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Abstract. Simple, discrete-time, population models typically exhibit com-
plex dynamics, like cyclic oscillations and chaos, when the net reproductive

rate, R, is large. These traditional models generally do not incorporate vari-

ability in juvenile “risk,” defined to be a measure of a juvenile’s vulnerability to
density-dependent mortality. For a broad class of discrete-time models we show

that variability in risk across juveniles tends to stabilize the equilibrium. We

consider both density-independent and density-dependent risk, and for each,
we identify appropriate shapes of the distribution of risk that will stabilize the

equilibrium for all values of R. In both cases, it is the shape of the distribution

of risk and not the amount of variation in risk that is crucial for stability.

1. Introduction. Much of Tom Hallam’s impact on theoretical ecology can be
traced back to his leadership of a series of courses and conferences in the 1980s at
the International Center for Theoretical Physics in Trieste, Italy. The first of these
included a lucid introduction to theory for population dynamics in a homogeneous
environment ([9]). A large part of Hallam’s paper focused on simple, single-species
models with density-dependence that might seem too simplistic to yield ecological
insight, as all natural populations experience spatial and temporal variability in
their environment and interact with other species. Yet more recent work ([18, 17])
has demonstrated that many natural populations exhibit population dynamics con-
sistent with the interactions incorporated into these single-species models. In par-
ticular, [18] identified many populations with delayed feedback cycles, as predicted
by many discrete-time, single-species models with parameter values leading to an
unstable equilibrium (e.g. [15]). It is therefore important to understand how the
variability that is inevitably present in natural populations impacts the stability of
equilibria in the simple models. This paper explores one form of such variability.

2000 Mathematics Subject Classification. Primary: 92D25, 92D40; Secondary: 92B05.
Key words and phrases. variation in risk, discrete-time models, single-species models, Ricker

model, population dynamics, sensitivity of the equilibrium to reproduction rate.
AS thanks J. P. Hespanha for support through the Institute for Collaborative Biotechnologie’s

grant DAAD19-03-D-0004 from the US Army Research Office. RMN’s work was supported in part

by the U.S. National Science Foundation (Grant DEB-0717259).

859

http://dx.doi.org/10.3934/mbe.2008.5.859


860 ABHYUDAI SINGH AND ROGER M. NISBET

We work with the simplest family of single-species discrete-time models, those
describing population dynamics of organisms that have one year life cycles, repro-
duce in a discrete pulse determined by season, and are regulated through a single
density-dependent process. We recognize two life stages: reproductively mature
adults and “juveniles,” a term we use to include all earlier stages. We write the
dynamical equation representing year-to-year population changes in the form

Ht+1 = RHtf(cHt), (1)

where R represents the net reproduction rate, i.e., the geometric rate of increase (or
decrease) of a small population, and the function f denotes the fraction of juveniles
that escape some additional, density-dependent mortality. The variable Ht denotes
the population density for the stage that determines the juvenile survival, f . For
example, if the population is regulated by cannibalism of juveniles by adults, then
Ht would represent adult density. We discuss how other mechanisms influence the
interpretation of Ht in Section 3. The precise form of the function f is determined
by calculating the net effect of density-dependent juvenile mortality throughout
the juvenile stage ([6]). The parameter c is a measure of the strength of density
dependence; it has dimensions (density)−1 and characterizes the “risk” faced by an
individual due to conspecifics in its environment. We further develop the concept
of risk in Section 3.

The effects of variability in risk across individuals have been studied extensively
in host-parasitoid models, where “risk” is a measure of the vulnerability of an
individual host to parasitoid attacks. The authors of [1] showed that if risk is
gamma-distributed, then high variability in the risk of parasitism among individual
hosts can stabilize the otherwise unstable equilibrium of the Nicholson-Bailey host-
parasitoid model ([19]). In [13] it was proposed that a condition for stability is
CV 2 > 1, where CV is the coefficient of variation1 of the distribution of risk. An
important restriction is that risk is independent of local host density if the host is
nonuniformly distributed in space ([3]). This “CV 2 > 1 rule,” and earlier results
stressing the role of spatially aggregated parasitism (e.g. [16]), stimulated hundreds
of studies investigating parasitism patterns in the field. Recently, [22] challenged the
generality of the CV 2 > 1 rule by showing that the shape of the distribution of risk,
and not its coefficient of variation, determines the stabilizing effects of variability
in risk in host-parasitoid systems.

Perhaps surprisingly, the literature on variability in risk in single-species models
is much thinner. It is well known for the Ricker model (f(cHt) = exp(−cHt) in (1))
that for specific distributions of risk across juveniles, sufficiently large variation in
juvenile risk, i.e., variability in each juvenile’s ability to survive to adulthood, can
stabilize an otherwise unstable model equilibrium [4, 11]. We here derive results
that generalize this stability condition to any arbitrary function f and distribution
of risk across juveniles p(x) for cases when risk is density-dependent (i.e., juvenile
risk is completely determined by the local juvenile density) and density-independent
(i.e., juvenile risk is independent of the local juvenile density). We show that as
in host-parasitoid systems, stabilizing effects of variability in risk in single-species
models are also tied to the shape of the distribution p(x). More specifically, in
both cases when juvenile risk is density-independent and density-dependent, the
model equilibrium is stabilized for all R if p(x)/x is a non-increasing function. We
further show that when risk is density-dependent, the distribution of risk p(x) is

1Coefficient of variation is defined as the ratio of the standard deviation to the mean.
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related to a(x), the distribution of juveniles across patches, and p(x) will have the
appropriate shape (i.e., p(x)/x is a non-increasing function) when a(x) itself is a
non-increasing function of x. We emphasize throughout that it is the shape of
the distribution of risk and not the amount of variation in risk that is crucial for
stability. Indeed, we show that with certain distributions of risk, even arbitrarily
large variation in juvenile risk will not stabilize the equilibrium, and in some cases,
increasing variability beyond a certain point destabilizes the equilibrium.

2. Preamble: equilibrium and local stability. We assume that the net repro-
ductive rate R > 1 and that f is a monotonically decreasing function with

f(0) = 1 and lim
x→∞

f(x) = 0. (2)

With these assumptions, the unique, positive equilibrium H∗ of the discrete-time
model (1) is given as the solution of the equation

1
R

= f(cH∗), R > 1. (3)

A number of texts (e.g. [14]) discuss local stability analysis and bifurcations
in this model. Typically, the parameter c is recognized as setting the scale of
population density and stability is related to the parameter R. For the work to be
reported in this paper, it is useful to relate local stability to the sensitivity of the
equilibrium to changes in R, defined by

S =
R

H∗
dH∗

dR
=

d log(H∗)
d log(R)

. (4)

In Appendix A, we show that the equilibrium is locally stable if and only if S >
1
2 . This condition in turn implies that the equilibrium is stable, if and only if,
H∗/

√
R is an increasing function of R. We further show that the equilibrium is

monotonically stable, if and only if, S > 1, which corresponds to H∗/R being an
increasing function of R.

3. Incorporation of juvenile risk. In this section, we flesh out the idea of ju-
venile “risk,” represented by the parameter c in equation (1). We do this by con-
sidering two different biological mechanisms that can lead to this model. In both
mechanisms Ht represents the population density for the stage that determines the
fraction f of juveniles that survive to become the adults for the next year.

3.1. Adults attack juveniles. Here, Ht denotes the adult density and RHt de-
notes the juvenile density at the beginning of the juvenile stage in year t. We assume
that juveniles are cannabilized by adults and face a constant, density-dependent per
capita mortality rate given by g(cHt) for some parameter c and monotonically in-
creasing function g. If the duration of the juvenile stage is given by T , then the
fraction of juveniles that survive at the end of the juvenile stage is given by

f(cHt) := exp(−g(cHt)T ). (5)

Without loss of any generality we take T = 1 from now on. These surviving juveniles
then become the adults for the next year to give the discrete-time model (1). If
adults have a linear functional response with attack rate c, then g(cHt) = cHt,
and hence we have f(cHt) = exp(−cHt) in equation (1), which corresponds to the
well-known Ricker model ([21, 6]).
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3.2. Juvenile face intraspecific competition. We now consider the situation
where the population is regulated by intraspecific competition among the juveniles.
In this case, the fraction of juveniles that survive is determined by the initial juve-
nile density. Hence, for this mechanism, Ht represents the juvenile density at the
beginning of the juvenile stage in year t. The density of juveniles that survive and
become the adults for the next year is then Htf(Ht). These adults lay eggs that
mature into juveniles, giving a discrete-time model of the form in equation (1).

The rationale is discussed in [8] and [26]. In brief, the form for f is obtained
using a semi-discrete approach ([23, 7]) as follows. Let τ denote the time inside the
juvenile stage which varies from 0 ≤ τ ≤ 1 (the duration of the juvenile stage is
assumed to be 1 time units). Let H(t, τ) denote the juvenile density in year t at
a time τ within the juvenile stage. We assume that the per capita mortality rate
at a time τ in the juvenile stage is given by g(cH(t, τ)) for some parameter c and
monotonically increasing function g. Then, H(t, τ) is the solution to the following
ordinary differential equation:

dH(t, τ)
dτ

= −H(t, τ)g(cH(t, τ)), H(t, 0) = Ht. (6)

The fraction surviving f(cHt) = H(t, 1)/H(t, 0) is given by

f(cHt) =
z(1)
cHt

, (7)

where z(τ) is the solution of

dz(τ)
dτ

= −z(τ)g(z(τ)), z(0) = cHt. (8)

For example, when we take

g(cH(t, τ)) = (cH(τ, t))b (9)

for some constant b > 0, the above semi-discrete analysis leads to

f(cHt) =
(

1
1 + b(cHt)b

)1/b

. (10)

With both mechanisms, one can think of the parameter c in model (1) as a prop-
erty of an individual juvenile, that determines its susceptibility to density-dependent
mortality, and can be interpreted as the “risk” experienced by that juvenile.

4. Variability in risk. Our model formulation to this point assumes that all ju-
veniles have the same value of c. Variability in risk is introduced by assuming
that each juvenile has a different value for the parameter c, which is treated as a
random variable. We define the distribution of risk (c) across juveniles, p(x), by
specifying that the probability of a juvenile having a c value (risk) in the infinites-
imally small interval [x, x + dx] is p(x)dx. We consider both density-independent
and density-dependent risk.

4.1. Variability in density-independent risk. We first consider the situation
when risk is independent of the local juvenile density. This would be the case, for
example, when a particular juvenile’s risk is determined by its phenotype or by its
micro-habitat. As mentioned above, the probability of a juvenile having a c value
(risk) in the infinitesimally small interval [x, x + dx] is p(x)dx. The probability of
a juvenile with risk x surviving the juvenile stage is f(xHt), and the total fraction
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of juveniles that survive is then
∫∞

x=0
p(x)f(xHt)dx. Thus the population dynamics

is described by the discrete-time model

Ht+1 = RHt

∫ ∞

x=0

p(x)f(xHt)dx. (11)

As discussed in Section 3, depending on the biological mechanism that creates the
density-dependent mortality, Ht will either denote the adult density or the juvenile
density at the beginning of the juvenile stage in the above model. We discuss
alternative ways of defining a juvenile’s risk in Appendix B. Depending on the form
of the function f , these alternative definitions may, or may not, lead to the same
form of the model as (11), a point we revisit briefly in the Discussion.

With the interactions that lead to the Ricker model (see Section 3.1), (f(xHt) =
exp(−xHt)), the integral in equation (11),

∫∞
x=0

p(x)f(xHt)dx, is simply the moment-
generating function of the distribution p(x) evaluated at −Ht. Hence, in this case,
if p(x) is a gamma distribution (mean equal to m and coefficient of variation equal
to V ) we have the well-known model ([10])

Ht+1 =
RHt

(1 + mHtV 2)1/V 2 . (12)

The Beverton-Holt model is a special case of this when V = 1 ([2]). When p(x) is
a uniform distribution (with mean m) given by

p(x) =
{

1
2m for 0 ≤ x ≤ 2m
0 for x > 2m

(13)

we have the Skellam model ([24])

Ht+1 = R(1− exp(−2mHt))/2m. (14)

We investigate the stability of the equilibrium H∗ of the general discrete-time
model (11) in terms of the distribution of risk. This equilibrium is given as the
solution to the equation ∫ ∞

x=0

p(x)f(xH∗)dx =
1
R

. (15)

Standard local stability analysis show (see Appendix C for details) that this equi-
librium is stable, if and only if,

−H∗
∫ ∞

x=0

xp(x)f ′(xH∗)dx <
2
R

, (16)

where f ′(xH∗) denotes the derivative of function f evaluated at xH∗. For a given
function f and distribution of risk, the stability region of the model can be deter-
mined by numerically solving equations (15) and (16).

We now present results that connect the stability of the model equilibrium with
the shape of the distribution of risk, and are independent of the function f . Details
are in Appendix C where we show that the stability condition (16) can be re-written
as ∫ ∞

x=0

x2

(
d(p(x)/x)

dx

)
f(xH∗)dx < 0. (17)

Consequently, a sufficient condition for the above equilibrium H∗ to be stable for all
values of R > 1 is that the distribution p(x) be such that, p(x)/x is a non-increasing
function of x. Moreover, if p(x) is a non-increasing function then the equilibrium
will be monotonically stable for all values of R > 1 (Appendix C).
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We now illustrate these conditions with some examples. If p(x) is a gamma
distribution with mean m and coefficient of variation V given by

p(x) =
x(1/V 2−1) exp

(
− x

mV 2

)
(mV 2)1/V 2Γ(1/V 2)

, (18)

where Γ denotes the Gamma function, then p(x)/x is a non-increasing function if
V 2 ≥ 0.5. Hence if risk is density-independent and gamma distributed, then the
model equilibrium is stable for all R > 1 if V 2 ≥ 0.5 (see Fig. 1 which plots the
gamma distribution for this value). If p(x) is a Weibull distribution ([27]) which
has the form

p(x) =
k

λ

(x

λ

)k−1

exp−(x/λ)k (19)

for some constants k and λ, then the equilibrium is stable for all R > 1 if k ≤ 2,
which corresponds to V 2 > 0.273. The above two examples show that even though
different distributions might have the right shape to stabilize the equilibrium (i.e.,
p(x)/x is a non-increasing function), the amount of variability required, represented
by the value of V , for stability might be very different. Thus just determining the
coefficient of variation in risk will not be enough to conclude stability for all R
unless the specific form of the distribution is known.

Figure 1. Plots of a gamma distribution with mean 1 and V 2 =
0.5 (solid line), V 2 = 1 (dashed-dot line) and inverse gaussian
distribution with mean 1 and V 2 = 0.5 (dashed line).

If p(x)/x is an increasing function near x = 0, then depending on the form of
the function f , the corresponding equilibrium may be unstable for sufficiently large
values of R. Note form (2) and (15) that as R → ∞ the equilibrium H∗ → ∞.
Thus, depending on whether the stability condition (17) holds (does not hold) for
sufficiently large H∗, we have a stable (unstable) equilibrium for sufficiently large
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R. For example, if f(cH∗) = 1/(1 + cH∗) (the Beverton-Holt model), (17) always
holds, and hence a stable equilibrium for all R irrespective of whether p(x)/x is
increasing or decreasing near x = 0. However, for f(cH∗) = exp(−cH∗) (the Ricker
model) if p(x)/x is an increasing function near x = 0, then the corresponding
equilibrium will be unstable for sufficiently large R (see Appendix D). This critical
value of the reproduction rate above which you get an unstable equilibrium can only
be determined numerically by solving the stability conditions (15) and (17). For
example, let the distribution of risk be an inverse gaussian distribution with mean
m and coefficient of variation V given by

p(x) =

(√
λ

2πx3

)
exp

(
−λ(x−m)2

2m2x

)
, λ =

m

V 2
, (20)

for which p(x)/x is an increasing function near x = 0 (see Fig. 1 for a plot of the
inverse gaussian distribution). For m = 1 and V 2 = 0.5, numerical analysis of
the stability conditions with the Ricker survival function (f(xHt) = exp(−xHt))
show that the corresponding discrete-time model is stable for 1 < R < 16.9 and
unstable otherwise. For comparison purposes, the Ricker model with no variability
has a stable equilibrium for 1 < R < 7.39 ([17]). This example illustrates that even
though the distribution of risk might not stabilize the equilibrium for all values of
R, it can still, in some cases, significantly increase the stability region and push
complex dynamics to large values of R (in this case R > 16.9), which may be
biologically irrelevant.

It is important to point out that increasing variation in risk does not always
correspond to an increase in the stability region of the model. In fact in some cases,
increasing variability beyond a certain point destabilizes the equilibrium. Consider
the distribution of risk given by

p(x) =
{

0 for 0 ≤ x ≤ c∗

g(x− c∗) for x > c∗
(21)

for some function g(x) and c∗ > 0, which can be thought of as a function g(x)
shifted to the right by c∗. Such a distribution of risk explicitly excludes a refuge
and implies that all juveniles have a minimum nonzero risk c∗. The corresponding
discrete-time model is now given by

Ht+1 = RHt

∫ ∞

x=c∗
g(x− c∗)f(xHt)dx. (22)

If the function f is chosen such that the equilibrium of the model with no variability
in risk (i.e., model (1)) is unstable for large enough R, then the model equilibrium of
(22) will also be unstable for large enough R, irrespective of the function g(x) (see
Appendix E for details). Moreover, in this case, the corresponding stability region
is maximized at intermediate levels of variability in risk (see Fig. 2). To illustrate
this we take f(xHt) = exp(−xHt) (Ricker model) and let the function g(x) in (22)
have the form of a gamma distribution with mean c̄ and coefficient of variation Vg.
This implies from (21), a mean risk of c̄ + c∗ and coefficient of variation in risk
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V = c̄Vg/(c̄ + c∗). In this case the model (22) becomes

Ht+1 = RHt

∫ ∞

x=c∗
g(x− c∗) exp(−xHt)dx = RHt exp(−c∗Ht)

∫ ∞

x=0

g(x) exp(−xHt)dx

(23)

=
RHt exp(−c∗Ht)
(1 + c̄Vg

2Ht)1/Vg
2 . (24)

Note that in the limit Vg → 0 we recover the Ricker model

Ht+1 = RHt exp(−(c̄ + c∗)Ht). (25)

As we now increase Vg (and hence increase V ) the stability region of the model (24)
first increases (see Fig. 2), however at large values of Vg, increasing Vg decreases
the stability region. The latter effect is because for sufficiently large Vg we have

Ht+1 =
RHt exp(−c∗Ht)
(1 + cVg

2Ht)1/Vg
2 ≈ RHt exp(−c∗Ht), (26)

and hence, in the limit Vg → ∞ the stability region shrinks back to the stability
region of the Ricker model. In summary, for functions f chosen as above, when all
juveniles have minimum nonzero risk then the discrete-time model is stabilized for
small values of R and the corresponding stability region is maximized for interme-
diate levels of variability in risk.

Figure 2. The stability region for the model (24) in terms of Vg
2

(Variance in risk/c̄2) and R when c̄ = 1 and c∗ = 0.5. In this case
the stability region is maximized when Vg

2 ≈ 1.5.

We end this section by noting that stability induced due to variation in density-
independent risk is generally accompanied by an increase in equilibrium H∗ from
the equilibrium value when there is no variability. This is illustrated in Fig. 3, which
plots H∗ for the Ricker model when risk is gamma distributed (discrete-time model
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(12)). Note from the figure that the Ricker model is now stable for 1 < R < 9.32
when V 2 = 0.1, 1 < R < 16 when V 2 = 0.25 and stable for all R > 1 when
V 2 = 0.5.

Figure 3. Plots of H∗/
√

R for different values of the coefficient of
variation (V ) where H∗ is equilibrium of the model (12). V 2 = 0
corresponds to the Ricker model with no variation in risk. Solid line
corresponds to a stable equilibrium while a dashed line corresponds
to an unstable equilibrium. Recall that the model equilibrium is
stable iff H∗/

√
R is an increasing function of R.

4.2. Variability in density-dependent risk. We now consider the scenario where
a juvenile’s risk is completely determined by the local juvenile density, i.e., the num-
ber of juveniles in the neighborhood. If we envision a situation where juveniles are
spread non-uniformly in space across patches with finite resources, then it is natural
that patches with higher juvenile density face stiffer intraspecific competition com-
pared to patches with lower juvenile density. Hence, in this case a juvenile’s risk in
a particular patch is a function of the number of juveniles in that patch. The dis-
tribution of risk across juveniles is now determined by the distribution of juveniles
across patches, which we denote by a(x). Let Ht denote the average juvenile density
per patch at the beginning of the juvenile stage. Then the probability of a patch
having juvenile density in the infinitesimally small interval [Htx,Htx+Htdx] at the
beginning of the juvenile stage is given by a(x)dx. Note that the way the distribu-
tion a(x) is now defined it automatically has a mean of one, i.e.,

∫∞
x=0

xa(x)dx = 1.
If the function f represents the fraction of initial juvenile that survive the juvenile
stage, then for a patch with initial juvenile density Htx, the density at the end
of the juvenile stage will be Htxf(Htx). Hence, the average density of surviving
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juveniles per patch is
∫∞

x=0
Htxa(x)f(xHt)dx, and we have the discrete-time model

Ht+1 = RHt

∫ ∞

x=0

xa(x)f(xHt)dx = RHt

∫ ∞

x=0

p(x)f(xHt)dx, (27)

where now p(x) = xa(x) represents the distribution of risk across juveniles. The
same form of model can be derived for the adult-attack-juvenile mechanism (Sec-
tion 3.1) by assuming that juveniles distribute themselves across patches according
to distribution a(x) and the adult density on a given patch (and hence the mortal-
ity rate of the juveniles) is strongly correlated with the number of juveniles in the
patch. Such a situation might arise, for example, for fish that that remain close
to places where they have laid their eggs. Note that the discrete-time model (27)
not only has spatial density dependence but also contains explicit temporal density
dependence, i.e., the average mortality rate across patches increase when average
density of juveniles across patches increases. Such temporal density dependence is
crucial for stabilizing the above discrete-time model as spatial density-dependence
on its own is generally not stabilizing ([25]).

Stability conditions for the discrete-time model (27) in terms of the distribution
of risk p(x) are identical to those derived in Section 4.1 for the discrete-time model
(11), as both the models have the same form irrespective of whether risk is density-
dependent or density-independent. We now formulate the stability condition for
model (27) in terms of the distribution of juveniles across patches, a(x), by substi-
tuting xa(x) for p(x) in the stability conditions of model (11) (Section 4.1). Thus
we have from (17) that the model equilibrium H∗ of (27) is stable, if and only if,∫ ∞

x=0

x2a′(x)f(xH∗)dx < 0. (28)

A sufficient condition for the model equilibrium of (27) to be stable for all values
of R is that the distribution a(x) be a non-increasing function, i.e., the distribution
has a mode at zero. Also note that if a(x) is an increasing function near x = 0
(i.e., the distribution does not have a mode at zero) and function f is such that
inequality (28) does not holds for sufficiently large H∗ (for example, this would be
true for the Ricker model), then the model equilibrium of (27) will be unstable for
sufficiently large R.

We now illustrate these conditions through examples. If a(x) is a uniform distri-
bution given by

a(x) =
{

1
2 for 0 ≤ x ≤ 2
0 for x > 2,

(29)

which is a non-increasing function, we have a stable equilibrium for all R > 1.
If a(x) is a gamma distribution given by (18), then when V 2 ≥ 1 it is a non-
increasing function, and hence, the model equilibrium of (27) is stable for all R > 1
(see Fig. 1 for a plot of the gamma distribution for this value). [4] and others
([11, 12]) derived this particular result, for a special case of the model (27) where
f(xHt) = exp(−cHt) and a(x) was taken as the gamma distribution, in which case
the model (27) becomes

Ht+1 =
RHt

(1 + V 2Ht)(1+1/V 2)
. (30)

Thus the main result presented in this section (stability for all R > 1 when a(x)
is non-increasing) is a generalization of the results of [4, 11], to any distribution
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of juveniles across patches a(x) and any form of density-dependent mortality (i.e.,
function f).

Fig. 4 plots the model equilibrium of (30) as a function of R for different values
of V and illustrates that stability due to variation in density-dependent risk comes
at a cost of a decrease in model equilibrium (when R is small) and an increase in
model equilibrium (when R is large) from the model equilibrium value when there
is no variability in risk.

Figure 4. Plots of H∗/
√

R for different values of the coefficient of
variation (V ) where H∗ is equilibrium of the model (30). V 2 = 0
corresponds to the Ricker model with no variation in risk. Solid line
corresponds to a stable equilibrium while a dashed line corresponds
to an unstable equilibrium.

5. Discussion. Theory presented in this paper shows that variation in risk of
mortality among juveniles can stabilize the model equilibrium of a general class
of discrete-time models. We investigated both density-independent and density-
dependent risk and identified the distribution of risk and distribution of juveniles
across patches (when risk is density dependent) that will stabilize the model equi-
librium for all values of the reproduction rate R. For certain models such as the
Ricker model, we identified distributions that inevitably lead to instability, and
probably to complex dynamics, for large values of R. We showed that stability due
to variation in density-independent risk is generally associated with an increased
model equilibrium when compared with the model equilibrium with constant risk.

Our results connecting shape of the risk distribution to stability depend critically
on how risk enters the function f , which defines the probability that a juvenile will
survive to become an adult. For our results to hold, a juvenile’s risk x has to be
defined in such a way that it appears in the function f(xHt) multiplicatively with
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Ht. We discussed various biological mechanisms where this would be true, as well
as noting exceptions (see Appendix B). Numerical stability analysis of some models
where this assumption is not true shows that variability in risk can still stabilize
the corresponding equilibrium of the model. However, in this case the shape of
distribution required for stability may depend on the way the risk x enters the
function f .

The mechanism whereby an unstable equilibrium becomes a stable equilibrium
in the presence of variation in risk is similar to that of a fractional refuge. It
is well known from previous work that the presence of a fractional refuge, i.e., a
fraction of juveniles survive with probability one, can stabilize the equilibrium of
a discrete-time model ([17]). Variation in risk similarly creates a situation where
some juveniles have a high probability of survival. The existence of these juveniles
buffers the population from perturbations and contributes to the stability of the
model. The importance of these low-risk juveniles was illustrated here in the case
when we explicitly excluded a refuge and all juveniles had a non-zero, minimum risk.
In such a situation the corresponding discrete-time model could never be stabilized
for certain range of parameters, irrespective of the form of the distribution of risk.

The primary limitation of our work is the assumption that risk can be defined so
that its effects operate multiplicatively with some measure of population density.
Typically derivation of the survival function requires the “semi-discrete” approach
(e.g. [20, 23]). One problem is that the resulting model may take the form

Ht+1 = RHtf(R, cHt) (31)

rather than equation (1). Then, our results relating stability to the variation of H∗

with R would not necessarily hold.
In summary, we have developed theory on the effects of variation in risk in single-

species models that generalizes previous work, notably that of [11]. Our findings
on the importance of the distribution of risk parallel similar recent findings with
host-parasitoid models ([22]). Our most important findings relate to the presence
of individuals that experience very low risk. This presents serious challenges for
empiricists, as identifying such individuals is much more challenging than obtaining
some measure of variability such as the coefficient of variation.
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REFERENCES

[1] V. A. Bailey, A. J. Nicholson and E. J. Williams, Interaction between hosts and parasites
when some host individuals are more difficult to find than others, J. of Theoretical Biology

3 (1962), 1-18.
[2] R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, Fishery

Invest., Lond., Ser. 2, 19 (1957).

[3] P. L. Chesson and W. W. Murdoch, Aggregation of risk: relationships among host-parasitoid
models, The American Naturalist 127 (1986), 696-715.

[4] G. De Jong, The influence of the distribution of juveniles over patches of food on the dynamics

of a population, Netherlands Journal of Zoology 29 (1979), 33-51.
[5] S. Elaydi, “An Introduction to Difference Equations,” Springer, New York, 1996.

[6] H. T. M. Eskola and S. A. H. Geritz, On the mechanistic derivation of various discrete-time
population models, Bulletin of Mathematical Biology 69 (2007), 329-346.

[7] S. A. H. Geritz and E. Kisdi, On the mechanistic underpinning of discrete-time population
models with complex dynamics, J. of Theoretical Biology 228 (2004), 261-269.



VARIATION IN RISK IN SINGLE-SPECIES DISCRETE-TIME MODELS 871

[8] W. S. C. Gurney and R. M. Nisbet, “Ecological Dynamics,” Oxford University Press, 1988.
[9] T. G. Hallam, Population dynamics in a homogeneous environment, in “Mathematical Ecol-

ogy” (eds. T. G. Hallam and S. A. Levin), Springer-Verlag, (1986), 61-94.
[10] M. P. Hassell, Density-dependence in single-species populations, J. Animal Ecology 44 (1975),

283-295.

[11] —, Some consequences of habitat heterogeneity for population dynamics, Oikos 35 (1980),
150-160.

[12] M. P. Hassell and R. M. May, Individual behaviour and population dynamics, in “Behavioural

ecology: Ecological consequences of adaptive behaviour” (eds. R. M. Sibly and R. H. Smith),
Blackwell, Oxford, (1985), 3-32.

[13] M. P. Hassell, R. M. May, S. W. Pacala and P. L. Chesson, The persistence of host-parasitoid

associations in patchy environments. I. A general criterion, The American Naturalist 3
(1991), 568-583.

[14] M. Kot, “Elements of Mathematical Ecology,” Cambridge University Press, Cambridge, UK,

2001.
[15] R. M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976),

459-467.
[16] —, Host-parasitoids in patchy enviroments: a phenomenological model, The American Natu-

ralist 47 (1978), 833-843.
[17] W. W. Murdoch, C. J. Briggs and R. M. Nisbet, “Consumer-Resource Dynamics,” Princeton

University Press, Princeton, NJ, 2003.
[18] W. W. Murdoch, B. E. Kendall, R. M. Nisbet, C. J. Briggs, E. McCauley and R Bolser,

Single-species models for many-species food webs, Nature 417 (2002), 541-543.
[19] A. J. Nicholson and V. A. Bailey, The balance of animal populations. Part 1, Proc. of Zoo-

logical Society of London 3 (1935), 551-598.
[20] E. Pachepsky, R. M. Nisbet and W. W. Murdoch, Between discrete and continuous:

consumer-resource dynamics with synchronized reproduction, Ecology (2008). To appear.
[21] W. E. Ricker, Stock and recruitment, Journal of the Fisheries Research Board of Canada 11

(1954), 559-623.
[22] A. Singh, W. W. Murdoch and R. M. Nisbet, Skewed attacks, stability and host suppression,

Ecology (2008). To appear.
[23] A. Singh and R. M. Nisbet, Semi-discrete host-parasitoid models, J. of Theoretical Biology

247 (2007), 733-742.
[24] J. G. Skellam, Random dispersal in theoretical populations, Biometrica 38 (1951), 196-218.
[25] A. Stewart-Oaten and W. W. Murdoch, Temporal consequences of spatial density dependence,

J. of Animal Ecology 59 (1990), 1027-1045.
[26] H. R. Thieme, “Mathematics in Population Ecology,” Princeton University Press, Princeton,

NJ, 2003.
[27] W. Weibull, A statistical distribution function of wide applicability, J. of Applied Mechanics-

Transactions of the ASME 18 (1951), 293-297.

Appendix A. Stability analysis for the discrete-time model (1). Consider
the discrete-time model

Ht+1 = RHtf(cHt). (32)

The equilibrium H∗ of this model is given by

f(cH∗) =
1
R

(33)

and is a monotonically increasing function of R. Denoting small fluctuation around
the equilibrium by ht := Ht−H∗, one obtains after linearization the following linear
discrete system

ht+1 = λht, λ = 1 + RcH∗f ′(cH∗) < 1 (34)

where f ′(cH∗) < 0 (f is a monotonically decreasing fucntion) denotes the derivative
of function f evaluated at cH∗. The equilibrium H∗ is stable, if and only if, 1 >
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λ > −1 ([5]), which implies,

−cH∗f ′(cH∗) <
2
R

. (35)

Differentiating (33) with respect to R we have

−cf ′(cH∗)
dH∗

dR
=

1
R2

. (36)

Substituting in (35) we have the stability condition
R

H∗
dH∗

dR
=

d log H∗

d log R
>

1
2
. (37)

The above stability condition can be re-written as

d log
(
H∗/

√
R
)

d log R
> 0, (38)

which implies that the equilibrium H∗ is stable, if and only if,

d
(
H∗/

√
R
)

dR
> 0, (39)

i.e., H∗/
√

R is an increasing function of R.
The equilibrium H∗ is monotonically stable, if and only if, 1 > λ > 0 ([5]), which

implies,

−cH∗f ′(cH∗) <
1
R

. (40)

Doing the same analysis as above we can conclude that the equilibrium is mono-
tonically stable, if and only if,

R

H∗
dH∗

dR
> 1, (41)

which is equivalent to H∗/R being an increasing function of R.

Appendix B. Different interpretation of risk. In Section 3 we explicitly de-
fined a juvenile’s risk in terms c which in turn defined the mortality rate faced
by the juveniles from adults or competing juveniles. Risk can also be interpreted
in other terms. For example, an alternative way to define a juvenile’s risk is by
the duration of time it is exposed to these mortality rates. We illustrate this with
the adult-attack-juvenile mechanism, where if a group of juveniles are exposed to
attacks from the adults for duration T , then the fraction of these juveniles that
survive is given by (see Section 3.1)

exp(−Tg(cHt)) := f(cHt)T , (42)

assuming that all juveniles face the same mortality rate (i.e., have the same value
of c). Thus, if now p(x) represents the distribution of T (risk) across juveniles we
have the discrete-time model

Ht+1 = RHt

∫ ∞

x=0

p(x)f(cHt)xdx. (43)

Note that for the Ricker model (f(cHt)T = exp(−cTHt)), model (43) reduces to

Ht+1 = RHt

∫ ∞

x=0

p(x) exp(−cxHt)dx, (44)
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which is essentially similar to (11). As for the Ricker model both c and T appear
together, defining a juvenile’s risk in terms of c or T or even as a product cT will
lead to the same form of the discrete-time model (11), give or take some constants.

Appendix C. Stability analysis for variability in density-independent risk.
This equilibrium H∗ is given as the solution to the equation∫ ∞

x=0

p(x)f(xH∗)dx =
1
R

. (45)

Denoting small fluctuation around the equilibrium H∗ by ht, one obtains using
linearization the following linear discrete system

ht+1 = λht, λ = 1 + RH∗
∫ ∞

x=0

xp(x)f ′(xH∗)dx < 1. (46)

The equilibrium H∗ is stable if and only if 1 > λ > −1, which implies,

−H∗
∫ ∞

x=0

xp(x)f ′(xH∗)dx <
2
R

. (47)

If p(x) is a differentiable function, then using integration by parts and the fact that
for a probability density function p(x), limx→0 xp(x)= limx→∞ xp(x)=0, we have∫ ∞

x=0

(xp′(x) + p(x))f(xH∗)dx <
2
R

, (48)

which using (45) reduces the stability condition to∫ ∞

x=0

(xp′(x)− p(x))f(xH∗)dx < 0. (49)

This stability condition can be re-written as∫ ∞

x=0

x2

(
d(p(x)/x)

dx

)
f(xH∗)dx < 0. (50)

Assume that p(x)/x is a non-increasing function, i.e.,

d(p(x)/x)
dx

≤ 0. (51)

The distribution p(x) goes to zero as x approaches infinity, and hence, there must
exists an interval [x1, x2] for which

d(p(x)/x)
dx

< 0, ∀x ∈ [x1, x2]. (52)

Hence we have from (51) and (52) that∫ ∞

x=0

x2

(
d(p(x)/x)

dx

)
f(xH∗)dx =

∫ x1

x=0

x2

(
d(p(x)/x)

dx

)
f(xH∗)dx (53)

+
∫ x2

x=x1

x2

(
d(p(x)/x)

dx

)
f(xH∗)dx +

∫ ∞

x=x2

x2

(
d(p(x)/x)

dx

)
f(xH∗)dx < 0 (54)

which from (50) implies a stable equilibrium for all values of R > 1. For monotonic
stability one needs 0 < λ < 1 where λ is defined in (46). This corresponds to∫ ∞

x=0

(xp′(x) + p(x))f(xH∗)dx <
1
R

, (55)
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which implies from (45) ∫ ∞

x=0

xp′(x)f(xH∗)dx < 0. (56)

Using the same argument as above we can say that if p(x) is a non-increasing
function then (56) will always hold, and hence a monotonically stable equilibrium
for all values of R > 1.

Appendix D. Stability for large values of R for the Ricker model. For
simplicity, we consider distributions of risks that can be expressed as

p(x) =
∞∑

i=0

anix
ni (57)

for all positive x, where ni < ni+1, ni > −1 and ani
are non-zero real numbers.

Hence p(x) behaves as an0x
n0 near x = 0 and an0 > 0. We assume that p(x)/x is

an increasing function near x = 0. This is only possible if n0 > 1 or when n0 = 1
then n1 > 1, an1 > 0. Using∫ ∞

x=0

xni exp(−xH∗)dx =
Γ[ni + 1]
H∗ni+1 , (58)

where Γ[ni + 1] is the Euler gamma function we have∫ ∞

x=0

x2

(
d(p(x)/x)

dx

)
exp(−xH∗)dx =

∞∑
i=0

ani(ni − 1)
Γ[ni + 1]
H∗ni+1 . (59)

For sufficiently large R, and hence sufficiently large H∗, we have∫ ∞

x=0

x2

(
d(p(x)/x)

dx

)
exp(−xH∗)dx ≈ an0(n0 − 1)

Γ[n0 + 1]
H∗n0+1 > 0 (60)

when n0 > 1 or∫ ∞

x=0

x2

(
d(p(x)/x)

dx

)
exp(−xH∗)dx ≈ an1(n1 − 1)

Γ[n1 + 1]
H∗n1+1 > 0 (61)

if n0 = 1 and n1 > 1, an1 > 0. As the stability condition (17) does not hold for
sufficiently large H∗, we have an unstable equilibrium for sufficiently large R.

Appendix E. When all juveniles have a minimum non-zero risk. We as-
sume that the function f has a form such that the equilibrium of model (1) is unsta-
ble for sufficiently large R. Thus from Appendix A, it implies that f−1(1/R)/

√
R is

a decreasing function of R, for sufficiently large R where f−1 is the inverse function
of f . We further assume that

lim
R→∞

f−1(1/R)√
R

= 0. (62)

Note that this above condition will be true for f(cHt) = exp(−cHt) or if the function
f(cHt) behaves as 1/(cHt)α, α > 2, for sufficiently large Ht. With the distribution
risk given as (21) we have the discrete-time model

Ht+1 = RHt

∫ ∞

x=c∗
g(x− c∗)f(xHt)dx = RHt

∫ ∞

x=0

g(x)f(xHt + c∗Ht)dx. (63)
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The equilibrium H∗ for this model is given by
1
R

=
∫ ∞

x=0

g(x)f(xH∗ + c∗H∗)dx. (64)

As f(xH∗ + c∗H∗) < f(c∗H∗) (f is a monotonically decreasing function) and∫∞
x=0

g(x)dx = 1 (this is because
∫∞

x=0
p(x)dx = 1) we have

f−1
(

1
R

)
√

Rc∗
>

H∗
√

R
. (65)

From (62) and (65) we have that

lim
R→∞

H∗
√

R
= 0, (66)

and hence, H∗/
√

R is a decreasing function of R for sufficiently large R. This
implies from Appendix A, that H∗ is unstable for large enough R, irrespective of
the form of the function g(x).
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