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Abstract. A multiple species metapopulations model with density-dependent
dispersal is presented. Assuming the network configuration matrix to be di-
agonizable we obtain a decoupling of the associated perturbed system from
the homogeneous state. It was possible to analyze in detail the instability in-
duced by the density-dependent dispersal in two classes of k-species interaction
models: a hierarchically organized competitive system and an age-structured
model.

1. Introduction. Seeking explanations for the observed heterogeneous density dis-
tributions of species on natural habitats is a central problem in ecology. There are
many well documented studies of problems related to patchiness and pattern forma-
tion e.g., [13], [18], [17], [19]. The classical mathematical approaches to this problem
were based on continuous spatial state variable and continuous time models (par-
tial differential equations and integro-differential equations) (see [18] and references
therein). When the habitat is naturally fragmented, the continuous spatial variable
is no longer required, and it is better replaced by a discrete description of the spatial
variable. The Coupled Map Lattice (CML) framework described in [12] seems to
be a quite useful mathematical formulation. In fact, this modeling approach was
employed to study the role of dispersal in a discrete system of linked populations
(Hassell et al. [5], Commins et al. [2], Ruxton & Doebeli [23], Ruxton & Rohani
[24]). The complexity of the density patterns encountered in these studies follows
in the class of spatial patterns described in Kaneko [11]. The explanations for the
spatial pattern formation in these studies were based on the highly nonlinear local
dynamics rather than the complexity of the dispersal mechanism. Even very simple
dispersal mechanisms such as density-independent or passive dispersal can lead to
pattern formation in CML models. The instability of the homogeneous state is
caused by a Turing mechanism (see [29], [17]) when the local patch model contains
more than one species and dispersal is species dependent ([21]). In fact, what is
necessary is not exactly more than one species in the strict biological sense, but
a dynamical system with more than one state variable with connection between
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patches to be state variable specific. For example, the complex dynamics found in
[6] and the spatial patterns encountered in [3] in an age-structured single species
metapopulation model were induced by an uneven dispersal age distribution. When
the local patch model has only one state variable (unstructured single species model)
the result of [20] states that is impossible for dispersal alone to induce an instability
in the homogeneous state of a metapopulation formed by n equal patches. The first
attempt to consider density-dependent dispersal in CML models was done in [22],
assuming a very particular functional form of density-dependence in the movement
of individual between patches. His conclusions suggest that density-dependence
has little effect on the stability of the homogeneous state, although it was shown,
at least for a narrow parameter range, that the density-dependent dispersal could
drive the system to the instability of the homogeneous equilibrium. The idea of a
density-dependent dispersal process leading to pattern formation in a single species
model was further explored in [9], [25]. Unstable homogeneous equilibrium can be
the result of an intense nonlinear coupling. More precisely, if the rate of change in
the number of migrants with respect to the local patch density at equilibrium state
is large enough (larger than one), then there is a possibility of observing hetero-
geneous spatial patterns caused by movement of individual between patches ([25]).
Density-dependent dispersal in multi species metapopulations were introduced in
[7] in their study of the effects of cross-dispersal (the dispersal of one species de-
pends on the density of the other species coexisting in the patch) in the instability
of the homogeneous state. Their findings indicate that the type of interaction (com-
petition, mutualism, predator-prey) can be decisive for the instability induced by
dispersal. In this paper we consider a general multi species metapopulation model
with density-dependent dispersal and study the effects of the density-dependent
dispersal in the process of spatial pattern generation. We first introduce a decou-
pling technique similar to the one introduced in [10] that works in any reasonable
network of n patches with k species coupled with density-dependent dispersal at the
emigration stage (when individuals leave the patch). Then we apply the technique
to two different local models. First we consider a system of k species to satisfy
a certain hierarchy as in [1]. Then we consider the local model to be of a single
species with an age structured (k age classes). The last section of the article is left
for the final remarks and discussion.

2. The metapopulation model. Our metapopulation model consists of n equal
patches. In each patch there are k species that interact with each other. We model
the time evolution of the ensemble as a discrete dynamical system of nk equations.
In each time step two major processes are considered: the local dynamics (within
patch dynamics) and dispersal (transfer of individuals to others patches). The
local dynamics consist of survival, reproduction, and interaction with the other
species in the patch. Let xt

ℓj be the number of individuals of species ℓ living at
patch j at time t, ℓ = 1, 2, .., k, j = 1, 2, ..., n, and t = 0, 1, 2, .... The vector
xt

j = (xt
1j , x

t
2j , ..., x

t
kj) ∈ R

k is the population vector of patch j and accounts for the
number of each species inhabiting patch j at time t. Assume the local dynamics to
be described by a C1 function f : R

k → R
k. Thus, without considering dispersal,

the dynamics of an isolated patch j is given by

xt+1
j = f(xt

j). (1)

According to Ims and Yocoz [8], the transfer of individuals between patches
consists of three steps: emigration, migration, and immigration. In the emigration
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stage the individual leaves the patch. It is followed by the migration stage, which
involves displacements in nonhabit. Immigration consists of settlement in the new
patch. We assume that the migration step is very short and that no individuals
are lost during this process. Therefore, only the emigration and immigration stages
will be considered in the model.

The emigration process is basically described by the dispersal fraction of each
species. Let µℓ be the proportion of individuals of species ℓ leaving its patch. We
assume µℓ to be independent of the patch location but density-dependent, thus
µℓ : R

k → R is a C1 function and µℓ(x
t
1j , x

t
2j , ..., x

t
kj) accounts for the proportion of

individuals from species ℓ leaving patch j at time t. Notice that µℓ is a k variable
real function which allows the inclusion of the influence of the other species in
the dispersal fraction of species ℓ. Of course, we must have 0 6 µℓ 6 1 for all
ℓ = 1, 2, ..., k.

The immigration (arrival at a new patch) process is assumed to be density-
independent and species independent. It is described by the form in which each
node in the network is connected with the other nodes, or the so-called network
topology. This will entirely describe the network configuration matrix C, with
coefficients cij , 0 6 cij 6 1, i, j = 1, 2, ..., n reflecting the preference of individuals
that leave patch j and establish in patch i. That is, cijx

t
ℓjµℓ(x

t
1j , x

t
2j , ..., x

t
kj) is

the number of individuals from species ℓ at time t opting for leaving patch j and
moving to patch i. Of course cii = 0 for all i = 1, 2, ..., n. Moreover, assumption on
the conservation during dispersal implies that

∑n
i=1 cij = 1 for all j = 1, 2, ..., n.

Assuming that local dynamics preceeds dispersal, we can write the nk equations
describing the dynamics of the whole system in the vector form as

xt+1
i = (Ik − M(f(xt

i)))f(x
t
i) +

n∑

j=1

cijM(f(xt
j))f(x

t
j), t = 0, 1, 2, ..., (2)

for all i = 1, 2, ..., n, where M(x) = diag(µ1(x), µ2(x), ..., µk(x)) x ∈ R
k is a k × k

diagonal matrix with entries µ1, µ2, ..., µk along the main diagonal, and Ik is the k×k

identity matrix. The first term in the above equation represents the individuals that
did not disperse while the second term stands for the contribution of the migrants
arriving in the patch.

Let Φ : R
k → R

k defined by Φ(x) = M(x)x, x ∈ R
k. Thus, Φ(xt

j) is the vector
with the number of migrants of each species leaving patch j at time t as components.
We can write (2) in the form

xt+1
i = f(xt

i) −

n∑

j=1

bijΦ(f(xt
j)), ∀i = 1, 2, ..., n, t = 0, 1, 2, ..., (3)

where bij are the entries of the matrix B = In − C. Let φi : R
k → R be such that

Φ(x) = (φ1(x), φ2(x), ..., φk(x)), x ∈ R
k. The partial derivatives ∂φi

∂xj
measure the

impact of species j on the dispersal of species i, and of course it is a function of the
population vector x = (x1, x2, ..., xn). We say that species i has a positive (negative)

density dependence dispersal with respect to species j if ∂φi

∂xj
> 0 ( ∂φi

∂xj
< 0) for all

x ∈ R
k. The case i 6= j refers to the cross-migration response, extensively studied

in [7]. The case i = j refers to a self-regulated dispersal process which is well
documented in [30]. The increase of dispersal activity as a response to an increase

in local density (∂φi

∂xj
> 0) may occur because of loss of environmental conditions
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due to crowding ([4]). Negative density dependence ∂φi

∂xj
< 0 corresponds to the

opposite situation, where individuals are more apt to leave patches of low density,
perhaps in search of sexual partners or to aggregate to increase protection against
predators ([16]).

3. The stability of the homogeneous state. Let x∗ ∈ R
k, x∗ = (x∗

1, x
∗
2, ..., x

∗
k)

an equilibrium point of the isolated patch model. Let X∗ ∈ R
k×n be the vector

composed by n copies of (x∗
1, x

∗
2, ..., x

∗
k), thus X∗ = (x∗, ...,x∗) ∈ R

k×n. The vector
X∗ represents the complete homogeneous state in the network of patches, meaning
all patches at the same state x∗. A simple substitution of xt

j for x∗ in (2) (or in

(3)) leads to x∗ = f(x∗), i = 1, 2, ..., n, provided
∑n

j=1 cij = 1 (
∑n

j=1 bij = 0) for
all i = 1, 2, ..., n. Therefore, if all lines of C have the same sum, one, then the
homogeneous equilibrium X∗ is a solution of the metapopulation model (2). From
this point on we will assume that condition on matrix C in order to ensure the
existence of the homogeneous equilibrium. In fact, C is a doubly stochastic matrix
with entries not larger than one and zero diagonal. Doubly stochasticity is not a
very strong requirement since it is satisfied by any symmetric coupling system with
conservation during dispersal.

Once the existence of the homogeneous equilibrium X∗ is guaranteed, we can
study its stability. Standard linearization around X∗ yields

∆t+1 = J(X∗)∆t, t > 0, (4)

where ∆t ∈ R
kn is the perturbation from the equilibrium X∗, and J(X∗) is the

nk × nk Jacobian matrix of system (3) evaluated at X∗. Simple calculations allow
us to write

J(X∗) = In ⊗ Df(x∗) − B ⊗ (DΦ(x∗)Df(x∗)), (5)

where ⊗ is the Kronecker product 1.
We now proceed with a decoupling of the system (4). Assume the configuration

matrix C is diagonizable. Since B = In −C, B is also a diagonizable n× n matrix.
Let λ1, λ2, ..., λn be the eigenvalues of B and let Λ = diag(λ1, λ2, ..., λn). Therefore,
there is an invertible n×n matrix P such that Λ = PBP−1. Making the change of
variables Y t = (P ⊗ Ik)∆t in the system (4), we have

Y t+1 =(P ⊗ Ik)∆t+1

=(P ⊗ In)[In ⊗ Df(x∗) − B ⊗ (DΦ(x∗)Df(x∗))]∆t

=[(PIn) ⊗ (IkDf(x∗)) − (PB) ⊗ Ik(DΦ(x∗)Df(x∗))]∆t

=[(P ⊗ Df(x∗)) − (PB) ⊗ (DΦ(x∗)Df(x∗))]∆t.

(6)

But ∆t = (P ⊗ Ik)−1Y t = (P−1 ⊗ Ik)Y t, thus

Y t+1 =[(PP−1) ⊗ (Df(x∗)Ik) − (PBP−1) ⊗ (DΦ(x∗)Df(x∗)Ik)]Y t

=[In ⊗ Df(x∗) − Λ ⊗ (DΦ(x∗)Df(x∗))]Y t.
(7)

But Λ = diag(λ1, λ2, ..., λn), therefore

Y t+1 =

n⊕

j=1

[Ik − λjDΦ(x∗)]Df(x∗)Y t, (8)

1Let A = [aij ]mi,j=1
∈ R

m×m and B = [bij ]ni,j=1
∈ R

n×n, the Kronecker product is defined by

A ⊗ B = [aijB]mi,j=1 ∈ R
mn×mn.



DENSITY-DEPENDENT DISPERSAL IN METAPOPULATIONS 847

where
⊕

denotes the direct sum or block decomposition of matrices, that is

n⊕

i=1

Ai =




A1

A2

. . .

An


 .

A different decoupling technique was employed in [10] in the case of density-
independent dispersal (in such case DΦ(x∗) = M). Their approach groups the
states variable as n×k matrices instead of using nk component vectors to store the
species numbers in each patch as we do. In essence both approaches are equivalent.

The advantage of the decoupling procedure is clear. Instead of considering the
eigenvalues of the nk×nk of J(X∗) given by the cumbersome expression in (5), we
can consider the n simples k × k matrices [Ik − λjDΦ(x∗)]Df(x∗), j = 1, 2, ..., n.

Notice that 1 is an eigenvalue of the configuration matrix C and thus, λ1 = 0
is an eigenvalue of B. Consequently, one of the blocks in the decomposition of
J(X∗) is necessarily Df(x∗), which implies the well-known result ([20]) saying that
dispersal alone cannot stabilize a system of n equal patches that would display un-
stable behavior in the absence of movement between patches. On the other hand,
dispersal can lead to loss of stability of the homogeneous state thereby leading to
spatial patterns. Pattern formation can arise in two different ways. When dis-
persal is density-independent it requires more than one species interacting ([20]).
The heterogeneous patterns observed ([20], [21]) arise through a mechanism first
described by Turing [29]. When dispersal is density-dependent, pattern formation
generated by dispersal can appear even in an unstructured single species metapop-
ulation model ([25]). The mechanism that gives rise to the loss of stability of the
homogeneous state is quite different than the one proposed by [29]. In this case, the
stability of the homogeneous equilibrium is lost because of overshooting caused by
excessive rate of change in migrants when the patch density in near the equilibrium
([25]).

The decoupling result states in (8) can be applied to a variety of situations. We
have used the term species so far simply for the clarity of the argument. In fact,
what is needed is a local autonomous dynamical system with k state variables.
These k state variables can represent real species density or age class density. In
the next sections we will present two different examples of such models.

4. Hierarchical local model. Assume the local dynamics in each patch is given
by an hierarchical model satisfying the following property. There is a ranking scheme
in the set of k species organizing the species from the most dominant (rank 1) to the
least dominant (rank k) in such way that, given a certain species (rank ℓ), its local
dynamics depend only on its own density and on the densities of the species that
are more dominant in the ranking scheme (1, 2, ..., ℓ − 1). In this way species one
depends only on species one, species two depends only on species two and species
one, and so forth. Such models have been considered in [1]. Recall that f : R

k → R
k

describes the local dynamics in each patch. Let fi : R
k → R, i = 1, 2, ..., k, be such

that f(x) = (f1(x), f2(x), ..., fk(x)), ∀x ∈ R
k. The hierarchical organization implies

that f1 depends only on x1, f2 depends only on x1 and x2, and so forth. Thus the
Jacobian matrix Df(x∗) is a lower triangular k × k matrix.

We will assume that the same hierarchical organization holds with respect to
dispersal. Therefore the k× k matrix DΦ(x∗) is lower triangular. The simplicity of
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the matrices [Ik − λjDΦ(x∗)]Df(x∗), j = 1, 2, ..., n, allows the easy calculation of
its eigenvalues ξij , i = 1, ..., k, j = 1, 2, ..., n given by

ξij =

(
1 − λj

∂φi

∂xi

(x∗)

)
∂fi

∂xi

(x∗). (9)

The stability region of the homogeneous equilibrium is determined by the con-
dition |ξij | < 1 for all i = 1, ..., k, j = 1, 2, ..., n. Assume that in the absence of
density-dependent effects the emigration is symmetric. This means that the net
configuration matrix C is symmetric and so is B = In − C. Thus, B has real ei-
genvalues. Moreover, a simple application of the Gershgorin theorem allows us to
say that the spectrum of B is contained in the interval [0,2]. Let γ be the largest
eigenvalue of B, that is γ = max

{i=1,2,...,n}
λi. It is not difficult to see that

max
{j=1,...,n}

∣∣∣∣1 − λj

∂φi

∂xi

(x∗)

∣∣∣∣ =






(
1 − γ

∂φi

∂xi

(x∗)

)
,

∂φi

∂xi

(x∗) < 0,

1, 0 6
∂φi

∂xi

(x∗) 6
2

γ
,

(
γ

∂φi

∂xi

(x∗) − 1

)
,

∂φi

∂xi

(x∗) >
2

γ
.

(10)

Thus (9) and (10) imply that

|ξij | < 1 for all
i = 1, ..., k,

j = 1, ..., n
⇔






∣∣∣∣
∂fi

∂xi

(x∗)

∣∣∣∣
(

1 − γ
∂φi

∂xi

(x∗)

)
< 1,

∂φi

∂xi

(x∗) < 0,

∣∣∣∣
∂fi

∂xi

(x∗)

∣∣∣∣ < 1, 0 6
∂φi

∂xi

(x∗) 6
2

γ
,

∣∣∣∣
∂fi

∂xi

(x∗)

∣∣∣∣
(

γ
∂φi

∂xi

(x∗) − 1

)
< 1,

∂φi

∂xi

(x∗) >
2

γ
.

(11)

In this way we obtained the stability region of the homogeneous equilibrium in
terms of ∂fi

∂xi
(x∗) and ∂φi

∂xi
(x∗), i = 1, 2, ..., k.

In order to detect instabilities induced by dispersal we assume the local equilib-
rium x∗ to be stable, that is, all the eigenvalues of Df(x∗) have modulus less than

one. But since Df(x∗) is lower triangular it is equivalent to say max
{i=1,...,k}

∣∣∣∣
∂fi

∂xi

(x∗)

∣∣∣∣ <

1. Figure 1 shows the projection of the stability region for species i given by (11)

with the imposition of the condition
∣∣∣ ∂fi

∂xi
(x∗)

∣∣∣ < 1. The internal region (white)

corresponds to the stability of the homogeneous state while the external region
(gray) corresponds to instability caused by dispersal. Notice that in order to have
dispersal driven instability it is sufficient to have the system parameters controlling
∂fi

∂xi
(x∗), and ∂φi

∂xi
(x∗) be such that the ordered pair

(
∂fi

∂xi
(x∗), ∂φi

∂xi
(x∗)

)
is in the

gray region for some i. In order to have instabilities caused by dispersal we need
at least one of the two processes (local dynamics and dispersal) to have a severe

nonlinearity in at least one of the species. Since we impose max
{i=1,...,k}

∣∣∣∣
∂fi

∂xi

(x∗)

∣∣∣∣ < 1,

a sufficiently large value of ∂φi

∂xi
(x∗) will drive the system in to the homogenously

unstable dynamics. Notice that there are bounds for ∂φi

∂xi
(x∗) that can guarantee

the stability of the homogeneous stable. It is clear that if 0 < ∂φi

∂xi
(x∗) < 2

γ
for each

species i = 1, 2, ..., k, then X∗ is stable. The constant 2
γ

depends only on the net

configuration matrix and clearly satisfies 2
γ

> 1. It is interesting to notice that if
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∂φi

∂xi
(x∗) > 2

γ
or ∂φi

∂xi
(x∗) < 0 for some i, its is possible to adjust the value of ∂fi

∂xi
(x∗)

(keeping the restriction
∣∣∣ ∂fi

∂xi
(x∗)

∣∣∣ < 1) to drive the system in the gray region of

Figure 1.

Figure 1. Instability region driven by density-dependent dispersal
(gray region). The white region corresponds to the stability region
for the equilibrium point x∗.

Inside the region of instability driven by dispersal, the dynamics can be very rich,
including other stable equilibrium, periodic points, and even chaotic oscillations. We
have performed some simulations with a two species patch model coupled with the
two nearest neighbors in a ring of n patches. We have considered the local dynamics
to be given by {

xt+1
1 = xt

1e
r1(1−xt

1
)

xt+1
2 = xt

2e
r2(1−αxt

1
−xt

2
),

(12)

where r1, r2 > 0 are the intrinsic rate of increase of species one and two respectively,
and 0 < α < 1 measures the impact of species one on species two. It is easy to see
that the above competing system has four points of equilibrium: (0, 0), (0, 1), (1, 0),
and (1, 1 − α). The first three are unstable, while coexistence equilibrium point
(1, 1 − α) is linearly stable if and only if 0 < r1 < 2, and 0 < r2 < 2

1−α
. Assume

r1, r2 and α satisfy the last condition, which ensures the stability of the local model.
Assume no cross-dispersal effects. The only density-dependent in the dispersal
process is expressed by

µi(xi) =
µ̄

1 + eβ(1−xi)
, (13)

where 0 6 µ̄ 6 1 is the maximum dispersal fraction, and β is a parameter regulating
shape of the curve (see Figure 2), which also measures the strength of the density-
dependent effects. Notice that β = 0 corresponds to the case of density-independent
dispersal. This functional formulation is adapted from [30]. The limit cases β →
+∞ and β → −∞ describe the case studied in [26] where dispersal is triggered by
a critical density.

In Figure 3 we illustrate the instability driven by dispersal by showing the time
series of species two after disregarding some transients. In Figure 3 (a), we show
a stable period four solution. In Figure 3 (b) we see a chaotic oscillation. Chaotic
solutions are detected by computing the largest Liapunov number of the system (3).
This was done for a ring with three patches, and the results are shown in Figure 4.
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(a) (b)

Figure 2. (a) β > 0, (b) β < 0.

(a) (b)

Figure 3. Time series of species versus time. Ring with five
patches. (a) r1 = 0.05, r2 = 3.0095, α = 0.6, β = 100 and µ̄ = 0.99;
(b) r1 = 1.25, r2 = 3.95, α = 0.6, β = 75 and µ̄ = 0.99.

(a) (b)

Figure 4. Chaotic region. Ring with three patches, r2 = 3.0095.
(a) µ̄ = 0.43, (b) µ̄ = 0.9.

There we plot the projection of the stability region (internal white) for species one
exactly as in Figure 1. The difference is that now the region outside (corresponding
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to the stability driven by dispersal) the white region is shaded if for that corre-

sponding values of ∂f1

∂x1

(x∗), and ∂φ1

∂x1

(x∗) the metapopulation system given in (3)
has a Liapunov number larger than one. Thus, that region represents the chaotic
dynamics induced by dispersal. The strength of coupling (usually measured by the
dispersal fraction µ in density-independent dispersal models) is usually associated
with a more stable and homogeneous dynamics. In our case, the parameter µ̄ can be
a measure of coupling. Strength in coupling acts in favor of spatial heterogeneities.
But in this case (see Figs. 4(a) and 4(b)), the amount of coupling acts in favor of
spatial heterogeneities.

Dispersal induced instabilities lead to pattern formations as shown in Figure
5, where we have space-time plots. The patches are along the vertical axis (in the
following order: xt

11, x
t
21, x

t
12, x

t
22, ..., x

t
1n, xt

2n), while the time is along the horizontal
axis. The evolution of the system is followed, transients are thrown away, and if
the local density is above the local equilibrium the position (t, ℓ) is painted black,
otherwise it is painted white.

(a) (b)

Figure 5. Space-time plots for a ring with ten patches, α = 0.6.
(a) r1 = 0.5, r2 = 3.95, µ̄ = 0.99 and β = 100, (b) r1 = 1.05,
r2 = 3.0095, µ̄ = 0.99 and β = −100.

5. An age-structured metapopulation. In this section we study a single species
age-structured metapopulation model. We assume the isolated patch model to be a
special case of the class of nonlinear Leslie type models studied in [27] and [28]. The
local population is divided into k age classes of same duration, precisely, one time
step. Let pi, i = 1, 2, ..., k − 1 be the density-independent transition probability of
age class i at time t. Thus,

xt+1
i = pi−1x

t
i−1, i = 2, ..., k. (14)

The nonlinearity is present only in an inferior class (eggs and/or larvae) whose
population at time t is denoted by wt. The precise mathematical formulation of wt

depends on the age-specific fertilities gi, i = 1, ..., k, and it is expressed as

wt =

k∑

i=1

gix
t
i. (15)

The nonlinearity reflects a density-dependent recruitment process in the inferior
class. The individuals of the first age class (new recruits) are expressed as

xt+1
1 = q(wt)wt, (16)
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where q(wt) is the probability of surviving this stage. The recruitment survival
probability is modeled by a C1 function q : R → [0, 1] satisfying the following
properties

(i) q(0) = 1;
(ii) lim

x→∞
q(x) = 0;

(iii) q
′

(x) < 0, ∀x > 0.

A popular example is to take q(x) = e−αx, α > 0 obtaining the celebrated Ricker
recruitment (see [14]). The above properties of the function q reflect the effect
of the intra-specific competition during the egg-larvae stage. Equations (14)-(16)
completely describe the local dynamical system.

The elasticity of the recruitment survival probability E(w) is defined by

E(w) =
−wq

′

(w)

q(w)
. (17)

It expresses the ratio of relative (or percent) change in the recruitment survival
probability to the relative change in population density. Notice that, writing the
number of recruits R when the population of individuals in the egg-larvae stage is
w by R(w), we can write

R(w) = wq(w). (18)

Thus
R

′

(w)

q(w)
= 1 − E(w). (19)

Therefore

R
′

(w) > 0 ⇔ E(w) < 1. (20)

That is, the number of recruits increases if and only if the elasticity of the recruit-

ment survival is less than one. It is important to define li =
∏i−1

j=1 pj , i = 2, ..., k

as the density-independent probability of an individual to reach age class i. Of

course l1 = 1. As usual R0 =
∑k

i=1 gili is the basic reproductive number, that is,
the number of news individuals generated by an average individual during its entire
life. The age-specific fertility distribution is defined by mi = gili

R0

, i = 1, 2, ..., k.

In the absence of dispersal, the dynamical system described above has two equi-
libria ([27]). The trivial equilibrium 0 = (0, 0, ..., 0) and the positive equilibrium
x∗ = w∗q(w∗)(l1, l2, ..., lk), where w∗ > 0 is the unique solution of the equation
q(w∗) = 1

R0

. Notice that the ith component x∗ is precisely R(w∗)li, that is the
number of recruits at equilibrium multiplied by the probability of arriving alive at
age class i. Clearly, if R0 < 1, only the trivial equilibrium exists. When R0 > 1
the unique positive equilibrium is well defined. The critical value R0 = 1 is a bi-
furcation point ([27]). A simple argument can be used (see [3]) to show that if
H = E(w∗) < 2, then x∗ is stable, for any choice of mi = 1, 2, ..., k. The elasticity
at equilibrium H = E(w∗) can be thought of as a measure of the reproductive power
of the population; in fact, choosing q(x) = e−αx, α > 0 (Ricker recruitment) allows
us to say that H = lnR0.

Now we consider a network of n patches with an age structured population model
discussed above. As in the previous section, we will assume symmetric interactions,
thus the network configuration matrix C is supposed to be symmetric. We will also
suppose no cross-emigration responses, that is, the dispersal fraction of age i, µi,
dependes only on the density of species i. Taking this in consideration, then k × k
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matrix DΦ(x∗) is a diagonal matrix. Simple calculations lead to the expression for
the k × k blocks (Ik − λjDΦ(x∗))Df(x∗) =



(
1−λj

∂φ1

∂x1

)
g1R

′

(w∗)
(
1−λj

∂φ1

∂x1

)
g2R

′

(w∗) · · · · · ·
(
1−λj

∂φ1

∂x1

)
gkR

′

(w∗)(
1−λj

∂φ2

∂x2

)
p1 (

1−λj
∂φ3

∂x3

)
p2

. . . (
1−λj

∂φk
∂xk

)
pk−1




.

The above matrix is of Leslie type, therefore it is easy to get the characteristic
equation satisfied by its eigenvalues σ1, σ2, ..., σk ([27])

R
′

(w∗)
k∑

i=1

l̃ij g̃ij

σi
= 1 , j = 1, ..., n, (21)

where

g̃ij =

(
1 − λj

∂φ1

∂x1
(x∗

1)

)
gi, i = 1, 2, ..., k, (22)






l̃1j = 1,

l̃ℓj =

ℓ∏

i=2

(
1 − λj

∂φi

∂xi

(x∗
1)

)
li, ℓ = 2, ..., k, j = 1, ..., n.

(23)

Dividing (21) by R
′

(w∗)
g(w∗) and writing m̃ij =

l̃ij g̃ij

R0

, the characteristic equation of

the j-block takes the form

k∑

i=1

m̃ij

σi
=

1

1 − H
, j = 1, ..., n, (24)

where H = E(w∗) is the elasticity at the equilibrium.

Suppose 0 6
∂φi

∂xi
(x∗

1) 6
2
γ
, for all i = 1, 2, ..., k, where γ is as in the previous

section. If follows that
∣∣∣1 − λj

∂φi

∂xi
(x∗

1)
∣∣∣ 6 1. Thus

|m̃ij | =

∣∣∣∣∣
g̃ij l̃ij

R0

∣∣∣∣∣ =
1

R0

[
i∏

ℓ=1

∣∣∣∣1 − λj

∂φℓ

∂xℓ

(x∗
1)

∣∣∣∣

]
gili 6

gili

R0
= mi, (25)

i = 1, ..., k, j = 1, ..., n. Let ea+ib be an arbitrary eigenvalue of the j-block in the
decomposition (8), then if H < 2 (notice that by definition H > 0) the equation
(24) allows us to write

∣∣∣∣∣

k∑

ℓ=1

m̃ℓje
−ℓa−iℓb

∣∣∣∣∣ =

∣∣∣∣
1

1 − H

∣∣∣∣ > 1. (26)

Now (25) and (26) imply
∣∣∣∣∣

k∑

ℓ=1

m̃ℓje
−ℓa−iℓb

∣∣∣∣∣ 6

k∑

ℓ=1

mℓe
−ℓa. (27)

Thus

∣∣∣∣∣

k∑

ℓ=1

mℓe
−ℓa

∣∣∣∣∣ > 1. But

k∑

ℓ=1

mℓ = 1, then we must have e−a > 1, which implies

|ea+ib| = ea < 1. Summarizing, if H < 2 and 0 6
∂φi

∂xi
(x∗

i ) 6
2
γ
, i = 1, 2, ..., k, then



854 JACQUES A. L. SILVA AND FLÁVIA T. GIORDANI

the homogeneous equilibrium X∗ is stable for any choice of age-specific fertility
distribution mi, i = 1, 2, ..., k. This extends the results obtained in [3] for the case
of density-dependent dispersal.

In the case when 0 < H < 2 and the above restrictions for ∂φi

∂xi
(x∗

i ) are not valid,
the density-dependent migration can induce instabilities. In fact, if we consider
only two age classes, variations of the parameter β induce the existence of periodic
attractors lead to quasi-periodic attractors. This phenomenon is illustrated in Fig-
ures 6(a) and 6(b) for β = −22.05 and β = −23, respectively. It is important to
recall that the negative values for β correspond to the density-dependent migra-
tion function illustrated in Figure 2(b). The transition point between the stable
equilibrium point and the periodic cycle occurs for some value β∗ ∈ (−20,−19.9).

(a) (b)

Figure 6. Phase portrait for a ring with three patches. Parame-
ters: g1 = 3, g2 = 1, µ̄1 = 0.8, µ̄2 = 0.3 and with (a) β = −22.05,
(b) β = −23.

In Figure 7 we show space-time plots illustrating the pattern formation in the
case of quasi-periodic attractors (Fig. 7(a)); chaotic behavior is shown in Figure
7(b).

(a) (b)

Figure 7. Space-time plots for a ring with three patches. Param-
eters: g1 = 3, g2 = 1, µ̄1 = 0.8, µ̄2 = 0.3 and with (a) β = −23,
(b) β = 47.

Considering the case of only two age classes, say juveniles and adults, we will
be able to obtain the exact stability region of the homogeneous equilibrium and
imposing the stability of the isolated age class model we will be able to obtain the
region of instability caused by the dispersal. In addition, we will assume that only
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the juveniles can disperse, that is, µ2 = 0. The characteristic polinomial pj(σ) of
the j-block decomposition is calculated using (24) is

pj(σ) = σ2 −
(1 − H)

R0

(
1 − λj

∂φ1

∂x1
(x∗

1)

)
(g1σ + g2p1). (28)

We consider three interesting cases. Routine calculations using the polynomials
given in (28) allow us to obtain the stability boundary curves in each case. In
Figure 8(a) we consider the case 0 < m1 6

2
3 and the boundary stability curves

are given by ∂φ1

∂x1

(x∗
1) = 1

γ

(
1 − 1

1−H

)
, ∂φ1

∂x1

(x∗
1) = 1

γ

(
1 + 1

(1−m1)(1−H)

)
, H = 0

and H = 1 + 1
1−m1

. In the case of 2
3 < m1 < 1 the stability region is delimited

(a) (b)

(c)

Figure 8. Stability region (white region) for the equilibrium point
in the case of a age structured model. The gray region corresponds
to the instability region, driven by density-dependent dispersal. (a)
0 < m1 6

2
3 ; (b) 2

3 < m1 < 1 and (c) m1 = 1.

by the curves ∂φ1

∂x1

(x∗
1) = 1

γ

(
1 − 1

1−H

)
, ∂φ1

∂x1

(x∗
1) = 1

γ

(
1 − 1

(1−2m1)(1−H)

)
, H = 0

and H = 1 − 1
1−2m1

(see Figure 8(b)). Figure 8(c) shows the stability region in

the case of m1 = 1, the boundary curves are given by ∂φ1

∂x1

(x∗
1) = 1

γ

(
1 − 1

1−H

)
and

∂φ1

∂x1

(x∗
1) = 1

γ

(
1 + 1

1−H

)
.

6. Discussion. Analytic treatment of multiple-species metapopulation with non-
linear coupling can be a very difficult task. Even under some simplifying assump-
tions such as the lack environmental heterogeneity, that is, all patches have the
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same quality with respect to local dynamics and dispersal (local dynamics is given
by the function f and the dispersal fraction of species is given by the function
µi, independently of the patch location), the mathematical treatment can be diffi-
cult. The decomposition of the Jacobian matrix associated with the homogeneous
equilibrium is a essential tool allowing the study of the instabilities induced by
density-dependent dispersal leading to pattern formation. This technique can also
be useful in the study of synchronization in multiple species metapopulations (e.g.,
[15]). We studied two types of local k-species system, a hierarchically organized
community (after Best et al. [1]) and a single species age structured population
with k age classes and nonlinear recruitment (proposed in Silva & Hallam [27],
[28]). In both cases self-dispersal response was shown to act in favor of pattern
formation. In the hierarchically organized community we allow cross-dispersal ef-
fects according to the hierarchy. It was shown that the cross-dispersal effects have
no influence in the process behind the loss of stability of the homogeneous state.
It is interesting to observe that if the hierarchy is not present in the k-species
community, then cross-dispersal effects are very important in the process of pattern
formation (Huang and Diekmann [7]). In the case of the age-structured local model,
we assumed no cross-dispersal effects in order to allow the analytic treatment in full
generality. With this assumption the k×k matrices appearing in the decomposition
of the Jacobian matrix of the metapopulation system evaluated at the homogeneous
equilibrium are of Leslie type. This allows the ideas developed in Silva & Hallam
[27] and further explored in De Castro et al. [3] to be applied. It is important to
make a distinction between instability induced by density-independent dispersal in
multiple species metapopulation (as in Rohani & Ruxton [21], or Hastings [6]) and
the heterogeneities induced by a density-dependent process. In the first case the
nonlinearities in the local model are averaged over all species producing a stable
dynamics. But there are localized stronger nonlinear effects that are hidden when
dispersal is not considered. When there is an uneven distribution of dispersal ef-
fectiveness among the species, these hidden nonlinearities can lead the system to
instability through a mechanism first explained in Turing [29] (see also [17]). In the
second case the mechanism is relatively simpler. It is not necessary to have more
than one species in each patch ([25]). The loss of stability of the previously stable
local system happens through a mechanism of overshooting the equilibrium caused
by excessive number of migrants when the local population is near the equilibrium.
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