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Abstract. Negative frequency-dependent selection is a well known microevo-
lutionary process that has been documented in a population of Perissodus mi-
crolepis, a species of cichlid fish endemic to Lake Tanganyika (Africa). Adult
P. microlepis are lepidophages, feeding on the scales of other living fish. As an
adaptation for this feeding behavior P. microlepis exhibit lateral asymmetry
with respect to jaw morphology: the mouth either opens to the right or left
side of the body. Field data illustrate a temporal phenotypic oscillation in the
mouth-handedness, and this oscillation is maintained by frequency-dependent
selection. Since both genetic and population dynamics occur on the same time

scale in this case, we develop a (discrete time) model for P. microlepis popu-
lations that accounts for both dynamic processes. We establish conditions on
model parameters under which the model predicts extinction and conditions
under which there exists a unique positive (survival) equilibrium. We show
that at the positive equilibrium there is a 1:1 phenotypic ratio. Using a lo-
cal stability and bifurcation analysis, we give further conditions under which
the positive equilibrium is stable and conditions under which it is unstable.
Destabilization results in a bifurcation to a periodic oscillation and occurs
when frequency-dependent selection is sufficiently strong. This bifurcation is
offered as an explanation of the phenotypic frequency oscillations observed in
P. microlepis. An analysis of the bifurcating periodic cycle results in some
interesting and unexpected predictions.

1. Introduction. Frequency-dependent selection (FDS) is a form of natural selec-
tion where the fitness of a genotype depends on the frequency of that genotype in
a population [9]. Numerous laboratory studies have shown that FDS operates in
a plethora of organisms: Drosophila, Tribolium, houseflies, butterflies, wheat, bar-
ley, grass, flowering plants, water boatmen, guppies, house wrens, and mice [3], [8],
[9], [10]. While FDS was well-documented in laboratory populations, convincing
evidence of its occurrence in the field was noticeably absent [3] until 1993 when
M. Hori reported FDS operating in a natural population of predatory cichlid fish
(Perissodus microlepis Boulenger) [11].

The type of FDS that Hori documented is called negative FDS. Negative FDS
occurs when the fitness of a genotype is a decreasing function of genotypic frequency
in a population. That is, individuals with rare genotypes have greater fitness than
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individuals with common genotypes. Negative FDS is of special interest as an evo-
lutionary force because it leads to balanced polymorphism (genetic diversity). The
amount of genetic diversity a population possesses dictates the evolutionary poten-
tial of the population, since existing genetic variation is required for adaptation.
Early experimental evidence of negative FDS selection dates back to 1946 labora-
tory studies of karyotypes in Drosophila pseudoobscura [18]. Negative FDS has also
been found to operate on pathogen resistance genes, predator-prey systems using
search images, self-incompatibility loci in plants, species competing for limited re-
sources, and mating preferences (i.e., frequency-dependent sexual selection) [2], [4],
[7], [13], [16].

To understand why P. microlepis is subject to negative FDS we need to know a
few basic facts about the species’ biology and ecology. P. microlepis attack their
prey from behind and use their spine-like teeth to remove scales. Prey fish are keenly
alert to approaching predators, and the rate of hunting success is low, approximately
20% [11]. Interestingly, Hori discovered that P. microlepis possess a lateral jaw
asymmetry; there is an asymmetrical joint of the jaw to the suspensorium [12].
Populations of P. microlepis are polymorphic with respect to jaw morphology; an
individual’s jaw either opens to the left (sinistral) side or to the right (dextral) side
of the body. No intermediate forms have been observed. Hori discovered that left-
handed (sinistral) fish consistently attack the prey’s right flank and right-handed
(dextral) fish consistently attack the prey’s left flank. This behavior appears to
be adaptive by increasing the contact area between the jaw and the prey’s body
[11]. Prey fish are sensitive to the number of attacks received on each flank (a
function of the number of individuals possessing each phenotype) and respond by
guarding the heavily targeted side more aggressively. This behavior, in turn, gives
the fish possessing the opposite morphology a hunting advantage. The hunting
advantage translates into marked differences in reproductive output. In fact, field
data indicate that the rare type can have twice the reproductive success of the
common type [17]. Collectively, the data, observations, and experiments indicate
that jaw polymorphism for P. microlepis is maintained by negative FDS, which is
mediated by the guarding behavior of the prey fish.

Beside documenting the occurrence of negative FDS in a field study, Hori made
another intriguing discovery. Data collected over more than eleven years showed
that phenotypic frequencies did not stabilize, but instead exhibited an oscillation
on a relatively short time scale (roughly 5 years). In an attempt to explain this
oscillation Takahashi and Hori [17] utilize a discrete-time population genetic model
of frequency-dependent selection and argue that a polymorphic equilibrium corre-
sponding to a 1:1 phenotypic ratio can be destabilized when frequency-dependent
selection is sufficiently strong. They also attribute the phenotypic oscillation, in
part, to a time lag caused by the juvenile growth period. (All other analysis for
P. microlepis carried in [17] utilized a haploid model.) Their model is not without
some weaknesses, however. These include the difficulty in describing transitions
from one generation to the next for a species (like P. microlepis) with overlapping
generations by a model that uses frequencies as its state variables. Furthermore, the
authors’ consider only population genetic processes despite the short evolutionary
time scale. Motivated by Takahashi and Hori’s approach and intriguing findings
we investigate a modified and extended population/genetic model for the popula-
tion/genetic dynamics of negative FDS. We will show how our model corroborates
the basic conclusions of Takahashi and Hori concerning the cause of destabilization
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and oscillation. We will not investigate the role of juvenile development in the form
of stage-structure in this paper, however. This is done by extensions of the model
presented here in [1]. We also do not consider predator-prey dynamics in our model;
interesting predator-prey models for P. microlepis are investigated in [14], [15].

With rare exceptions population genetic models ignore the fundamental processes
of population dynamic models, and vice versa. Population dynamic models typi-
cally overlook variation among genotypes, and population genetic models typically
overlook demographic processes such as births, deaths and intraspecific competi-
tion occurring on a short time scale. These simplifications are usually justified by
differences in ecological and evolutionary time scales, the former being considerably
shorter than the latter. On the other hand, the modeling of microevolution (roughly
defined as changes in allele frequencies in a population over relatively short time
scales) necessitates the consideration of both population dynamic and population
genetic processes.

Handedness in P. microlepis is heritable and determined by a simple Mendelian
one-locus, two-allele mode of inheritance where dextrality is completely dominant
over sinistrality; heterozygous and homozygous right-handed individuals are phe-
notypically indistinguishable [11]. The state variables in our model are absolute
numbers of P. microlepis comprising each genotype. In this way we can accurately
account for overlapping generations and examine reproductive success and selection
at the level of mate pairing without assuming individual fertilities are independent
of one another. We avoid the typical case that viabilities and fertilities are as-
signed to individuals possessing each genotype irrespective of mate pairings that
form. Instead, we assume that the fertility of a mate pairing is a function of the
fitness of the individuals comprising the mating pair, a key point since differential
reproductive success is what can give rise to phenotypic oscillations. Furthermore,
we are interested in exploiting the relatively simple genetics of P. microlepis in
order to investigate the interplay between the population genetic and population
dynamic processes. We aspire towards a level of mathematical rigor and generality
so that the model can be applied to other biological systems with similar genetic
constraints.

2. Model Construction. We construct a system of three difference equations
that predict the numbers of sexually mature, scale-eating adult fish of each handed
genotype at time t + 1 from the numbers present at time t. While this model will
not provide a dynamical system for genotype frequencies, one can straightforwardly
calculate these frequencies at each time from model state variables. In this way the
model accounts for both population dynamics and phenotypic frequency dynamics.
The projection time interval for the model is two years: the approximate time
from birth to sexual maturity and scale-eating in P. microlepis. In this paper we
will purposefully utilize a “weak” density-dependent nonlinearity so as to avoid
oscillations due to strong intraspecific competition in the population dynamics. In
this way, we can focus on oscillations caused by the genetic processes, as opposed
to population dynamic processes.

We define the model state variables ALL (t), ARL (t), and ARR (t) to be respec-
tively the numbers of (homozygous) left-handed, heterozygous right-handed, and
homozygous right-handed sexually mature, scale-eating adult fish at time t. Let
N (t) = ALL (t) + ARL (t) + ARR (t) denote the total population size at time t. If n
denotes the expected number of matings per adult (per unit time) and b the inherent
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number of offspring per mating (i.e., the expected number of offspring possible per
mating in the absence of population density effects), then the total number of mat-
ings at time t would be nbN(t). We assume, however, that the density dependent
total number of matings is

nbN(t)

1 + cN(t)

for a positive constant c > 0. This is the familiar Beverton-Holt assumption that
typically gives rise to logistic type population dynamics. In order to determine the
state variables at time t + 1, under the assumption of random mating, we need
to account for the proportions of each genotypic type of offspring that result from
various genotypic mating pairs. We will illustrate this bookkeeping for ALL(t + 1);
the derivations for the other two state variables are similar.

Mating is assumed to be random, and we do not distinguish between the matings
ARR (male) × ARL (female) and ARR (female) × ARL (male), for example. We as-
sume there is an equal sex ratio and that both sexes have identical allele frequencies.
The genotypic frequencies at each time are determined by the following ratios:

ALL(t)

N(t)
,

ARL(t)

N(t)
,

ARR(t)

N(t)
.

The phenotypic frequencies of left-handed and right-handed fish at time t are re-
spectively

l(t) ,
ALL(t)

N(t)
, 1 − l(t) =

ARL(t) + ARR(t)

N(t)

since the dextral allele (R) is completely dominant over the sinistral allele (L). In
the absence of selection and genetic drift the probability that a mating event will
produce an offspring with a particular genotype can be determined by the Hardy-
Weinberg Law. Hardy-Weinberg equilibrium cannot be reached in the case of P.
microlepis, however, because the assumption that there is no selection is violated.

The fraction of all mate pairings that involve only left-handed adults, under
the assumption of random mating, is potentially l2(t). We assume a fraction f1

of this potential fraction consists of successful matings. Therefore, of all matings
that occur, the fraction that occurs between left-handed adults is l2(t)f1. In order
to account for frequency-dependent selection, we assume f1 is a function of the
phenotypic frequency, i.e., we assume f1 = f1(l(t)) and call the function f1(·) the
fitness function for matings between phenotypically alike adults. This assumption
implicitly models the guarding behavior of the prey species, which is dependent
on phenotypic frequencies. Since this guarding behavior favors the rare phenotype,
resulting in negative frequency-dependent selection, we assume f1(l) is a decreasing
function of l. Further assumptions on the function f1(l) appear below. (Although
we know frequency-dependent selection operates in populations of P. microlepis,
we do not specify the particular type of selection, e.g., viability selection, mating
success, fecundity selection). Using this notation, we calculate the contribution to
the number of phenotypically left-handed adults ALL(t + 1) from matings between
left-handed adults to be

nbN(t)

1 + cN(t)

(

ALL(t)

N(t)

)2

f1

(

ALL(t)

N(t)

)

. (1)

Left-handed offspring can also result from two other types of matings. Specifi-
cally, they can result (a) from matings between left-handed and heterozygous right-
handed adults and (b) from two heterozygous right-handed adults. In case (b) we
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calculate, using the reasoning and notation above, the contribution to the number
of phenotypically left-handed adults ALL(t + 1) from such matings to be

nbN(t)

1 + cN(t)

1

4

(

ARL(t)

N(t)

)2

f1

(

1 − ALL(t)

N(t)

)

. (2)

The reason for the factor 1/4 is that only one quarter of all matings between two
heterozygous right-handed adults will be left-handed (because the dextral allele
is completely dominant over the sinistral allele). Notice that the fitness of these
mate pairings is (due to the negative-frequency dependent selection caused by the
guarding behavior of the prey) a decreasing function of the frequency of right -
handed fish. In case (a) we calculate, in a similar manner, the contribution to the
number of phenotypically left-handed adults ALL(t + 1) to be

nbN(t)

1 + cN(t)

(

1

2

ALL(t))

N(t)

ARL(t)

N(t)
+

1

2

ARL(t)

N(t)

ALL(t))

N(t)

)

f2

(

ALL(t)

N(t)

)

. (3)

Half the matings of type ARR (male) × ARL (female) and half the matings of
type ARR (female) × ARL (male) are left-handed. Assumptions about the fitness
function f2(·) for matings between phenotypically different adults appear below.

The number of left-handed fish ALL(t+1) at time t+1 consists of the total of all
recruits obtained from the sum of (1-3) plus all surviving left-handed adults, which
we assume is (1 − µa)ALL(t). Thus,

ALL(t + 1) =
nbN(t)

1 + cN(t)

[

(

ALL(t)

N(t)

)2

f1

(

ALL(t)

N(t)

)

+
ALL(t)ARL(t)

N2(t)
f2

(

ALL(t)

N(t)

)

+
1

4

(

ARL(t)

N(t)

)2

f1

(

1 − ALL(t)

N(t)

)

]

+ (1 − µa) ALL(t). (4)

By constructing our model with absolute numbers as state variables, we can as-
sign a fitness to the various mate pairings based on the individual phenotypes com-
prising the pair. Modeling allele or genotype frequencies does not make it possible
to assign fitness values to mating pairs. This is especially problematic when the re-
productive success of a mating between individuals possessing different phenotypes
is resolved by the more fit (or less fit) individual in the pairing. Maximal reproduc-
tive success b is reduced by the frequency-dependent fitness functions f1 and f2 in
accordance with the phenotypic frequencies. The number of offspring produced per
mating is reduced when ideal conditions (i.e., when ALL(t)/ (ARL(t) + ARR(t)) ≈ 0
or (ARL(t) + ARR(t)) /ALL(t) ≈ 0) are not met. The inequalities 0 ≤ fi(l) ≤ 1
describe the fact that reproductive success is reduced by frequency-dependent se-
lection. Since the phenotypic fitness are equal when the phenotypic ratio is 1:1, we
have f1 (1/2) = f2 (1/2) .
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Repeating similar derivation steps for ARL (t + 1), and ARR (t + 1), we arrive at
the equations

ALL(t + 1) =
nbN(t)

1 + cN(t)

[

(

ALL(t)

N(t)

)2

f1

(

ALL(t)

N(t)

)

+
ALL(t)ARL(t)

N2(t)
f2

(

ALL(t)

N(t)

)

+
1

4

(

ARL(t)

N(t)

)2

f1

(

1 − ALL(t)

N(t)

)

]

+ (1 − µa)ALL(t)

ARL(t + 1) =
nbN(t)

1 + cN(t)

[ 1
2A2

RL(t) + ARR(t)ARL(t)

N2(t)
f1

(

1 − ALL(t)

N(t)

)

(5)

+
ALL(t)ARL(t) + 2ARR(t)ALL(t)

N2(t)
f2

(

ALL(t)

N(t)

)]

+ (1 − µa)ARL(t)

ARR(t + 1) =
nbN(t)

1 + cN(t)

[

A2
RR(t) + ARR(t)ARL(t) + 1

4A2
RL(t)

N2(t)

]

f1

(

1 − ALL(t)

N(t)

)

+ (1 − µa)ARR(t).

We will study these model equations under the following assumptions:

n, b, c > 0, 0 < µa < 1 (6a)

fi ∈ C1 ([0, 1] → [0, 1)) , f1 (1/2) = f2 (1/2) (6b)

df1

dl
< 0,

df1

dl

∣

∣

∣

∣

l=x

=
df1

dl

∣

∣

∣

∣

l=1−x

(6c)

min{f1(l), f1(1 − l)} ≤ f2(l) ≤ max{f1(l), f1(1 − l)} (6d)

f2(l) = f2(1 − l). (6e)

Following the model presented in [17], we assume in (6a) that the probability of
death in one time-step, µa, is density- and frequency-independent. This assumption
is supported biologically, in part, by the evidence that selection acts through dif-
ferential reproductive success as opposed to differential survival. The monotonicity
assumption (6c) on f1 reflects the negative frequency-dependent selection on pheno-
typic handedness. The symmetry condition on the derivative of f1 is mathematically
equivalent to

f1

(

1

2
− x

)

− f1

(

1

2

)

= f1

(

1

2

)

− f1

(

1

2
+ x

)

,

which means that, when a deviation from the 1:1 phenotypic ratio occurs, the
increase in fitness enjoyed by the rare type is equal in magnitude to the decrease
in fitness suffered by the common type. The bounds placed on f2 in (6d) are a
result of the fact that matings between individuals possessing different phenotypes
are comprised of one individual that is less fit than its mate. The inequalities mean
that the less (more) fit mate confers a lower (higher) fitness than would occur in a
mating of individuals of the same fitness. Finally, the symmetry condition (6e) on
f2 (which, along with (6b, implies f ′

2 (1/2) = 0) is the result of assuming that the
fitness of matings between individuals with different phenotypes is not dependent on
which of the phenotypes is the more common. Although we do not mathematically
need it, a reasonable biologically assumption would be that f2(l) is monotone for
l < 1/2 and also for l > 1/2. See Figure 1.
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Figure 1. Plots of fitness functions satisfying assumptions (6a)-(6e).

Notice that assumptions (6a) and (6b) imply that (5) holds the interior int(R3)
of the positive cone in R3 invariant, i.e.

(ALL(0), ARL(0), ARR(0)) ∈ int(R3) =⇒ (ALL(t), ARL(t), ARR(t)) ∈ int(R3)

for all t = 0, 1, 2, · · · . We begin by giving conditions under which a population
whose dynamics are governed by (5) goes extinct. The model equations are not
defined at the origin (ALL, ARL, ARR) = (0, 0, 0). However, it is possible for orbits
in int(R3) to approach the origin asymptotically.

Theorem 2.1. Assume (6a) and (6b). If nb/µa < 1 then limt→+∞ N(t) = 0 for
any initial condition (ALL(0), ARL(0), ARR(0)) ∈ int(R3).

Proof. Summing the three equations in (5), we find that

N(t + 1) =
nbN(t)

1 + cN(t)

[

l2(t)f1(l(t)) + 2l(t)(1 − l(t))f2(l(t))

+ (1 − l(t))2f1(1 − l(t))
]

+ (1 − µa)N(t)

and from (6b) that

N(t + 1) ≤ nbN(t)
[

l2(t) + 2l(t)(1 − l(t)) + (1 − l(t))2
]

+ (1 − µa)N(t)

= nbN(t) + (1 − µa)N(t).

Therefore, 0 ≤ N(t + 1) ≤ ρN(t) where ρ , nb + 1 − µa. Since nb/µa < 1 implies
ρ < 1, it follows that limt→+∞ N(t) = 0 under this condition.

The product nb is the number of offspring per adult under maximal fitness fi = 1
(for any genotypic mating pairs). We can therefore interpret the quantity nb/µa as
the maximal inherent net reproductive number for the population, i.e. the expected
number of offspring per adult per lifetime (for any mating pair) under conditions
of maximal fitness and in the absence of population density effects. Theorem 2.1
asserts the logical conclusion that if this maximal inherent net reproductive number
is less than one (i.e., no adult, under any mating conditions and at low population
densities, can replace itself during its lifetime) then the population will go extinct.
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3. Polymorphic Equilibria. Because of the singularity at the origin in model (5),
we cannot apply general bifurcation theorems to deduce the existence and stability
of nontrivial equilibria [6]. Therefore, we must approach the existence and stability
of nontrivial equilibria in another way. The next theorem deals with the existence of
polymorphic equilibria, i.e., equilibria that lie on the interior int(R3) of the positive

cone in R3. Define R0 , nbf(1/2)/µa. This quantity is the expected number of
offspring per adult (per lifetime) when population density is low and the population
is at a 1:1 phenotypic ratio.

Theorem 3.1. Assume (6a)-(6e). If R0 > 1 model (5) has a unique polymorphic
equilibrium given by

(A∗

LL, A∗

RL, A∗

RR) , N∗

(

1

2
,
√

2 − 1,
3

2
−
√

2

)

(7)

where

N∗ = A∗

LL + A∗

RL + A∗

RR =
R0 − 1

c

is the total population size at equilibrium. Notice that at this equilibrium left- and
right-handed phenotypes are equally frequent.

This theorem implies the existence of a polymorphic equilibrium if, under the
conditions of a 1:1 phenotypic ratio and no population density effects, an adult will
more than replace itself during its lifetime. Moreover, the theorem asserts that at
this equilibrium there will in fact be a 1:1 phenotypic ratio. The existence of such an
equilibrium corroborates the conclusion of Takahashi and Hori [17]. Furthermore,
we have shown that this is the only polymorphic equilibrium.

Proof. A straightforward, but tedious, calculation shows that the triple (7) is an
equilibrium of (5). It is left to show that (7) is the only polymorphic equilibrium.
Let (A′

LL, A′

RL, A′

RR) ∈ int(R3) be an equilibrium of (5) and let

N ′ = A′

LL + A′

RL + A′

RR, α ,
A′

LL

N ′
, β ,

A′

RL

N ′
.

Summing the three equations of model (5) evaluated at the equilibrium we ob-
tain, after the cancellation of a factor of N ′ and some algebraic manipulations, the
equation

1

1 + cN ′
=

µa

nb
(

α2f1 (α) + 2α (1 − α) f2 (α) + (1 − α)
2
f1 (1 − α)

) . (8)

A substitution of α, β, and 1−α−β = A′

RR/N ′ into the three equilibrium equations
of (5) yields

µaα =
nB

1 + cN ′

[

α2f1 (α) + αβf2 (α) + β2f1 (1 − α) /4
]

µaβ =
nB

1 + cN ′

[(

β2/2 + (1 − α − β)β
)

f1 (1 − α)

+ (αβ + 2(1 − α − β)α) f2 (α)]

µa (1 − α − β) =
nB

1 + cN ′

(

(1 − α − β)
2

+ (1 − α − β)β + β2/4
)

f1 (1 − α) .
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Substitution of (8) into these equations yields the following three quadratic equa-
tions in β:

0 = β2 +
4αf2(α)

f1(1 − α)
β

+
4α

f1(1 − α)

[

α(1 − α)f1(α) − 2α(1 − α)f2(α) − (1 − α)2f1(1 − α)
]

0 = β2 + 2α
αf1(α) + (3 − 2α)f2(α) − (1 − α)f1(1 − α)

f1(1 − α)
β − 4α(1 − α)f2(α)

f1(1 − α)

0 = β2 + 4α
αf1(α) + 2(1 − α)f2(α) − (1 − α)f1(1 − α)

f1(1 − α)
β

− 4α
α(1 − α)f1(α) + 2(1 − α)2f2(α) − (1 − α)2f1(1 − α)

f1(1 − α)
.

We solve each equation for β and we require that the results be equal. This calcu-
lation (done with the aid of a computer algebra program) results in the equation

G(α) , αf1(α) + (1 − 2α)f2(α) − (1 − α)f1(1 − α) = 0.

for α. Clearly, α = 1/2 solves this equation; our next goal is to show that this is
the only solution.

Suppose α > 1/2. Then by (6d) we have f2(α) ≥ min{f1(α), f1(1−α)} = f1(α).
It follows that

G(α) ≤ αf1(α)+ (1− 2α)f1(α)− (1−α)f1(1−α) = (1−α) [f1(α) − f1(1 − α)] < 0

and hence G(α) has no root α > 1/2. Suppose, on the other hand that, α < 1/2.
Then by (6d) we have f2(α) ≥ min{f1(α), f1(1 − α)} = f1(1 − α). It follows that

G(α) ≥ αf1(α) + (1 − 2α)f1(1 − α) − (1 − α)f1(1 − α) = α [f1(α) − f1(1 − α)] > 0

and hence G(α) has no root α < 1/2. This proves that

α =
A′

LL

N ′
=

1

2
, 1 − α =

A′

RL + A
′

RR

N ′
=

1

2
(9)

for any equilibrium in int(R3).
Clearly there are infinitely many triples (A′

LL, A′

RL, A′

RR) that satisfy (9). How-
ever, all three of the quadratic equations (in β) with α = 1/2 reduce to β2+2β−1 =
0, and we conclude that

β =
A′

RL

N ′
=

√
2 − 1. (10)

If we solve equation (8) for N ′ with α = 1/2, we find that N ′ = N∗. This result,
together with the formulas (9) and (10), show (A′

LL, A′

LR, A′

RR) is equal to the
equilibrium (7).

We now turn attention to the local stability of the polymorphic equilibrium in
Theorem 3.1. By taking advantage of the formula for the polymorphic equilibrium
(7) and the fact that (6b) and (6e) imply f ′

2(1/2) = 0, we calculate the eigenvalues
of the Jacobian of (5) at this equilibrium to be

λ1 = 1 − µa, λ2 =
R0(1 − µa) + µa

R0
= 1 +

1 − R0

R0
µa

λ3 = 1 +

√
2 − 1

2
µa

f ′

1(1/2)

f1(1/2)
.
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Assumptions (6a)-(6e), together with R0 > 1 in Theorem 3.1, imply that 0 <
λ1, λ2 < 1 and consequently the local stability of (7) depends on λ3. Since f ′

1(1/2) <
0 by (6c) it follows that λ3 < 1. By the linearization principle, the polymorphic
equilibrium (7) is locally stable if λ3 > −1 and unstable if λ3 < −1. Define

q , f ′

1 (1/2) < 0, qcr , −4f1 (1/2)/µa√
2 − 1

< 0.

Theorem 3.2. Assume (6a)-(6e) and R0 > 1. The polymorphic equilibrium (7) in
Theorem 3.1 is locally asymptotically stable if q > qcr and unstable if q < qcr.

The quantity q (similarly defined by Takahashi and Hori [17]) is a critical quan-
tity for determining the stability and the destabilization of the polymorphic equilib-
rium. Recall that f1(l) and f1(1 − l) determine the fitness of matings between like
phenotypes (namely, left-handed with left-handed matings and right-handed with
right-handed matings respectively). The magnitude of q determines the extent to
which small deviations from a 1:1 phenotypic ratio translate to changes in the fit-
ness of matings between like phenotypes. If |q| is large, a small departure from a
1:1 phenotypic ratio results in a large difference in reproductive success. On the
other hand, matings between unlike phenotypes, accounted for by the function f2,
do not alter the stability of the polymorphic equilibrium. In particular, recall that
under our assumptions f ′

2 (1/2) = 0; this implies that small deviations from a 1:1
phenotypic ratio cannot drastically affect the reproductive success of mate pairings
between unlike phenotypes.

4. Periodic Oscillations. Since λ3 = −1 when q = qcr, Theorem 3.2 suggests
the occurrence of a period doubling bifurcation at this value of q. Mathematically,
we can investigate the properties (and prove the existence) of the bifurcating 2-
cycles, at least near the bifurcation point, by classical Lyapunov-Schmidt methods
[6]. Since this calculation is straightforward (albeit tedious), we will not give the
details here, but instead describe the results only. For q ' qcr the 2-cycles are
approximated by

ALL(t) =
1

2
N∗ +

(√
2 + 1

)

(−1)tε + x∗ε2 + O
(

ε3
)

ARL(t) =
(√

2 − 1
)

N∗ −
√

2(−1)tε + y∗ε2 + O
(

ε3
)

(11)

ARR(t) =

(

3

2
−
√

2

)

N∗ − (−1)tε + z∗ε2 + O
(

ε3
)

for ε ' 0 where ε is proportional to (q − qcr)
1/2

and where x∗, y∗, and z∗ turn out
to be constants. From these we calculate an expansion for the total numbers of
right-handed phenotypes:

ARL(t) + ARR(t) =
1

2
N∗ −

(√
2 + 1

)

(−1)tε + (y∗ + z∗) ε2 + O
(

ε3
)

.

Notice that, to first order in ε, the oscillations in population numbers ALL(t) and
ARL(t) + ARR(t) of the left- and of the right-handed are of equal magnitude, but
out-of-phase, around the same average N∗/2. Thus on average, over the 2-cycle,
they bear a 1:1 ratio. However, to second order in ε there are adjustments to these
averages since the coefficients x∗, y∗, and z∗ are constants. Formulas for these
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coefficients appear in [1]; they are quite complicated and we do not need to repeat
them here. It turns out that

x∗ < 0 and x∗ − (y∗ + z∗) =
−k

bn
(√

2 − 1
)

q + 4
.

for a positive constant k > 0 (dependent only on c). If we assume R0 > 1 (so that
there exists a polymorphic equilibrium), then

qcr = − 4f1 (1/2)

µa(
√

2 − 1)
< − 1

bn

4√
2 − 1

.

As a result, if q < qcr (so that there exists a bifurcating 2-cycle) then 0 > x∗ >
y∗ + z∗.

It follows that for q / qcr the average of the 2-cycle population numbers of the
left-handed phenotype is greater than that of the right-handed phenotypes and both
are less that the equilibrium level of N∗/2. Moreover, to second order in ε the total
population size

N(t) = N∗ + (x∗ + y∗ + z∗) ε2 + O
(

ε3
)

is constant. It follows that the (cycle) average phenotypic frequencies are not in a 1:1
ratio; specifically, the average frequency of the left-handed phenotype is greater than
the average of the (genetically dominant) right-handed phenotype. The bifurcation
diagrams in Figure 2 illustrate these properties of the 2-cycle oscillation for model
(5) with

nb = 50, c = 0.1, µa = 0.6, f1(l) ≡
1

2

(

1 − tanh

[

2q

(

1

2
− l

)])

, f2(l) ≡
1

2
. (12)

Theorem 4.1. Assume (6a)-(6e) and R0 > 1. For q / qcr the bifurcating 2-cycles
of (5) are approximated by the expansions (11) for small ε ' 0. These expansions
imply that the 2-cycle oscillations have the following properties:

(a) the total number of left-handed phenotypes and of right-handed pheno-

types oscillate around their averages with equal amplitudes
√

2+1, but out-of-phase;
(b) the average number of left-handed phenotypes in the 2-cycle and the

average number of right-handed phenotypes in the 2-cycle are both less than half the
equilibrium levels of N∗/2;

(c) the average left-handed phenotypic frequency is greater than 1/2 (and
hence that of the right-handed phenotypic frequency is less that 1/2).

The proof this theorem, being based on the expansions (11), guarantees prop-
erties (b) and (c) hold only near the period doubling bifurcation point q = qcr.
Numerical simulations suggest, however, that these properties of the 2-cycle oscil-
lations are not confined near the bifurcation point. In fact, we were not able to
find a numerical example where the time-averaged frequency of the right-handed
phenotype is greater than the time-averaged frequency of left-handed phenotype.
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Figure 2. Bifurcation diagrams showing the period doubling bi-
furcation in model (5) with parameters and fitness functions (12).
The left panel shows the number of fish possessing each phenotype
and the right panel shows the phenotypic frequencies.

A priori, one might have expected the time-average population numbers or fre-
quencies of the two phenotypes to be equal. Moreover, in the model (5) it is assumed
that the allele for the right-handed trait is completely genetically dominant over the
allele for the left-handed trait, and therefore it might seem counter-intuitive that
the genotype with two recessive alleles is numerically dominant on average. Upon
closer consideration, however, this finding might have been expected since a 1 : 1
phenotypic ratio would necessarily force the number of left-handed alleles in the
population to be greater than the number of right-handed alleles. In particular,
the number of (homozygous) left-handed fish will be greater than the number of
homozygous right-handed fish. The number of homozygous fish is critical since
matings between like homozygous pairs of a particular phenotype produce 100%
homozygous offspring of that phenotype. This fact becomes particularly important
when selection is strong: any advantage shared by the rare type can be exploited
into a marked differential reproductive success for small deviations from the 1 : 1
phenotypic ratio. For a small, fixed deviation from the 1 : 1 phenotypic ratio, left-
handed fish will form a greater number of homozygous mate pairs when rare than
will right-handed fish when rare. Furthermore, when the right-handed fish are rare,
the left-handed fish gain a reproductive advantage since the L allele is not exposed
to selection in the heterozygous state. Near the bifurcation point and the onset
of phenotypic oscillations, the oscillations have small amplitudes and our analy-
sis concerning the difference in averaged phenotypic numbers (or frequencies) are
mathematically second order in nature. This means these phenomena might be dif-
ficult to observe in observational or experimental data, at least near the bifurcation
point.

5. Monomorphic Equilibria. There can be no equilibrium (ALL, ARL, ARR) of
(5) in which only heterozygous (necessarily right-handed) adults are present. This
is because offspring of all three genotypes arise from matings between heterozygous
individuals. Model (5) does have, however, two nontrivial equilibria in which only
homozygous individuals are present, namely,

E1 ,
(

nbf1(1)/µa − 1

c
, 0, 0

)

, E2 ,
(

0, 0,
nbf1(1)/µa − 1

c

)

. (13)
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The monomorphic equilibrium E1 is characterized by the presence of only left-
handed adults (which are necessarily homozygous), while E2 is characterized by
the presence of only homozygous right-handed adults. These equilibria are biolog-
ically meaningful and distinct from the origin if and only if nbf1(1)/µa > 1. Since
nbf1(1) is the number of viable offspring in a homozygous population, the quan-
tity nbf1(1)/µa is the expected number of offspring per adult per lifetime (in the
absence of population density effects), i.e., the inherent reproductive number for a
homozygous population [5], [6]. The monomorphic equilibria (13) are biologically
feasible (and not identical with the origin) if and only if the net reproductive num-
ber of a homozygous population exceeds 1, so that each (homozygous) adult more
than replaces itself at low population density.

The 3×3 Jacobian matrix of (5), when evaluated at a monomorphic equilibrium
Ei, has three real eigenvalues λi. For both E1 and E2 it turns out that

λ1 = 1 − µa, λ2 =
nbf1(1)(1 − µa) + µ2

a

nbf1(1)
.

By assumption (6a), 0 < λ1 < 1. It is easy to see that 0 < λ2 < 1 when the
equilibria are feasible, i.e., when nbf1(1)/µa > 1. The third eigenvalue of E2 is
λ3 = 1. Consequently E2 is non-hyperbolic and its stability properties remain an
open question. The third eigenvalue of the Jacobian at E1 turns out to be

λ3 =
f1(1)(1 − µa) + f2(1)µa

f1(1)
.

By assumptions (6c)-(6e) it follows that f1(1) = min{f1(1), f1(0)} ≤ f2(1). This
means λ3 ≥ 1 and as a result E1 cannot be hyperbolically stable. If f1(1) <
f2(1) then λ3 > 1 and E1 is unstable. This strict inequality means that when the
population consists of nearly all left-handed adults, a cross mating with a right-
handed adult confers a strictly larger fitness. If no such increase in fitness results
from a cross mating, i.e. if f1(1) = f2(1), then λ3 = 1 and E1 is non-hyperbolic
and its stability properties remain an open question.

Although the linearization fails to determine the stability properties of the monomor-
phic equilibria E1 and E2 under assumptions (6a)-(6e), we conjecture that both are
unstable. It would be of interest if, under some conditions, this conjecture is false
and one or both monomorphic equilibria is an attractor. Because nbf(1)/µa > 1
implies R0 = nbf1

(

1
2

)

/µa > 1, such conditions would imply the occurrence of mul-
tiple (namely, both monomorphic and polymorphic) attractors. We have, however,
seen no evidence of such a case in numerical simulations.

6. Concluding Remarks. In application of model (5) to P. microlepis our find-
ings corroborate one of the basic assertions in [17] concerning the observed phe-
notypic oscillations in this predatory species of cichlid fish. As did Takahashi and
Hori we interpret the quantity |q| in Theorems 3.2 and 4.1 as a measure of the prey
response sensitivity to attacks by P. microlepis, which if large enough results in
a destabilization of the polymorphic equilibrium (in 1:1 phenotypic ratio). Mathe-
matically, this destabilization results in a period doubling bifurcation to a 2-cycle in
which both population numbers and phenotypic frequencies oscillate (out-of-phase).
An interesting result of the analysis of this oscillation shows, however, that the av-
erage of the oscillations in phenotypic frequencies do not exhibit a 1:1 ratio; in fact,
the average of the genetically dominant right-handed phenotype is less 1/2. The
formula for the bifurcation value q = qcr also shows that higher adult death rates
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µa contribute to the destabilization of the polymorphic equilibrium. This result
suggests that a strongly iteroparous life-cycle (i.e., a high probability of survival) is
a stabilizing factor for species such as P. microlepis [17].

Our analysis of model (5), which, unlike the model in [17], lacks a developmental
time lag in the form of stage-structure, also demonstrates that stage-structure is
not necessary for oscillatory behavior. Extensions of model (5) that include juvenile
life-cycle stages appear in [1], where destabilization and bifurcations to oscillatory
motion (invariant loops and aperiodic oscillations in the state variables) are studied
for the resulting higher dimensional models.

Model (5) is based on the Beverton-Holt model for population dynamics which, as
a discrete-time model of logistic growth, exhibits monotonic equilibrium dynamics
(and hence no periodic oscillations). Model (5) is a straightforward extension of
the Beverton-Holt model that incorporates classic Mendelian (one locus, two allele)
genetics. The root cause of the oscillations given by Theorem 4.1 is therefore genetic
(as opposed to population dynamic) in nature. If the base population dynamic
model did allow oscillations, as would be the case for example if the well-known
Ricker model were used in place of the Beverton-Holt model, then there arises
the possibility of a complicated interplay between oscillations caused, on the one
hand, by population dynamics (over compensatory density dependence) and, on the
other hand, by genetics (negative frequency-dependent selection). A study of this
interplay appears in [1].
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