ~ WO D),
(32)

where 4,(t) = [; ap(a t)da = Ay( = ;7 u(t,a)da and we used the renewal

condltlon u( t 0)= /b N(t, a)da = B(t).

This is not our case as many parameters are age-dependent. Figure 11 collects
the survival curves for the United States obtained from different time periods. We
are not plotting the actual observed survivorship functions but rather the curves
generated from the use of age dependent mortality rates under the assumption
that each cohort experiences the same mortality rates during all posterior times.
Figure 11 also shows the survivorship curves generated for the age-independent
mortality rates piot(1900), f110t(1950), and p40:(2000). Here, pio(t) is the total
mortality rate (per year, per person) computed from Expression (27). The age
independent mortality (also known as type II mortality) used in aggregated models
like (17-23) produce long tailed survival curves not present in the realistic curves
obtained with the age dependent mortalities (which are close to a type I mortality,
w(a) =0 for a < A, oo otherwise). In our model we assume that the survivorship
function (1 — p(a)dt) is zero for a > A =100 years. From Figure 11 we see that
this assumption is a good approximation. We also see that in all cases, type II
mortality generates a significant proportion of surviving individuals older than A.
As a consequence, the infectious population in homogeneous mixing models will
produce a significative higher number of infections coming from this unrealistic
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long tail. Therefore, even under the assumption of an age-independent mortality
rate, the force of infection in homogeneous mixing models results in the generation
of a higher number of infections than those generated by the age-structured model.
In other words to obtain the same incidence of active TB a larger value for Qg is
needed in age-structured models than in homogeneous mixing models. Furthermore,
a key difference that derives from the use of aggregated models versus age-structured
models comes from the fact that children rarely develop infectious tuberculosis. We
used an age-dependent probability of progressing to pulmonary tuberculosis g(a)
that is set to zero for a < amq, but equal to 0.7 otherwise. We set ap = 8 years.

In Figure 12 (left panel) we compare the time evolution of the incidence of active
TB obtained with the aggregated homogeneous mixing model (17-23) and the age-
structured model. In all cases we incorporate vital-dynamics in epidemics driven
with constant (epidemiological) parameters. The age-structured model is used to
explore two cases. In one, the probability of developing pulmonary TB is age-
independent, that is g(a) = 0.7 for all a. In the other we take ¢(a) = 0, for
a < apmin = 8 years and ¢(a) = 0.7 otherwise.

In the first case the solutions of the homogeneous mixing and age-structured
models are similar, with the latter producing lower values for the incidence of ac-
tive TB, a consequence of the difference in mortality types. The inclusion of an
age-dependent probability of developing pulmonary tuberculosis leads to significant
quantitative differences.

In Figure 12 (right panel) we compare the numerical solutions generated with the
age-structured model for different values of Q¢ with a,,;, = 8yr with the solution of
the homogeneous mixing model with Q¢ = 12. This @y value was chosen because it
produces a value for the incidence of active tuberculosis that matches the estimated
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FiGUurE 11. Proportion surviving an ideal cohort born in 1900,
1950 and 2000 that experiences age-dependent mortalities corre-
sponding to the periods in which they were born for their entire
life. Same curves obtained with the age-independent mortalities
ot (t = 1900), peor(t = 1950), and i (t = 2000) (dashed lines).
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value for Massachusetts in 1850 for f = 0.2 (constant through time). When the
same value for Qg is used in the age-structured model a significant lower incidence
of active TB is generated. If a comparable value for the incidence of active TB is
desired, the value for Qo comes to about 20 (see Fig. 12). The homogeneous mixing
model is likely to underestimate Q.
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FIGURE 12. Incidence of active TB (rate per 10° population) ob-
tained using the mass action model (17-23, doted line) and the age-
structured model. Age-dependency of the probability to develop
pulmonary TB has a significant impact in the disease dynamics
(left panel). In all cases Qo = 15 and f = 0.2. Right. Solutions of
the age-structured model for different values of Qo (12, 20 and 25)
are compared with the solution of the mass action model (17-23)
with Qo = 12. In all cases f = 0.2. Open squares are estimates of
the incidence of active TB for Massachusetts.

5.5. Possible causes for the historical decline of tuberculosis. Several hy-
potheses have been proposed to explain the long-term decline in tuberculosis rates
over the past century. These causes include:
1. Purely dynamical reasons [12, 37, 38, 39].
2. A reduction in transmission. Transmission could have been reduced as a con-
sequence of public health measures (isolation of active cases in sanatoria, use
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of antibiotic treatment) and the improvement of living and working conditions
(ventilation and reduced overcrowding).

3. A reduction in progression. This explanation is also tied in to the theory of
improving of living conditions [44] and the hypothesis of host-parasite coevo-
lution [54, 55].

Next, we discuss the likelihood of these different possibilities under the results

generated by our modeling framework.

It has been suggested that the observed decline in TB is the result of the ex-
pected natural course of this epidemic [12]. However, as it is shown in Section 5.1,
vital-dynamics driven epidemics cannot account for the timing or the rate of the
observed decline even when reinfection is excluded. These results strongly suggest
the possibility that transmission and/or progression parameters have been declining
in time.

The hypothesis of reduction in transmission as the cause behind the decline of
tuberculosis rates is by far the more popular. In our framework reductions in the
transmission correspond to reductions in the contact number Q.

However, Qo (see expression (14)) is not an independent factor, in fact it is a
function of the mean infectious period length (1/7), the average risk of infection per
case per susceptible (), and the size of the network of close contacts of a typical
active TB case (n and m) among others. Therefore reductions in @y may come
from:

1. a decrease in the mean infectious period (1/7v), which can be achieved by the
removal of infectious individuals soon after diagnosis (isolation or treatment);

2. a decrease in the environmental risk of infection (), the result, for example
of improving ventilation in workplaces;

3. a decrease in the number of contacts per individual, the result of reductions
in mean household size, or reductions in crowdedness.

Public health measures like the sanatorium movement[29] or the widespread use of
antibiotics after the fifties, have reduced the effective mean infectious period. How-
ever it should be noticed that the number of infections do not increase linearly with
mean infectious period. For the simple case of exponentially distributed periods,
Qo is given by (14), while for the more realistic case of fix periods, we have that
Qo = n(1 — e B/7). That is, most of the infections occur during the first months
of infectiousness. This is consistent with the fact that ill individuals are naturally
isolated from the rest of the population. So reductions in the average infectious
period may not have been significant enough to explain TB decline.

Reductions in transmission are studied under a null hypothesis of a constant risk
of progression, that is, a constant value for f(t) is taken.® In developed countries
it is estimated that between 5% to 10% of the infected individuals develop active
tuberculosis. We start from the conservative upper value of f = 0.1 and compute the
values of Qo(t) for which the simulated incidence matches the observed/estimated
incidence as described in 4.2.6 (we also imposed the restriction that ¢ < 0.01).
We use United States data and the age-structured model with a minimum age for
developing pulmonary tuberculosis equal to eight years. Two cases are considered:
the progressions coming from the high risk class is 100% of the total (p = 1 in (30)),
or it is only 80% (p = 0.8). Maximum and minimum values for Qo(t) are displayed

1 We used expression (29) for an estimation of the risk f although this expression was obtained
from the model without age-structure (17-23).
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in Table 2. In both cases the maximum values obtained are unrealistically large.
Minimum values occurs at the end of the simulations and are in the right ball park.

TABLE 2. Maximum and minimum values of Qq(t) obtained for
f =0.1. We assume that a proportion p of the infected individuals
progress from the high risk class, while the proportion 1 — p from
the low-risk latent class L. In both cases maximum values are
achieved at ¢t ~ 1860.

| p | QOma;E | QOmin |
1 180 15
0.8 | 453 10

Reductions in progression rates are studied in a similar fashion. We considered
two values for Qg: 10 and 20. In each case, the two values of p = 1 and p = 0.8
are used. Maximum and minimum values obtained with our model are collected
in Table 3. The case Qg = 20 corresponds to the usual assumption of ten new
infections caused per infectious individual per year with an infectious period of two
years [33, 56]. For @y = 20 the risk of progression to active TB has to decline from
about 40% to about 7%. For Qo = 10 the maximum values rise to about 65%, a
high (and perhaps unrealistic) value. Relatively small variations in f may indeed
explain most of the observed decline.

TABLE 3. Maximum and minimum values of f(¢) obtained for
Qo = 10 and Q¢ = 20. We assume that a proportion p of the
infected individuals progress from the high risk class, while the
proportion 1 — p from the low-risk latent class L. In both cases
maximum values are achieved at ¢ ~ 1860.

| p | QO | .fmam | fmzn |
201 1 | 0.33 |0.073
20 | 0.8 | 0.41 | 0.065
10| 1 | 0.54 | 0.146
101 0.8 | 0.65 | 0.126

6. Challenges and future work. Most models for the transmission dynamics
of tuberculosis consider constant parameters and constant population size. These
assumptions implicitly restrict the study of TB dynamics over small windows in
time. TB dynamics are slow and, consequently, TB epidemics unfold over decades.
Describing TB epidemics must account not only for population growth but also for
the variation in time of parameters. Here (see also [3, 4]) we show that demogra-
phy and changes in contact and epidemiological parameters have had a significant
influence on disease dynamics.

The first conclusion we draw is that understanding of the time evolution of TB
epidemics cannot ignore the study of its dynamics over long temporal scales.
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Different population level models are introduced to carry out a comparative study
of the dynamics of tuberculosis. Some aspects of tuberculosis dynamics including
strain competition, probably would benefit from the use of individual based models
that account for the structure of the social contact networks and possibly intra-host
processes. Individual based models, however, cannot be used to capture epidemics
evolving over centuries and over large spatial (countries) scales in a tractable way.
However, individual based models may be used to estimate parameters used in
simpler population level models.

There are many future promising research directions linked to TB that should
be pursued over long-term time horizons and large spatial scales. We discuss some
possibilities.

Competition and evolution of drug resistance. Previous research has
explored Mycobacterium tuberculosis strain competition [13, 20, 34] under the as-
sumption of homogeneous mixing. Inhomogeneous mixing is likely to play a strong
role on competitive interactions. The evolution of drug resistance is tied in to intra-
host competition where inhomogeneous mixing plays a key role. In Section 5.3 we
show that the clustering of the contacts implies that recovered individuals have a
higher risk of re-infection than susceptibles (never infected) of becoming infected.
Further insights into the dynamics of strain competition may benefit from the ex-
plicit incorporation of networks of contacts. Individual based models may be useful
in disentangling social network effects. The evolution of drug resistance on the other
hand, demands attention to intra-host processes, including within host competition.
These individual-level processes may be embedded within individual based models,
or modeled independently. Whatever the approach, the effect of intra-host processes
should be computed and some “average” and variance included in individual based
models.

Superspreading. Molecular epidemiology studies show that, in general, an
active pulmonary case produces few secondary infections [11]. This observation
is compatible with the reproductive number estimates of around one in developed
countries [4, 61]. Here, values of Qo in the range 10 to 25 are used. Classic epidemi-
ological studies have documented the existence of infectious individuals that have
generated hundreds of secondary infections (see [49] and references therein). It is
unknown how common these super-spreaders are and the extent of their influence
over the course of an epidemic. The role of super-spreaders should be explored in
population level models such as those used here. New insights may be gained from
studying the impact of super-spreaders in individual based models.

Age related problems. The probability of developing pulmonary tuberculosis
is age-dependent and the incorporation of this fact has a dramatic effect on disease
dynamics. Patterns of contacts in social networks are age dependent and thus age
impacts transmission rates. Inhomogeneous mixing may be modelled using mixing
matrices- Who Acquires Infection from Whom [14, 15, 16, 18, 19, 52]. Here, we only
considered the most conspicuous age-dependency, namely age-dependent progres-
sion rates: children do not develop pulmonary tuberculosis. Important omitted
characteristics include age of infection (but see [60, 61]). Long latency periods and
strong age-dependence on risk of developing active tuberculosis support the view
that age of infection must play a significant role on TB disease dynamics. We incor-
porated this effect through the use of a high- and a low-risk latent class, but there
are other approaches [36, 58].
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Host-parasite coevolution. Increases in human resistance, combined with
a decrease in M. tuberculosis virulence must be tied in to reductions on average
progression rates. With the beginning of the Industrial Revolution, tuberculosis
reached epidemic levels. The growth of the cities with high levels of crowdedness
and bad living and working conditions were big contributors. At this time TB
accounted for about one quarter of all deaths. High levels of TB mortality suggest
the possibility that selection played a role during this window in time. By the
middle of the twentieth century TB was out of the top ten causes of death. Did
natural selection produce a shift in average population progression rates over a short
window in time? The estimation of the magnitude of the contribution of selection
would require a genetic-epidemiological model (see for example [5]). The influence
of genetic heterogeneity has been the subject of some research [46] but the study
of the potential coevolution of M. tuberculosis with its human hosts has received
much less attention.

7. Epilogue. Tuberculosis dynamics has been the subject of a considerable body
of theoretical (mathematical) work ([21] and references therein). Researchers have
been interested in the influence of latency periods, existence of multiple steady
states, effects of clustering, role of population heterogeneity, or the role of reinfec-
tion [1, 35, 36]. Some researchers have used mathematical models in the context
of specific applied problems including the quantification of the potential effect of
control strategies [6, 32, 47]. Tt is in this case that the use of more detailed models
including realistic parameterizations become more relevant.

There are two classes of parameters of interest: demographic and epidemiologi-
cal. Variations in each have important consequences. Because TB dynamics is slow
in general, population growth cannot be disregarded. Population growth is the
result of births, deaths and immigration. While in general birth and age-specific
death rates are available, the modelling of immigration is complex. In developed
countries, immigration usually brings an important influx of infected individuals.
These form of recruitment (births and immigration) alter the population and epi-
demiological age profiles. The transmission dynamics of tuberculosis are tied to
age profile because demographic and epidemiological factors are age-dependent.
Aggregated models produce substantially higher values for TB incidence than age-
structured models, a consequences of the long tail “age distribution” generated by
type II mortality (observed mortality is closer to a type I mortality). Type I mor-
tality translates in the existence of a maximal age. Therefore when age-structured
models are parameterized (using observed age-dependent mortalities) the simulated
incidence obtained is lower than the incidence generated by corresponding aggre-
gated model, for the same parameter values.

Detailed models requires realistic parameterization. Hence they are too com-
plex to study analytically. However, they are extremely useful in the design and
evaluation of control strategies, estimation of the contribution of reinfection, or the
evaluation of strain competitive outcomes in social networks.

Reductions in transmission are usually credited to public health measures. Yet,
we show that reductions in progression rates are mostly influenced by socioeconomic
improvements. Thus, what is the relative importance of improved socioeconomic
conditions versus targeted medical interventions in battling infectious diseases like
TB [27, 42, 44, 45, 57]?
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Tuberculosis is an opportunistic disease. Infected individuals with weakened
immune systems are at significant risk of developing clinical TB disease (active
TB). High tuberculosis prevalence is therefore observed in individuals with AIDS.
Malnutrition, alcoholism, drug abuse, concurrence of other infectious diseases, and
psychological stress decrease immune response levels. We have argued [3] that the
effect of improved living conditions may be related to increases in the average ability
of the immune system for containing the proliferation of M. tuberculosis in infected
hosts. In other words, we have argued that improved living conditions result in
reductions in the risk of TB progression.

Our results strongly suggest that reductions in progression rates may account for
a significant proportion of the decreases in TB. In addition, our conclusions cannot
be conclusive when it comes down to the impact of reductions in transmission on
TB declines. It can be argued that the social changes experienced over the last
century (urbanization) may have increased the likelihood of transmission per case.
Although working conditions have substantially improved since the beginning of
the Industrial Revolution, changes in places of work have often accelerated disease
spread (reduction of air volume per occupant or the use of ventilation systems which
re-circulate the air[48]). Household size has also decreased over the last century
while the average size of the network of close and frequent contacts, may have not
changed that much. Increasing levels of school attendance can easily compensate
for decreases in household size. Mass public transportation and globalization have
increased the level of heterogeneity of casual contact rates and, consequently, the
likelihood of super-spreader events.
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Appendix. The piecewise smooth functions used in our models to represent the
estimated /observed incidence of active tuberculosis for the whole United States and
for the state of Massachusetts are explicitly formulated below. In each case we chose
few simple polynomials to carry out the fit. Other choices may lead to a better fit,
but given the high uncertainty on estimated values, choice becomes irrelevant. Our
choice produces excellent results (see Fig. 7).

USA data. Between 1845 and 1944, and between 1944 and 1979, we use a
polynomial of degree two which produces the best fit (in the least squares sense)
to the natural logarithm of the 2.875 times mortality data. For ¢ > 1979 we use a
polynomial of degree one. The fitted function Inc(t) obtained is

exp(—1599.38143 + 1.70781¢ — 0.000454057¢2) 1845 < ¢ < 1944
Inc(t) = { exp(2667.46 — 2.65571t + 0.0006615t2) 1944 < t < 1979
exp(101.683531 — 0.0501¢) 1979 < t < 2000

Massachusetts data. Between 1845 and 1953, and after 1953 we approximated
the incidence by polynomials of degree two. These two curves do not intersect and
are connected with a horizontal line. The function Inc(t) obtained is:

exp(—1214.31417 + 1.31483t — 0.000353917t2) 1845 < t < 1950
Inc(t) = exp(3.834937) 1950 <t < 1952.325
exp(2327.06362 — 2.30263t 4 0.00056991¢%) 1952.325 < ¢t < 2000
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