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Abstract. In this paper, we study the dynamics of a laissez-faire predator–
prey model with both a specialist and a generalist predator. We analyze the
stabilities of equilibria by performing linearized stability analyses. We then
reexamine the stability of the equilibrium where the prey and predator coexist
by constructing a Lyapunov function. If we hold the generalist predator popu-
lation constant, treating it as a bifurcation parameter, we show that our model
can possess multiple (up to three) limit cycles that surround an equilibrium in
the interior of the first quadrant. Our model shows rich dynamics including
fold, transcritical, pitchfork, Hopf, cyclic-fold, and Bautin bifurcations as well
as heteroclinic connections. If we instead vary the generalist predator pop-
ulation slowly across bifurcations, the model exhibits bursting behavior as it
alternates between a repetitive spiking phase and a quiescent phase.

1. Introduction. Predators may be divided into two large groups, specialists and
generalists [13, 43]. Specialist predators rely on a single food source, while generalist
predators feed on a variety of abundant prey. Andersson and Erlinge [2] classified
predators into three groups based on the degree of specialization and mobility:
resident specialists, nomadic specialists, and generalists. However, in this paper,
we will only refer to two groups of predators, specialists and generalists.

Many experimental and theoretical studies have analyzed regular multi-annual
cycles of rodent population in northern Fennoscandia (see, for example, [13, 14, 23,
24, 32, 43]). Hanski et al. [13] have suggested that specialist predators contribute to
population cycles while generalist predators have a stabilizing effect. The number
of generalist predators increases from north to south and in southern regions small
rodents exhibit seasonal changes in population size without more pronounced multi-
annual cycles.

If we disregard age, size, and time lags, the interactions among a specialist preda-
tor, a generalist predator, and their prey in a homogeneous environment may be
modeled mathematically by

dN

dT
= rN

(

1 −
N

K

)

− ΦII(N)P − ΦIII(N)G, (1a)

dP

dT
= P Ψ(N, P ), (1b)
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Figure 1. Holling (a) type II and (b) type III functional responses.
The abscissa and ordinate represent the prey density and the num-
ber of prey eaten per predator per unit time. The parameter as

and ag are half-saturation constants and cs and cg are maximum
per-capita consumption rates. The subscripts s and g signify the
specialist and generalist predators.

with

ΦII(N) =
csN

N + as

, ΦIII(N) =
cgN

2

N2 + a2
g

. (2)

N and P are the prey and the specialist predator populations at time T . G repre-
sents the generalist predator population. We will start by treating G as a parameter.
ΦII(N) and ΦIII(N) are functional responses. Ψ(N, P ) is the specialist predator’s
numerical response. We will say more about ΦII(N), ΦIII(N), and Ψ(N, P ) shortly.

In prey growth-equation (1a), the prey population grows logistically, in the ab-
sence of predators, with intrinsic rate of growth r and carrying capacity K. In the
presence of predators, however, the growth of the prey is hindered by both the spe-
cialist and generalist predators at rates proportional to their functional responses,
ΦII(N) and ΦIII(N). The subscripts, II and III, signify the type II and the type III
functional responses identified by Holling [17, 18].

A functional response specifies the rate at which prey are consumed, per predator,
as a function of the prey density [41]. In a type II functional response (Fig. 1(a)),
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the predation rate increases as the prey density grows, but eventually levels off
due to the predator’s handling time. In a type III functional response (Fig. 1(b)),
characterized by an S-shaped curve, the predation rate is convex at low prey density,
but concave at high prey density. We assume that the specialist and generalist
predators possess Holling type II and type III functional responses: many generalist
predators that have a stabilizing effect are characterized by a type III functional
response. In each functional response, the subscripts s and g signify the specialist
and generalist predators. The parameter a (as or ag) is referred to as the half-
saturation constant and is the number of prey at which the per-capita predation
rate is half of its maximum, cs or cg.

In equation (1b), Ψ(N, P ), the per-capita growth rate of the specialist preda-
tor population, is the numerical response (e.g., [47]). There are two forms of the
numerical response for the specialist predator that are frequently used [14, 32, 47]:

Ψ(N, P ) = s

(

1 −
P

qN

)

(3)

and

Ψ(N, P ) = Ψ(N) =
b

cs

ΦII(N) − m, (4)

where all parameters, s, q, b, and m, are positive constants.
The numerical response in equation (3) was introduced by Leslie [28]. The preda-

tor population grows logistically with intrinsic rate of growth s and a carrying capac-
ity, qN , that is proportional to the number of prey. This predator growth-equation
clearly shows that the per-capita growth rate (1/P dP/dT ) is a monotonically de-
creasing function of P . Predator equation (3) is often applied when predators are
territorial [14, 43].

Equation (4) is called a laissez-faire predator equation [5, 47] since the special-
ist predators do not interfere with each other. The predator population grows by
converting the consumed prey into new predators with efficiency b/cs, where b is
the maximum per-capita birth rate of the specialist predators and cs is the maxi-
mum per-capita consumption rate. In the absence of prey, however, the specialist
predators decline exponentially with per-capita mortality rate m.

In this paper, we study a simple laissez-faire predator–predator–prey model with
both specialist and generalist predators,

dN

dT
= rN

(

1 −
N

K

)

− ΦII(N)P − ΦIII(N)G, (5a)

dP

dT
= P

(

b

cs

ΦII(N) − m

)

, (5b)

where G is assumed to be a parameter. In analogy with laissez-faire predator
equation (5b), we will call model (5) a laissez-faire predator–predator–prey model.

Compared to the many studies of predator–predator–prey models with the Leslie
numerical response (see, for example, [13, 30, 43, 46]), there have been few studies
of predator–predator–prey models with laissez-faire numerical responses and no
detailed analysis of the underlying dynamics. We believe our analysis serves as a
useful contrast to similar models with Leslie numerical responses and as a baseline
for future work that considers more complicated models.

We first start by nondimensionalizing system (5). Introducing dimensionless
variables,
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x =
N

as

, y = P
cs

ras

, z = G
cg

rag

, t = rT, (6)

reduces system (5) to

dx

dt
= x

(

1 −
x

γ

)

−
x

1 + x
y −

δx2

δ2 + x2
z, (7a)

dy

dt
= αy

(

x

1 + x
− β

)

, (7b)

where

α =
b

r
, β =

m

b
, γ =

K

as

, δ =
ag

as

. (8)

Nondimensionalized system (7) can be rewritten as

dx

dt
= φ(x) (f(x) − y) , (9a)

dy

dt
= αy (φ(x) − β) , (9b)

with

φ(x) =
x

1 + x
(10)

and

f(x) = (1 + x)

(

1 −
x

γ
−

δx

δ2 + x2
z

)

. (11)

Throughout this paper, we will usually assume that α > 0, 0 < β < 1, γ > 2, and
0 < 2δ < γ.

This paper consists of four sections. In Section 2, we study nondimensionalized
system (9) treating z as a time-independent parameter. We carry out linearized sta-
bility analyses for all equilibria. We mainly focus on the stability of an equilibrium
point in the interior of the first quadrant that we call the coexistence equilibrium.
We then reinvestigate the stability of the coexistence equilibrium by constructing a
Lyapunov function. We report on numerical studies that show that system (9) can
possess up to three limit cycles that surround the coexistence equilibrium. These
multiple limit cycles arise by means of a local Hopf bifurcation or a global cyclic-
fold bifurcation. Moreover, we observe a heteroclinic orbit that connects two saddle
points. In Section 3, we apply sinusoidal forcing to z. For slow forcing, we observe
bursting phenomena where the fast variables, x(t) and y(t), undergo successive al-
ternations between active spike-like oscillations and a silent phase that is nearly at
steady state. Finally, in Section 4, we summarize our results and consider general
interpretations of our results from an ecological viewpoint.
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Figure 2. Possible null-clines for system (9) with the parameter
values, α = 0.2, β = 0.45, γ = 10, δ = 1.75, and different values of
z: (a) z = 0.5, (b) z = 1.05, (c) z = 1.5, (d) z = 1.6, (e) z = 1.75.
Thin curves are the prey null-clines and thick lines are the predator
null-clines. Circles indicate equilibrium points.

2. Laissez-faire model with a time-independent parameter z.

2.1. Analytic studies.

2.1.1. Linearized stability analyses of equilibria. Fig. 2 illustrates several possible
zero-growth isoclines (or null-clines) where either the prey or specialist-predator
growth rates are zero. At the intersection of the prey and specialist predator null-
clines, we find equilibria, points where both dx/dt and dy/dt are zero.

Assuming α > 0, 0 < β < 1, γ > 2, and 0 < 2δ < γ, system (9) has at most five
equilibria,

E0 = (0, 0), E1,i = (ki, 0), E2 = (x∗, f(x∗)), (12)

where f(ki) = 0 (i = 1, 2, 3) and x∗ = β/(1 − β). Please note that we assign
E1,i (i = 1, 2, 3) from left to right. For example, if we have one equilibrium on
the positive x-axis, we call the equilibrium E1,1. If three equilibria appear on the
positive x-axis, we designate them as E1,1, E1,2, and E1,3 (0 < k1 < k2 < k3).

Through our analyses, we will also assume x∗ < max(ki) = k̂ (i = 1, 2, 3). We will
say more about E1,i later in this section.

In order to analyze the stability of an equilibrium, we may use the Jacobian (or
community) matrix if the eigenvalues of the Jacobian evaluated at the equilibrium
have nonzero real parts. The Jacobian matrix for system (9) is

J =

(

φ′(x) (f(x) − y) + φ(x)f ′(x) −φ(x)
αyφ′(x) α (φ(x) − β)

)

. (13)
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At E0, where both prey and specialist predators are extinct, the Jacobian is

J =

(

1 0
0 −αβ

)

(14)

and the eigenvalues are the components on the diagonal,

λ1 = 1, λ2 = −αβ. (15)

Hence, E0 is a saddle point because the two real eigenvalues are of opposite sign.
The Jacobian at E1,i (i = 1, 2, 3), where only the prey survives, is

J =

(

φ(ki)f
′(ki) −φ(ki)

0 α (φ(ki) − β)

)

(16)

and the eigenvalues are

λ1 = φ(ki)f
′(ki), λ2 = α(φ(ki) − β). (17)

The stability of E1,i can be determined by the signs of eigenvalues λ1 and λ2. That
is, E1,i is a stable (unstable) node/focus if the signs of both eigenvalues are negative
(positive). If the eigenvalues are of opposite sign, E1,i is a saddle point, which is
unstable. With our assumptions, α and φ(ki) are positive: φ(x) is an increasing
function of x. Thus, E1,i is a stable node/focus if f ′(ki) < 0 and ki < x∗, an unstable
node/focus if f ′(ki) > 0 and ki > x∗, and a saddle point if f ′(ki) (ki − x∗) < 0.

The values of ki’s can be obtained by solving f(x) = 0. We must thus consider
the cubic equation

x3 − γx2 + (δ2 + γδz)x − γδ2 = 0. (18)

Using the discriminant

∆ = Q3 + R2 (19)

with

Q =
3

(

δ2 + γδz
)

− γ2

9
, R =

γ
{

9(2δ2 − γδz) + 2γ2
}

54
, (20)

we find that there are three cases.
If ∆ > 0, cubic equation (18) has a unique positive root. Because f ′(k1) < 0 and

k1 > x∗, the two eigenvalues in (17) are of opposite sign. Hence, E1,1 = (k1, 0) is a
saddle point. If ∆ < 0, equation (18) has three positive roots, so that our system
has three positive x-axis equilibria, E1,1, E1,2, and E1,3 with 0 < k1 < k2 < k3.
Please see Table 1 for more details about the stability of these equilibria. Finally,
if ∆ = 0, at least two roots coincide. In this case, we expect a fold bifurcation, also
known as a tangent, saddle-node, or blue-sky bifurcation.

At coexistence equilibrium E2, where both prey and specialist predators coexist,
the Jacobian is

J =

(

βf ′(x∗) −β
αf(x∗)φ′(x∗) 0

)

(21)

and the characteristic equation is

λ2 − βf ′(x∗)λ + αβf(x∗)φ′(x∗) = 0. (22)

Since the quantities β and αβf(x∗)φ′(x∗) are positive, the Routh–Hurwitz criterion
guarantees that equilibrium E2 is stable if f ′(x∗) is negative.
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Table 1. Equilibria and their stability

Equilibrium Coordinates Stability / Coordinates

E0 (0, 0) Saddle

E2 (x∗, f(x∗)) Stable if f ′(x∗) < 0
Unstable if f ′(x∗) > 0

∆ > 0 : E1,1 (k1, 0) Saddle

∆ < 0 : E1,i (i = 1, 2, 3) (ki, 0) x∗ < k1 < k2 < k3 E1,1: Saddle
E1,2: Unsta-
ble Node
E1,3: Saddle

k1 < x∗ < k2 < k3 E1,1: Stable
Node
E1,2: Unsta-
ble Node
E1,3: Saddle

k1 < k2 < x∗ < k3 E1,1: Stable
Node
E1,2: Saddle
E1,3: Saddle

2.1.2. Stability analysis by a Lyapunov function. To study the stability and basin
of attraction of equilibrium E2 = (x∗, f(x∗)), we perform Harrison’s gedankenex-
periment [15] and introduce the Lyapunov function

V (x, y) = α

∫ x

x∗

(

1 −
β

φ(u)

)

du +

∫ y

y∗

(

1 −
f(x∗)

u

)

du. (23)

Equation (23) can also be rewritten as

V (x, y) = V1(x) + V2(y), (24)

where

V1(x) = α
[

(1 − β)(x − x∗) − β ln
∣

∣

∣

x

x∗

∣

∣

∣

]

(25)

and

V2(y) = (y − y∗) − f(x∗) ln

∣

∣

∣

∣

y

y∗

∣

∣

∣

∣

. (26)

The function V (x, y) is zero at the coexistence equilibrium E2 and is positive for all
positive x(t) and y(t) except at E2. If the inner product of the gradient of V (x, y),
∇V (x, y), with the vector field is strictly negative,

∇V (x, y) ·

(

dx

dt
,

dy

dt

)

=
∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
=

dV

dt
< 0, (27)

in a neighborhood of E2, then the vector field points inward on the level curves
of V (x, y). Thus, any neighborhood that satisfies (27) is a subset of the basin of
attraction.
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Figure 3. A figure illustrating (a) isoclines consistent with global
asymptotic stability and (b) a subset of the domain of attraction
(D) for an equilibrium where both prey and predators coexist in
laissez-faire model (9). Equilibria (circles) can be found at the
intersections of the prey null-clines (thin lines) and the predator
null-clines (thick lines). ULC and SLC signify unstable and stable
limit cycles: (a) β = 0.87 and (b) β = 0.3 with α = 0.1, γ = 10,
δ = 1.7, and z = 1.05.

Differentiating either (23) or (24) with respect to time, we have

V̇

(

=
dV

dt

)

= α (φ(x) − β) (f(x) − f(x∗)) . (28)

The time derivative V̇ is strictly negative in a neighborhood of the coexistence
equilibrium E2 if f(x) > f(x∗) for x < x∗ and f(x) < f(x∗) for x > x∗. With
these sufficient conditions, we can determine a subset of the domain of attraction
of coexistence equilibrium E2,

D = {(x, y) | V (x, y) < u} (29)

with

u = min {V (xL, f(x∗)), V (xH , f(x∗)), V (x∗, 0), V (x∗, +∞)} (30)

where xL and xH are the smallest and largest values such that

f(x) ≥ f(x∗) , for xL < x < x∗ , (31a)

f(x) ≤ f(x∗) , for x∗ < x < xH . (31b)

Fig. 3(a) shows a case in which the entire interior of the first quadrant is the basin
of attraction of E2. In contrast, Fig. 3(b) shows a case in which D is not the entire
basin of attraction, or rather, underestimates this basin. Please note that D, in
Fig. 3(b), is only a subset of the basin of attraction: all trajectories starting inside
the unstable limit cycle converge to stable equilibrium E2.

2.2. Numerical observations. Laissez-faire model (9) possesses at most five equi-

libria for α > 0, γ > 2, 0 < 2δ < γ, and 0 < β < f(k̂), where k̂ = max(ki),
i = 1, 2, 3. We have found that extinction equilibrium, E0, is a saddle point, and
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Figure 4. Phase portraits and null-clines for system (9) with α =
0.5, γ = 10, δ = 1.7, and z = 1 with (a) β = 0.86, (b) β = 0.75,
(c) β = 0.4, and (d) β = 0.1. Equilibria (circles) occur at the
intersections of the prey null-clines (thin lines) and the predator
null-clines (thick lines). Decreases in β cause the specialist predator
null-cline to move leftward. As we decrease β, the prey and the
specialist predators coexist either at equilibrium or in an oscillatory
manner. SLC and ULC signify a stable and an unstable limit cycle.

the stability of coexistence equilibrium E2 is determined by the sign of f ′(x∗). E2 is
stable (unstable) if f ′(x∗) is negative (positive). For E1,i (i = 1, 2, 3), we considered
three cases according to discriminant (19) for cubic equation (18).

In the following two subsections, we highlight two striking features observed in
model (9): the occurrence of multiple (up to three) limit cycles and the occurrence
of a heteroclinic connection.

2.2.1. Multiple limit cycles. In Fig. 4(a), for any initial conditions, the system re-
turns to stable coexistence equilibrium E2. As we decrease the parameter β, the
predator vertical null-cline crosses from the right to the left of the the right hump of
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the prey null-cline (Fig. 4(b)). E2 loses its stability and a stable limit cycle emerges
around E2 in a super-critical Hopf bifurcation. As we continue to decrease β, the
predator null-cline passes through the valley of the prey null-cline, E2 regains its
stability, and an unstable limit cycle arises in a reverse sub-critical Hopf bifurcation
(Fig. 4(c)). Both E2 and the unstable limit cycle lie inside the original stable limit
cycle. For small β, the predator null-cline comes close to the y-axis (Fig. 4 (d)). The
coexistence equilibrium once again loses its stability in a super-critical Hopf bifurca-
tion that gives rise to a stable limit cycle. Therefore, our system exhibits three limit
cycles that surround the coexistence equilibrium. More precisely, a large-amplitude
stable limit cycle encircles an unstable limit cycle, which, in turn, surrounds both
the small-amplitude stable limit cycle and the coexistence equilibrium.

Small β implies a low mortality rate or a high birth rate for the specialist predator
population. Fig. 4 shows that too high a birth rate or too low a death rate for the
specialist predators makes the prey and the specialists vulnerable to perturbations
that lead to extinction.

2.2.2. Heteroclinic connection. We can observe heteroclinic connections in two spe-
cial situations. Fig. 5 shows a heteroclinic connection that joins a saddle equilibrium
and a semi-stable equilibrium corresponding to a fold bifurcation. Increases in z
pull down the prey null-cline, while maintaining a stable limit cycle (SLC) that
surrounds a coexistence equilibrium. As we continue to increase z, the limit cycle
collides with a saddle and a semi-stable equilibrium. As a result, two orbits form
a cycle graph with the equilibria as the two vertices. One orbit coming out from
a semi-stable equilibrium lies on the abscissa, and the other orbit emerges when
the unstable manifold coming from the saddle equilibrium coincides with the stable
manifold entering the semi-stable equilibrium. Finally, if we increase z further, the
specialist predator population goes extinct for all initial conditions.

The second case to be discussed here is a heteroclinic connection that joins two
saddle equilibria. We can think of this case as the one in Fig. 5(c), but we now vary
β with fixed α, γ, δ, and z. Fig. 6(a) shows two basins of attractions separated by
a separatrix (thick dot-dash curve), the stable manifold of the saddle point E1,2.
Trajectories below the separatrix approach the equilibrium where the prey and
the specialists coexist, while trajectories above the separatrix sink to E1,1 where
specialists are extinct. Decreases in the parameter β slide the specialist predator
null-cline to the left. Thus, as we decrease β, a super-critical Hopf bifurcation gives
rise to a stable limit cycle that lies below the separatrix (Fig. 6(b)). This stable limit
cycle enlarges, hits the separatrix, and vanishes in a heteroclinic orbit that connects
two saddle equilibria (Fig. 6(c)). If we continue to decrease β, all trajectories are
drawn towards stable equilibrium E1,1 (Fig. 6(d)).

Fig. 5 tells us that the specialist predator population may go extinct if the gen-
eralist population grows. At high generalist density, increasing the birth rate or
decreasing the mortality rate for the specialist predators can worsen the specialist’s
survival (Fig. 6).

2.3. Two-parameter bifurcation diagram. We have only discussed two partic-
ular phenomena in the previous section. Fig. 7 depicts the bifurcation curves that
occur as we vary two parameters, z and β. This (β, z) parameter plane was obtained
using the software package XPPAUT [11], which provides a simple interface to the
continuation package AUTO [9].
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Figure 5. Phase portraits displaying vector fields and null-clines
for system (9) with the parameter values α = 0.3, γ = 10, δ = 1.65,
β = 0.75: (a) z = 1.4, (b) z ≈ 1.6249, and (c) z = 1.64. Equilib-
ria (circles) occur at the intersections of the prey null-clines (thin
lines) and the predator null-clines (thick lines). As we increase z,
a stable limit cycle (SLC) disappears in a heteroclinic connection
that consists of two orbits: one orbit coming out from a semi-
stable equilibrium lies on the abscissa, and the other orbit occurs
when the unstable manifold coming from a saddle equilibrium coin-
cides with the stable manifold entering the semi-stable equilibrium.
Further increase in z leads all trajectories to approach the stable
equilibrium, where the specialist predator goes extinct.

The (β, z) parameter plane is divided into regions R(i, j) where i(= 3, 4, 5) and
j(= 0, 1, 2, 3) indicate the number of equilibria in the first quadrant and the num-
ber of limit cycles that surround the coexistence equilibrium. Embedded figures
are typical prey null-clines, y = f(x), that are observed between dotted lines or
thick dashed lines; in particular, the thick dashed lines represent branches of fold
bifurcations.

Local bifurcations such as fold (thick dashed lines), transcritical (thin dot-dash
curve), and sub-critical (thin curve) / super-critical (thick curve) Hopf bifurcations,
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Figure 6. Phase portraits displaying vector fields and null-clines
for system (9) with the parameter values α = 0.5, γ = 10, δ = 1.65,
z = 1.65: (a) β = 0.833, (b) β = 0.8088, (c) β ≈ 0.8080363, and
(d) β = 0.785. Equilibria (circles) occur at the intersections of
the prey null-clines (thin dashed lines) and the predator null-clines
(thick dashed lines). As β decreases, (a) two basins of attractions
are separated by a separatrix (dot-dash curve), and (b) unstable
coexistence equilibrium E2 is surrounded by a stable limit cycle af-
ter undergoing a super-critical Hopf bifurcation. As we continue to
decrease β, (c) the stable limit cycle gets larger, hits the separatrix,
and eventually disappears in a heteroclinic connection. Finally, (d)
all trajectories approach the stable equilibrium, so that the special-
ist predator goes extinct.

can be found by analyzing local dynamics in the neighborhood of an equilibrium. If
a limit cycle appears without a change in the stability of an equilibrium, we should
consider a global bifurcation. Fig. 7 shows a branch of global cyclic-fold bifurcations
(thick dot-dash curves) at which stable and unstable limit cycles appear and sepa-
rate or coalesce and disappear. We also observe two branches of heteroclinic orbits
indicated by H : in the enlarged subfigure inside Fig. 7, a branch of heteroclinic
orbits connecting saddle and a semi-stable equilibrium is drawn as cross marks (×)
to distinguish a branch of heteroclinic orbits that link two saddle equilibria (thin
dashed curve).



LAISSEZ-FAIRE PREDATOR–PREDATOR–PREY MODEL 157

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

R(3, 1)

R
(3, 0)

R
(2, 0)

R(3, 1)

R(3, 1)

R(3, 3) R(3, 2)

R(3, 1)

R(3, 0)

R(3, 0)

R(5, 0)

R(3, 0)

R(4, 0) R(4, 0)

R(2, 0)

R
(2, 0)

R
(2, 0)

R
(3, 0)

R
(3, 0)

R(3, 1)

β

 z

R(5,0)R(5,0)

R(5,1)H

B

B

Figure 7. The (β, z) parameter plane for laissez-faire model (9)
with α = 0.5, δ = 1.65, and γ = 10. The parameter plane is divided
into regions R(i, j) where i(= 3, 4, 5) and j(= 0, 1, 2, 3) indicate the
number of equilibria shown in the first quadrant and the number of
limit cycles that surround the coexistence equilibrium. Embedded
subplots are typical prey null-clines, y = f(x), observed in each
region bounded by dotted lines or thick dashed lines. The thick
dashed lines, in particular, represent branches of fold bifurcations.
The system also exhibits transcritical (thin dot-dash curve), super-
critical Hopf (thick solid curve), sub-critical Hopf (thin solid curve),
and global cyclic-fold (thick dot-dash curve) bifurcations. Curves
of heteroclinic connections are indicated by H . At a codimension-
two Bautin bifurcation (B), a Hopf bifurcation changes from super-
to sub-critical and from the Bautin bifurcation, a curve of cyclic-
fold emanates. A pitchfork bifurcation (PFB) can be found at the
intersections of curves of fold, transcritical, and super-critical Hopf
bifurcations and a branch of heteroclinic connections.
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The codimension of a bifurcation is the number of parameters that must be varied
for the bifurcation to occur. For example, a fold bifurcation is a codimension-one
bifurcation since it can be achieved by changing a single parameter. We observe a
bifurcation point where a Hopf bifurcation changes from super- to sub-critical. From
this point, a curve of cyclic-fold bifurcations also emanates. This codimension-two
bifurcation is called a Bautin (B) or generalized Hopf bifurcation [26].

Here is one example of how to study dynamical behaviors as we change a bi-
furcation parameter. Let us take the transect z = 1 in Fig. 7 and let us vary β
between 0.01 and 0.95 for fixed α(= 2), γ(= 10), δ(= 1.65), and z(= 1). Recall
that increasing (decreasing) β leads to the rightward (leftward) movement of the
specialist-predator vertical null-cline, and varying β can give rise to a local Hopf
bifurcation. When the x-coordinate of a coexistence equilibrium, x∗, is less than

k̂ = k1, there are three equilibria, E0, E1,1, and E2, in the first quadrant. For
x∗ > k1, E1,1 changes from an unstable saddle to a stable node and no coexistence
equilibrium E2 occurs in the interior of the first quadrant. We have a transcritical
bifurcation (thin dot-dash curve) since E1,1 and E2 exchange stability.

The second component of R(i, j) in Fig. 7 denotes the number of limit cycles.
For small β, the predator vertical null-cline is positioned on the left side of the left
hump of the prey null-cline y = f(x). Our system exhibits three limit cycles that
surround a coexistence equilibrium. As we increase β, the coexistence equilibrium
undergoes a reverse super-critical Hopf bifurcation (thick solid curve) that destroys
the stable, small-amplitude limit cycle. As we continue to increase β, the coexistence
equilibrium loses its stability and an unstable limit cycle disappears in a sub-critical
Hopf bifurcation. If we increase β further, the coexistence equilibrium regains
stability and the remaining stable limit cycle is annihilated in a reverse (super-
critical) Hopf bifurcation.

As a prelude to our discussion for the time-dependent parameter z(t) in the
next section, we will consider some bifurcation diagrams for the time-independent
parameter z in regions of interest.

2.3.1. Bifurcation diagrams in z for the occurrence of multiple limit cycles. Fig. 8
depicts the bifurcation diagram for z in the region where multiple limit cycles occur.
The thick and thin lines indicate the x-coordinates of stable and unstable coexis-
tence equilibria. For small z, the coexistence equilibrium is unstable, but it becomes
stable after undergoing either a reverse super-critical (HB+) or sub-critical (HB−)
Hopf bifurcation as we increase z. Changing z also changes the number of global
cyclic-fold bifurcations (CFB) at which stable and unstable limit cycles coalesce
and disappear.

The series of subplots shows, from top to bottom, how the bifurcation diagram
for z changes as we increase β around the codimension-two Bautin bifurcation.
Increasing β causes a super-critical Hopf bifurcation to occur near a global cyclic-
fold bifurcation. As we continue to increase β, the super-critical Hopf bifurcation
and the adjacent cyclic-fold bifurcation eventually collide and disappear, so that a
sub-critical Hopf bifurcation arises in a Bautin bifurcation.

2.3.2. Bifurcation diagrams for z as it crosses two branches of fold bifurcations.

We illustrate a sequence of bifurcation diagrams for z in Figs. 9–12 to show how
pitchfork bifurcations and heteroclinic connections occur with increasing β and fixed
α(= 0.5), γ(= 10), and δ(= 1.65). Recall that the x-coordinates of coexistence
equilibria only depend on β, so that the branch of coexistence equilibria comes to
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Figure 8. Bifurcation diagrams for laissez-faire model (9). The
maximum values of the x-coordinates of stable limit cycles and
unstable limit cycles are drawn as filled and open circles. Stable
coexistence equilibria (thick solid line) and unstable coexistence
equilibria (thin solid line) are computed for increasing z with (a)
β = 0.1, (b) β = 0.22, and (c) β = 0.5: α = 0.5, γ = 10, δ =
1.65. (a) and (b) Two global cyclic-fold bifurcations (CFB) and
one local reverse super-critical Hopf (HB+) occur as we increase
z. (c) One reverse sub-critical Hopf bifurcation (HB−) and one
cyclic-fold bifurcation appear as we increase z.

be horizontal. Also, the coexistence equilibrium does not exist in the interior of the
first quadrant if it is a saddle point.

As we increase β, in Fig. 9, the branch of coexistence equilibria rises, sweeping
through the lower branch of the equilibria where the specialists go extinct. Mean-
while, we observe an exchange of stability between the coexistence equilibrium and
the equilibrium where only the prey survive. If we continue to increase β, a reverse
super-critical Hopf bifurcation (HB) occurs in the bifurcation parameter range of
interest. The Hopf bifurcation slides rightwards and eventually it hits a pitchfork
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Figure 9. Bifurcation diagrams for z across two branches of fold
bifurcations in laissez-faire model (9) with different values of β
and fixed α = 0.5, γ = 10, and δ = 1.65: (a) β = 0.4, (b) β ≈
0.6018, (c) β = 0.66, and (d) β ≈ 0.6882. The highest and lowest
values of x-coordinates of stable limit cycles (filled circles) and
the x-coordinates of unstable node/focus (thin solid curve), stable
node/focus (thick solid curve), and saddle (dashed curve) equilibria
are computed as we vary z. FB: fold bifurcation, TCB: transcritical
bifurcation, PFB: pitchfork bifurcation, and HB: (super-critical)
Hopf bifurcation. When the coexistence equilibrium is saddle point,
it exists in the fourth quadrant.

bifurcation (PFB) at which a transcritical and a fold bifurcation collide with each
other. Please note that the pitchfork bifurcation cannot be classified as either super-
or sub-critical. The classification of sub- and super-critical pitchfork bifurcations
may be impossible when we have equations in addition to a single one-dimensional
differential equation [40].

As we continue to increase β after the collision of branches of fold, transcritical,
and Hopf bifurcations, the system exhibits a heteroclinic connection (H) at which a
stable limit cycle terminates as shown in Figs. 10 and 11. Outside subfigures display
the prey and predator null-clines for each bifurcation point. These two bifurcation
diagrams correspond to the two cases of heteroclinic connections described in section
2.2.2.

Further increases in β cause both a heteroclinic connection (H) and a transcritical
bifurcation (TCB) to approach fold bifurcation FB2 in Fig. 12. When a transcritical
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Figure 10. Bifurcation diagrams for z around a heteroclinic con-
nection in laissez-faire model (9). The highest and lowest values
of the x-coordinates of stable limit cycles (filled circle) and the
x-coordinates of stable node/focus (thick solid curve), unstable
node/focus (thin solid curve), and saddle (dashed curve) equilibria
are computed with α = 0.5, β = 0.75, γ = 10, and δ = 1.65. As
we increase z, a heteroclinic orbit (H) occurs by connecting a sad-
dle equilibrium and a semi-stable equilibrium that corresponds to
a fold bifurcation (FB1). If we continue to increase z, the system
exhibits a transcritical (TCB) and a fold (FB2) bifurcation. Out-
side subplots illustrate the predator null-clines (dashed line) and
the prey null-clines (solid line) that appear at each bifurcation
point.

bifurcation collides with the fold bifurcation, we can see a pitchfork bifurcation at
which a heteroclinic connection vanishes. As the branch of coexistence equilibria
rises, a reverse (super-critical) Hopf bifurcation (HB) slides to the left rapidly and
a fold and a transcritical bifurcation appear through the upper branch of specialist-
predator extinction equilibria.

3. Laissez-faire model with slowly varying z(t) = z0 + M sin(ǫt). In this
section, we consider laissez-faire model (9) with slowly varying z(t) = z0+M sin(ǫt)
where z0, M , and ǫ (≪ 1) are positive. System (9) with time-dependent parameter



162 GUNOG SEO AND MARK KOT

1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7 1.72

0

1

2

3

4

5

6

z

x

x

y

FB
1

x

y

H

x
y

TCB

x

y

FB
2

FB
1

H

TCB

FB
2

Figure 11. Bifurcation diagram for z around a heteroclinic orbit
in laissez-faire model (9) with α = 0.5, β = 0.808, γ = 10, and
δ = 1.65. The system possesses a heteroclinic orbit that connects
two saddle equilibria with increasing z. H stands for a heteroclinic
connection, FB1,2 for a fold bifurcation, and TCB for a transcrit-
ical bifurcation. Filled circles are the highest and lowest values of
x-coordinates of stable limit cycles, thick and thin solid curves indi-
cate the x-coordinates of stable and unstable node/focus equilibria,
and dashed curves denote the x-coordinates of saddle equilibria.
In outside subplots, solid and dashed curves indicate the prey and
predator null-clines.

z(t) can be written as a fast-slow system,

dx

dt
= x

(

1 −
x

γ

)

−
x

1 + x
y −

δx2

δ2 + x2
z, (32a)

dy

dt
= αy

(

x

1 + x
− β

)

, (32b)

dz

dt
= ǫM cos(ǫt). (32c)

In order to analyze fast-slow system (32), we will employ the method of dissection

pioneered by Rinzel [38, 45]: Rinaldi and Scheffer [37] also described how to study
fast and slow processes in ecosystems. The fast variables, x(t) and y(t), reach a
steady state rapidly while slow variable z(t) does not change significantly. Thus,
the dynamics of fast variables can be studied assuming that dz/dt = 0, which is
equivalent to treating z as a time-independent parameter. In sections 2.2 and 2.3,
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Figure 12. Bifurcation diagrams for z across branches of two fold
bifurcations with fixed α = 0.5, γ = 10, and δ = 1.65 for different
values of β: (a) β ≈ 0.80935, (b) β = 0.811, (c) β = 0.84, and
(d) β = 0.86. The highest and lowest values of x-coordinates of
stable limit cycles (filled circle) and the x-coordinates of unstable
node/focus equilibria (thin solid curve), stable node/focus equilib-
ria (thick solid curve), and saddle equilibrium points (dashed curve)
are computed as we vary z. FB: fold bifurcation, TCB: transcritical
bifurcation, PFB: pitchfork bifurcation, and HB: (super-critical)
Hopf bifurcation. Note that the saddle coexistence equilibrium
does not appear in the interior of the first quadrant.

we numerically analyzed the dynamics of fast subsystem (32a, b) treating z as a
bifurcation parameter. We will now slowly vary a sinusoidal function z(t) in time,
crossing over a range where the fast subsystem tracks its stable attractors. During
the slow variation in z(t), system (32) undergoes successive alternations between
repetitive spiking oscillations (active phase) and a quasi-steady state (silent phase).
This phenomenon is called bursting.

Bursting has been rigorously studied in neural models [19, 21, 22, 45]. In contrast,
few ecologists have studied bursting (but see, for instance, [37, 44]). Many authors
have analyzed periodically forced predator–prey models, emphasizing chaotic as-
pects [1, 10, 20, 25, 29, 33, 35, 36, 39]. Unlike those chaos papers, we will show how
bursting occurs in our fast-slow system.
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Figure 13. Bursting induced by a periodic modulation of the con-
trol parameter z(t) between 0.3 and 1.55 in system (32) for α = 0.5,
β = 0.1, γ = 10, δ = 1.65, M = 0.625, and ǫ = 0.003 with initial
conditions (x0, y0, z0) = (0.1111, 0.9833, 0.925). The time series of
(a) the prey (x(t)) population and (b) specialist predator (y(t))
population are illustrated with the time series of the generalist
predator (z(t)) populations. A trajectory of x(t) for one period
of time in the generalist predator z(t) is superimposed on the bi-
furcation diagram for the time-independent parameter z as we (c)
decrease z(t) or (d) increase z(t). HB signifies a (super-critical)
Hopf bifurcation and CFB denotes a cyclic-fold bifurcation. In
the bifurcation diagram for the bifurcation parameter z, thin and
thick lines indicate the x-coordinates of unstable and stable equi-
libria. Filled and open circles represent the highest values of the
x-coordinates of stable and unstable limit cycles.

We numerically solved our fast-slow system using the XPPAUT ODE integrator,
Stiff, that is based on the stiff algorithm in [34]. XPPAUT also has other adaptive
integrators such as Gear [12], Rosenbrock [34], and CVODE [8] that are implicit
and work well for stiff problems.

In order to make model (32) burst, it is usually assumed that the fast and slow
variables have considerably different time scales. Choosing ǫ (= 0.003) small enough,
we can observe (periodic) bursting while we slowly change slow variable z(t), 0.3 ≤
z ≤ 1.55, between quiescent (bifurcation of equilibria) and spiking (bifurcation of
limit cycles) regimes periodically (Fig. 13(a) and (b)): a periodic bursting occurs
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Figure 14. Time series of x(t) and the corresponding bifurcation
diagrams for the time-independent parameter z that describe the
slow passage through a Hopf bifurcation (HB) in system (32): (a)
0.5 ≤ z ≤ 1.4 and (b) 0.3 ≤ z ≤ 1.55 with α = 0.5, β = 0.1, γ = 10,
δ = 1.65, ǫ = 0.003, and different values of M , (a) M = 0.45 and
(b) M = 0.625. Applied initial conditions are (a) (x0, y0, z0) =
(0.1111, 0.9945, 0.95) and (b) (x0, y0, z0) = (0.1111, 0.9833, 0.925).
In the bifurcation diagram for the bifurcation parameter z, thin
and thick lines indicate the x-coordinates of unstable and stable
equilibria. Filled and open circles represent the highest values of
the x-coordinates of stable and unstable limit cycles. A trajectory
of x(t) for one period of z(t) is superimposed in the bifurcation
diagram for time-independent parameter z. HB: a (super-critical)
Hopf bifurcation and CFB: a cyclic-fold bifurcation.

conditionally because it exists for certain parameter values. This case is when we
change z between 0.3 and 1.55 with β = 0.1 in the (β, z) parameter plane (Fig. 7),
crossing a branch of super-critical Hopf bifurcations and two branches of cyclic-fold
bifurcations (Fig. 13(c), (d)).

The reader may question why the trajectory in Fig. 13(c) does not diverge im-
mediately from the state corresponding to the unstable equilibrium in a reverse
super-critical Hopf bifurcation (HB). The feature highlighted in Fig. 14 is the slow
passage through a Hopf bifurcation [3, 16, 21], where the transition from resting
state to spiking state is delayed due to the memory of the previous state. By in-
creasing the amplitude of the forcing z(t), the delay is prolonged because the longer
the system stays at the resting state corresponding to the stable equilibrium, the
longer it takes to diverge from the equilibrium.
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Figure 15. Time series of (a) x(t) and (b) y(t) that describe
SuperHopf/Cyclic-fold bursting where 1 ≤ z ≤ 1.4 (see (c) for
the time series of z(t)) in system (32) with α = 0.5, β = 0.1,
γ = 10, δ = 1.65, ǫ = 0.003, and M = 0.2. Initial conditions are
x0 = 0.1111, y0 = 0.9945, and z0 = 1.2. (d) A bursting trajectory
in three-dimensional phase space (z, x, y).

Izhikevich [22] identified 120 different types of bursting and described their topo-
logical features. Assuming that the system is initially at rest and starts spiking, he
named bursters according to the types of bifurcations of equilibrium and limit cycle
attractors. For example, for subHopf/cyclic-fold bursting a resting state disappears
in a sub-critical Hopf bifurcation and a spiking state is terminated in a cyclic-fold
bifurcation. The reader may refer to [19, 21, 22] for more information.

Rather than showing all possible types of bursting, we will discuss some bursting
phenomena that occur in system (32). Again, we usually assume that the system
is initially at quasi-steady state.

3.1. SuperHopf/Cyclic-fold. Fig. 15(a) and (b) display SuperHopf/cyclic-fold
bursting where 1 ≤ z(t) ≤ 1.4 (Fig. 15(c)) with α = 0.5, β = 0.1, γ = 10, δ = 1.65,
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ǫ = 0.003, and M = 0.2. Referring to the (β, z) parameter plane in Fig. 7, we
see that the fast subsystem undergoes super-critical Hopf and cyclic-fold bifurca-
tions. That is, slow modulation of z(t) between 1 and 1.4 causes the fast subsystem
to trigger spiking and to terminate the repetitive spiking in a super-critical Hopf
bifurcation. The corresponding phase portrait is depicted in Fig. 15(d).

3.2. SubHopf/Cyclic-fold. SubHopf/Cyclic-fold bursting, shown in Fig. 16(a)
and (b), arises when the resting state loses stability via a sub-critical Hopf bifurca-
tion (HB) and the repetitive firing state vanishes through a cyclic-fold bifurcation
(CFB). This kind of bursting is called elliptic by Rinzel [38] due to an elliptic shape
of the profile of oscillations; however, many subHopf/cyclic-fold bursters do not
have elliptic profiles, so the use of the term elliptic bursting should be avoided [22].

As we decrease z(t), the fast subsystem exhibits the delayed loss of stability
through a sub-critical Hopf bifurcation (Fig. 16(c)). When z(t) starts to increase,
the trajectory for fast variable x(t) finally jumps to the stable limit cycle and falls to
the resting state corresponding to a stable equilibrium via a cyclic-fold bifurcation
(Fig. 16(d)). Unlike the three-dimensional phase portrait in Fig. 15(d) that illustrate
all solutions over 0 ≤ t ≤ 15000, Fig. 16(e) shows a phase portrait for one period
of z(t), so that we can see the transition between a quiescent and a active phase
while we slowly decrease and increase z(t). Starting from the point indicated by a
star (⋆), the trajectory flows backward with a decrease in z(t), starts to oscillate,
tracking the stable, large-amplitude limit cycle, and eventually falls to the resting
state that corresponds to a stable equilibrium via a cyclic-fold bifurcation.

3.3. Bursting across a heteroclinic connection. In Fig. 17, with β = 0.75, we
let z vary between 1.4 and 1.68, so that our system passes through a transcritical
bifurcation and a heteroclinic connection associated with a fold bifurcation. A
transcritical bifurcation has, in fact, no effect on transition between a resting state
and a repetitive spiking state. A jump either from the resting state to a stable
limit cycle or from the stable limit cycle to the resting state occurs via the fold
bifurcation. When we slowly decrease z with time, a trajectory jumps to the upper
branch of saddle equilibria through an unstable manifold that emanates from a
semi-stable equilibrium corresponding to a fold bifurcation (Fig. 17(c)). As we then
increase z, the trajectory that has tracked the upper branch of saddle equilibria
now leaves this branch and begins to oscillate (Fig. 17(d)).

4. Discussion. In this paper, we carried out analytical and numerical studies for
a laissez-faire model with two predators, specialists and generalists. Treating the
generalist predator population as a bifurcation parameter, we highlighted two fea-
tures, the existence of multiple (up to three) limit cycles and heteroclinic con-
nections. As shown in the (β, z) parameter plane, the laissez-faire model with a
time-independent constant generalist predator population exhibits rich dynamics
including fold, transcritical, Hopf, and cyclic-fold bifurcations. In addition, the
system possesses a codimension-two Bautin bifurcation at which a Hopf bifurcation
changes from super- to sub-critical and from which a curve of cyclic-fold bifurcations
emanates. We also observed a pitchfork bifurcation at which branches of transcrit-
ical, fold, and super-critical Hopf bifurcations collide with a branch of heteroclinic
connections.

Our numerical studies showed that when the generalist predator population is
low, increasing the birth rate or decreasing the mortality rate for the specialist
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Figure 16. Time series of (a) x(t) and (b) y(t) that illustrate
SubHopf/Cyclic-fold bursting where 0.5 ≤ z ≤ 1.2 in system (32)
with α = 0.5, β = 0.5, γ = 10, δ = 1.65, ǫ = 0.003, and
M = 0.35. Initial conditions for each variable are (x0, y0, z0) =
(1, 0.7362, 0.85). In (c) and (d), a trajectory of x(t) in half pe-
riod of z(t) is superimposed in the bifurcation diagram for the
time-independent parameter z: HB stands for a sub-critical Hopf
bifurcation and CFB for a cyclic-fold bifurcation. Arrows indicate
the direction of the movement of the trajectories with increasing
time. (e) Three-dimensional phase space (z, x, y) is pictured in one
period of z(t). A star indicates a point where z(t) = 1.2.
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Figure 17. Time series of (a) x(t) and (b) y(t) that depict burst-
ing where 1.4 ≤ z ≤ 1.68 with α = 0.5, β = 0.75, γ = 10,
δ = 1.65, ǫ = 0.003, and M = 0.14: initial conditions are
(x0, y0, z0) = (0.11, 0.983, 1.54). In (c) and (d), a trajectory of x(t)
in half period of z(t) is superimposed in the bifurcation diagram for
the time-independent parameter z: TCB stands for a transcritical
bifurcation, FB for a fold bifurcation, and H for a heteroclinic con-
nection. The x-coordinates of stable node/focus (thick solid curve),
unstable node/focus (thin solid curve), and saddle (dashed curve)
equilibria are computed. Filled circles are the highest and lowest
values of the x-coordinates of stable limit cycles. Arrows indicate
the direction of the movement of the trajectories with increasing
time. (e) illustrates a three-dimensional phase portrait.
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predator population tends to induce population cycles. However, when the general-
ist predator population thrives, the population cycles are less likely to occur, so that
the prey and specialist-predator dynamics becomes stabilized. Thus, our laissez-
faire model supports the hypothesis that the generalist predator population has a
stabilizing effect on a population cycle driven by the specialist predator population
[13].

The rates of processes in an ecosystem are often very different. By forcing the
generalist predator population to slowly vary with time, we analyzed how a fast
subsystem that governs the prey and specialist-predator dynamics responds to the
slow variation in the generalist predator population.

By the method of dissection, bursting phenomenon, successive alternations be-
tween repetitive spiking oscillations and a silent phase, was driven by a slow change
in the generalist predator number that marches our system through bifurcations of
the fast subsystem. While the periodically forced laissez-faire system underwent a
Hopf bifurcation, we found the delayed loss of stability due to the slow slow pas-
sage through the Hopf bifurcation. This delay or memory effect was prolonged as
the amplitude of the fluctuations in the generalist predator population gets larger.
Thus, if the generalist predator population fluctuates substantially, the prey and
specialist-predator dynamics is stabilized after all. However, this memory effect
may not be observable empirically since the delay can be shortened or reversed by
weak noise [21].

We have observed (periodic) bursting with small ǫ (= 0.003). However, periodic
bursting will not always occur, no matter how small we make ǫ. It is important to
remember that we forced our system to undergo bifurcations by choosing appropri-
ate parameter values. In addition, our system can also exhibit quasi-periodic and
even chaotic bursting. There are many studies in neuroscience considering chaotic
dynamics in connection with bursting and beating (continuous spiking). The inter-
ested reader may refer to [4, 6, 7, 27, 31, 42].

Acknowledgments. The first author would like to thank Professor Shea-Brown
for his helpful comments and suggestions.
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