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Abstract. We constructed differential equation models for the diurnal abun-
dance and distribution of breeding glaucous-winged gulls (Larus glaucescens)

as they moved among nesting and non-nesting habitat patches. We used time

scale techniques to reduce the differential equations to algebraic equations and
connected the models to field data. The models explained the data as a func-

tion of abiotic environmental variables with R2 = 0.57. A primary goal of this

study is to demonstrate the utility of a methodology that can be used by ecol-
ogists and wildlife managers to understand and predict daily activity patterns

in breeding seabirds.

1. Introduction. Ecologists study the distributions, abundances, behaviors, and
interactions of living organisms. Identification of environmental determinants that
elicit temporal patterns in these systems is important to both community ecologists
and resource managers. Dynamical systems theory offers powerful but underutilized
tools for identifying temporal patterns in data and for identifying environmental
determinants associated with those patterns [11].

Differential equations have been used to model the diurnal movements and be-
haviors of harbor seals (Phoca vitulina) [6], herring and great black-backed gulls
(L. argentatus and L. marinus) [7], and glaucous-winged gulls (Larus glaucescens)
[3],[8],[9],[10], as well as the consequences of cowbird parasitism on avian communi-
ties [5] and the dynamics of waterfowl [16]. A number of these studies show that a
variety of environmental cues play crucial roles in determining diurnal movements
and behaviors.

In a study of glaucous-winged gulls during chick-rearing season, Damania et al.
[3] used a system of differential equations to model the diurnal movement among
habitat patches at Protection Island National Wildlife Refuge, Washington. A stan-
dard compartmental modeling approach was used to track the occupancy of three
focal habitats adjacent to a large breeding colony. The model compartments con-
sisted of a jetty used for loafing; a small marina used for bathing and drinking; a
beach used for loafing, bathing, and drinking; and an “other” compartment consist-
ing of all other locations, including the nesting colony itself.
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The nesting colony, however, comprises a crucial component of the seabird ecosys-
tem during the breeding season. In this study we substantially revise the model of
Damania et al. to include nesting colony dynamics. The resulting differential equa-
tion model tracks glaucous-winged gull occupancies in the colony, jetty, marina,
and“other” locations. Unlike the colony, which is occupied exclusively by nesting
gulls, noncolony habitats are occupied by both nesting and non-nesting gulls and
census counts cannot differentiate between these two categories of birds. Hence,
the model must keep track not only of the numbers of nesting gulls in each habi-
tat, but also of the numbers of non-nesting gulls in the jetty, marina, and ”other”
locations. This necessitates a seven-compartment model. Furthermore, the model
must account for the fact that at least one of each nesting pair attends its territory
at all times during chick-rearing season, as well as the fact that non-nesting gulls
are promptly driven from the colony.

A primary goal of this study is to demonstrate the utility of a methodology that
can be used by ecologists and wildlife managers to understand and predict daily
activity patterns in breeding seabirds. Realistic models of dynamic field systems
are difficult to connect to data because of computational constraints and limited
data sets. We suggest that our methodology may be useful for solving some of these
problems.

Figure 1. Violet Point, Protection Island.

2. Methods.

2.1. Study area. Data were collected at Protection Island National Wildlife Refuge
(48◦ 08’N, 122◦ 55’W), Jefferson County, Washington, which contains the largest
marine bird breeding colony in the state. Violet Point, a gravel spit on the south-
east end of the island, supported about 2900 pairs of nesting glaucous-winged gulls
during the data collection period. Three well-defined habitats were designated for
study: a sample area within the colony, a small marina in the middle of the larger
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colony, and a rock jetty adjacent to the larger colony (Fig. 1). All areas, including
the marina, are closed to the public and experienced little human disturbance. The
gulls nest in short and tall grass habitats on the colony, engage in loafing behav-
iors (sleep, preen and rest) on the jetty, and use the marina for drinking, bathing,
preening, and floating.

2.2. Data collection. Hourly counts of the colony sample area, marina, and jetty
were taken during daylight hours, 05:00-20:00 Pacific Standard Time (PST), 28 June
to 16 July 2004 during chick-rearing season, from an observation point at least 100
m from the closest focal habitat. Observations were made using a 20-60x spotting
scope from the observation point atop a 33m high bluff that borders the west end of
Violet Point (Fig. 1); the presence of observers did not appear to affect the system
in any way. A comprehensive census was taken for the marina and jetty. Each
census of the colony sample area was multiplied by a scaling factor to represent a
census of the entire colony. The scaling factor (41.93) was computed in the following
way. 1) The maximum occupancy of the entire colony was calculated by multiplying
the 2004 colony-wide nest count by two (2914 x 2 = 5828). This relies on the fact
that each nest is associated with two birds and that non-nesting birds are promptly
driven from the colony. 2) The scaling factor for the colony was computed as the
ratio of the maximum occupancy of the entire colony to the maximum occupancy
observed within the colony sample area during the data collection period (139); that
is, (5828 / 139 ≈ 41.93). This assumes that the dynamic occupancy of the sample
area remained approximately proportional to the dynamic occupancy of the entire
colony.

Hourly tide heights and solar elevations were obtained from the National Oceanic
and Atmospheric Administration (NOAA). A weather station located 2 m above
site elevation on the northwest end of Violet Point tracked a large number of envi-
ronmental conditions on the colony, including humidity, wind speed and direction,
temperature, barometric pressure, heat index, THSW index, rainfall, and solar ra-
diation. The heat index and THSW index are computed from temperature and
relative humidity as measures of how hot the air feels; THSW also includes the
effects of solar radiation and wind speed on perceived temperature [17].

2.3. Model assumptions. Mathematical models are based on parsimonious sets
of simplifying assumptions that capture the main dynamics of the system. Our
models were based on eight assumptions:

A1) The total number of gulls K that used the focal habitats was assumed
constant over the data collection period (28 June to 16 July 2004). Although K
varies during the year from essentially zero during the winter to many thousands at
the height of the breeding season, the value is relatively stable during chick-rearing
season. The value of K was estimated in the following way: During the 2004
data collection period, occupancy data were collected for two additional habitat
patches—a sample beach area, and the water north and south of the spit extending
approximating 200 m out from the beach. We assumed that all the gulls returned
from remote feeding locations back to the colony, jetty, marina, beach, and water
by dusk. Thus, K was calculated as maximum of the summed occupancies for these
five habitats (7556, occurring at 1700 hours on day 193), where the colony sample
occupancy was scaled up by a factor of 41.93 as explained under “Data Collection”
above and the beach sample occupancy was scaled up by a factor of 5.5. The beach
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scaling factor was estimated from the total length of the beach and the lengths of
sample areas of various densities using the method detailed in [14].

A2) The total number of gulls K in the system consisted of gulls without nests in
the colony (”non-nesting gulls”) and gulls with nests in the colony (“nesting gulls”).
That is, K = K1 + K2, where K1 and K2 denote the number of non-nesting and
nesting gulls, respectively. From the 2004 colony-wide nest count mentioned under
“Data Collection” above, K2 = 5828. From A1, K1 = K−K2 = 7556−5828 = 1728.

A3) Colony occupancy at any given time was between K2/2 and K2. This as-
sumption was based on the facts that at least one of a pair of nesting gulls remains
at the nest at any given time during chick-rearing season and that non-nesting
gulls are immediately chased away by colony residents. Since territoriality is not a
predominant behavior in the other two study habitats (jetty and marina), no such
maximum or minimum occupancy thresholds were assumed for those.

A4) The per-capita transition rates rij from habitat j to habitat i were assumed
proportional to powers of nine abiotic nondimensionalized environmental variables:
time of day (hour), tide height (tide), solar elevation (sun), humidity (hum), wind
speed on the colony (wind), temperature (temp), barometric pressure (bar), heat
index (heat), and THSW index (thsw), where each environmental variable x was
nondimensionalized and scaled so that 1 ≤ x ≤ 2. That is,

rij(t) = αijhouraij tidebij suncij humdij windfij tempgij barhij heatmij thswnij (1)

where αij > 0 and aij , bij , cij , dij , fij , gij , hij ,mij , nij ∈ R are constant parameters.
A5) The per-capita transition rates for nesting and non-nesting gulls into and

away from the jetty, marina, and “other” were assumed to be the same.
A6) The system was assumed to recover rapidly after disturbance. That is, the

environmental variables were considered essentially constant during system recovery.
This is based on our observations over many years at the Protection Island colony
that occupancies (and behaviors) essentially recover within 15 minutes after short-
term “point disturbances” by eagles and humans [3],[10],[11].

A7) The main source of noise in the census data was assumed to be demo-
graphic rather than environmental stochasticity. This assumption was motivated
by the fact that major environmental correlates were incorporated explicitly into
the model. Demographic stochasticity in this context arises from independent ran-
dom binary choices of individual gulls as they arrive in or depart from a habitat.
This is analogous to a stochastic birth-death process at the population level [8].

A8) Hourly residual model errors were assumed to be uncorrelated in time. That
is, it was assumed that a stochastic event affecting the census at one hour would
not affect the census an hour later, because of rapid recovery of the system post-
perturbation, assumption A6. Furthermore, at any given time t the covariances of
the residuals between habitats were assumed small relative to the variances. That
is, it was assumed that stochastic events mainly affected single habitats.

2.4. Deterministic model. As shown in Figure 2, let
x1 = number of gulls in the colony
x2 = number of nesting gulls on the jetty
x3 = number of non-nesting gulls on the jetty
x4 = number of non-nesting gulls in the marina
x5 = number of nesting gulls in the marina
x6 = number of non-nesting gulls in the “other” location
x7 = number of nesting gulls in the “other” location
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We can describe the dynamics of the colony by the differential equation

dx1

dt
= r12x2 + r15x5 + r17x7 − (r21 + r51 + r71)

(
x1 −

K2

2

)
. (2)

Here rij is the per-capita rate at which gulls move from habitat j to habitat i, and
hence the positive terms r12x2, r15x5, and r17x7 are the inflow rates into the colony
from the jetty, marina, and “other” location, respectively. By assumption A3, the
factor (x1 −K2/2) is the number of birds that are eligible to leave the colony. Thus,
the negative terms r21 (x1 −K2/2) , r51 (x1 −K2/2) , r71 (x1 −K2/2) and are the
outflow rates from the colony to the jetty, marina, and ”other” location, respectively.

Figure 2. System of habitat patches, with separate compartments
for nesting (N) and non-nesting (NN) glaucous-winged gulls on
Protection Island.

By assumption A2, the number of nesting gulls in the “other” location is x7 =
K2 − x1 − x2 − x5. Thus, equation (2) can be written

dx1

dt
= r12x2+r15x5+r17 (K2−x1−x2−x5)− (r21+r51+r71)

(
x1−

K2

2

)
. (3)

Given that the number of non-nesting gulls in the “other” location is x6 =
K1 − x3 − x4 by assumption A2, one can construct an equation for each of the
remaining focal compartments. The model is the system of differential equations

dx1

dt
= r12x2 + r15x5 + r17 (K2−x1−x2−x5)− (r21+r51+r71)

(
x1−

K2

2

)
dx2

dt
= r21

(
x1−

K2

2

)
+ r25x5 + r27 (K2−x1−x2−x5)− (r12+r52+r72) x2

dx3

dt
= r34x4+r36 (K1−x3−x4)− (r43 + r63) x3 (4)

dx4

dt
= r43x3+r46 (K1−x3−x4)− (r34+r64) x4

dx5

dt
= r51

(
x1−

K2

2

)
+r52x2+r57 (K2−x1−x2−x5)− (r15+r25+r75)x5
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in which r25 = r34, r43 = r52, r63 = r72, r27 = r36, r64 = r75, and r46 = r57 by
assumption A5.

Because of assumption A6, one can apply the multiple time scale analysis meth-
ods explained in detail in [11] to obtain an approximation to the dynamic steady
state of model (4). The analysis involves the appearance of a small parameter
multiplying each derivative on the “slow” time scale. When the left hand sides of
equations (4) thus are assumed small (essentially zero), the values of x1, x2, · · · , x5

can be approximated by solving the resulting nonhomogeneous linear system of
algebraic equations using Cramer’s Rule:

xi(t) =
|Ai(t)|
|A(t)|

, i = 1, 2, 3, 4, 5. (5)

Here A is the 5×5 matrix of coefficients on x1, x2, · · · , x5 from the right hand sides of
the differential equations in model (4), and each matrix Ai is obtained from matrix
A by replacing the ith column of matrix A with the vector of nonhomogeneous terms

−r17K2 − (r21 + r51 + r71) K2
2

−r27K2 + r21
K2
2

−r36K1

−r46K1

−r57K2 + r51
K2
2

 . (6)

2.5. Stochastic model. Demographic noise is approximately additive on the square
root scale. That is, the variance of the residual model errors (the deviations of
model predictions from observations) is stabilized by a square root transformation
[4],[6],[8],[15]. Given this fact and the assumption of demographic noise (A7), we
can therefore model the square-root transformed residuals as√

xi(t)−

√
|Ai(t)|
|A(t)|

= σiεi(t), i = 1, 2, 3, 4, 5, (7)

where t denotes the discrete hours of data collection, the εi(t) are drawn from a
standard normal random distribution, and the σi are positive constants. Thus, a
stochastic model for the system is

xi(t) =

(√
|Ai(t)|
|A(t)|

+ σiεi(t)

)2

, i = 1, 2, 3, 4, 5, (8)

where the quantity inside the square is taken to be zero if negative. The εi(t)
are uncorrelated from hour to hour by assumption A8. Since the same parameters
αij appear in each of the xi(t), the random variables ε1(t), ε2(t), · · · , ε5(t) would in
general be expected to covary. In this study, however, the covariances were assumed
small relative to the variances and were taken to be zero, assumption A8.

2.6. Model selection. Given assumption A5, model (4) has 12 per-capita flow
rates rij to be determined from data. By assumption A4, each of the 12 per-capita
flow rates involves one coefficient parameter and nine exponent parameters, for a
total of 120 model parameters. Numerical estimation of this many parameters with
maximum-likelihood (ML) methods is computationally difficult and would require
a large data set. To circumvent this problem, we designed a four-step procedure:

1) We first supposed that each of the exponents aij , bij , cij , dij , fij , gij , hij ,mij , nij

in equation (1) had value -1, 0, or 1. This had two consequences. First, it reduced
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the number of ML parameters to the 12 coefficients, yet allowed each environmental
factor to have a negative, zero, or positive effect on the flow rate. Second, it created
a large number of alternative models in the form of model (4). Thus, the heavy
computational burden was shifted from parameterization to model selection.

2) Next we eliminated most of the alternative models. Exhaustive model selection
would have involved estimating ML parameters for each of the alternative models
and choosing the model(s) that best explained the data. This approach is neither
feasible nor desirable for such a large number of models; most such alternatives
should be eliminated by other means before applying model selection techniques
[1]. We eliminated most of the alternative models in two ways. First, we used
the biologists’ knowledge of the system and statistical investigations of correlations
between habitat occupancies and environmental variables to discard some of the
possibilities. Second, we followed the “step-wise” method introduced by Damania
et al. [3]. In this approach, one pursues the (much easier) task of determining
the best flow rates for each possible two-compartment model (in this case, colony
and “other”, jetty and “other”, marina and “other”), then uses this information to
determine the best flow rates for each possible three-compartment model; in this
way one finally identifies a relatively small subset of alternative models for the larger
system.

3) We then selected the “best” of the remaining alternative models to be the one
with the smallest (fitted) sum of squared residuals after ML parameterization (see
next section), and we discarded the others. Because each of the alternative models
had the same number of ML parameters, it was not necessary to use an information-
theoretic model selection index such as the Akaike Information Criterion (AIC) [1].
Note that the selected model had the property that each of the exponents on the
environmental variables had value -1, 0, or 1.

4) Finally, we adjusted the exponents on the environmental variables in the
selected model. In particular, exponents with value -1 (or 1) were decreased (or
increased) by integer units until the “best” integer exponents were obtained. This
was done by changing the value of the exponents by hand in the computer program
and recalculating the sum of squared residuals until the minimal value was obtained.

2.7. Model parameterization. ML parameters were estimated from hourly cen-
sus data. The census counts of the jetty and marina did not differentiate between
nesting and non-nesting birds. Thus, hourly model predictions for nesting and non-
nesting birds were summed to produce total jetty and marina hourly predictions
(x2 + x3 and x4 + x5) that were then compared to the hourly observations of jetty
and marina occupancies. The residual error at time t for the ith habitat, computed
on the square root scale, is given by

residualti =
√

observationti −
√

predictionti. (9)

Because the residuals were assumed uncorrelated across habitats (assumption A8)
the ML parameter estimates are equivalent to the nonlinear least squares parameter
estimates, obtained by minimizing the sum of the squared residuals for the three
censused habitats (colony, jetty, and marina)

RSS(θ) =
3∑

i=1

q∑
t=1

(residualti)
2 (10)
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as a function of the vector θ of parameters, where q is the number of data points
[3]. The minimizer θ̂ is the vector of ML parameter estimates for the model. We
produced the model predictions using MATLAB and minimized RSS(θ) using the
Nelder-Mead Algorithm, a convenient downhill method for numerically finding min-
ima of functions [13].

2.8. Goodness-of-fit. The goodness-of-fit was measured by a generalized R2

R2 = 1− RSS(θ̂)
3∑

i=1

q∑
t=1

(√
observationti −meani

)2 , (11)

where “meani” denotes the sample mean of the square roots of the observations for
the ith habitat. The R2 estimates the proportion of observed variability explained
by the model and thus provides a measure of the accuracy of the model’s predictions.
The higher the R2 value, the better the model fit, with R2 = 1 indicating a perfect
fit.

3. Results and discussion. The selected model is shown in Table 1. Predictions
and observations are shown in Figure 3A-D. The R2 was highest for the jetty and
lowest for the marina. The overall R2 value was approximately 0.57.

Colony counts and predictions were high in early morning, lower at midday, and
highest in late evening (Fig. 3A). The model flow rates in Table 1 suggest that
nesting gulls leave the colony when the sun is high and the tide is low. Low tides
present the most opportune times for shoreline and mudflat feeding, and during the
breeding season, low tides are most likely to occur between mid-morning and mid-
afternoon. When conditions were reversed, patterns of flow were reversed. Daily
low counts, but not predictions, decreased over the course of the data collection
period; this was likely due to typical accumulation of nest failures, a source of
midday attrition not included in our model.

Table 1. Parameters and environmental variables for per capita
transition rates of glaucous-winged gulls between colony (C), jetty
(J), marina (M), and ‘other’ (O) on Protection Island. Colony
R2 = 0.47; jetty R2 = 0.81; marina R2 = 0.44; overall R2 = 0.57.

Transition Parameters αij Environmental variables
J to C 0.01142 hour thsw
M to C 1.529 hour−1 temp−1

O to C 0.06924 tide hour
C to J 0.02200 thsw−1

M to J 0.06984 thsw−2

O to J 0.002539 tide sun−1

C to M 0.04161 sun thsw2hum bar−1

J to M 0.009376 thsw2

O to M 0.03539 hour
C to O 0.01441 sun tide−1

J to O 9.682 sun tide−4heat−2

M to O 82.33 tide−2heat−1
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Daily jetty counts and predictions followed an occupancy pattern similar to that
of the colony. Midday lows on the jetty, however, were essentially zero (Fig. 3B),
reflecting the absence of territory defense in this habitat. Both nesting and non-
nesting gulls use the jetty as a loafing site for preening, resting, and sleeping. Table
1 suggests that birds move to the jetty when the tide is high and the sun is low,
conditions most likely to occur toward evening when feeding sites are not exposed.
Nesting birds move from the jetty to the colony late in the day, suggesting that
they use the jetty as a resting place between feeding sites and territorial activities
on the colony.

Marina counts were relatively low until the last five days of data collection, when
counts peaked at 141 at 12:00 hr on Day 193 (Fig. 3C). Marina counts were lowest
in the morning, higher in the afternoon and early evening, and low again in late
evening. On hot days, nesting gulls moved from the colony to the marina water
(Table 1). They also moved here from the jetty on hot days and from “other”
locations when the hour was late. Gulls unload significant amounts of heat from
their feet [12]; thus, simply floating in the cool marina water serves an important
thermoregulatory function. Gulls also use the calm marina waters for drinking and
bathing.

“Observations” and predictions for the “other” habitat were generated by sub-
tracting the sum of the observed/predicted occupancies for the three focal habitats
from K, the total number of gulls in the system (Fig. 3D). “Observed” and pre-
dicted occupancies for the “other” habitat category decreased from mid-morning to
evening.

Several comments and caveats are in order.
First, it is important to note that the connection between “driving” environ-

mental factors in the model and the behavioral dynamics is that of mathematical
implication rather than scientific causation. Environmental “determinants” iden-
tified in this study are correlative and may or may not be causative [11]. The
identification of environmental determinants, however, narrows the search for cues
that elicit behavior.

Second, although time scale analysis greatly simplifies parameterization by re-
ducing computation time, and renders the methodology accessible to ecologists and
wildlife managers, the resulting steady state models generally present an inverse
problem that is not well posed [11]. That is, parameters cannot in general be de-
termined uniquely because various combinations of inflow and outflow rates can
give rise to the same steady-state dynamics [6],[11]. In particular, a given set of
parameter estimates may not support the assumption of rapid transients in the
original differential equations. Although this is immaterial to the usefulness of the
steady state model as a tool to predict occupancies, it is important to remember
that the parameter estimates themselves have no biological meaning except relative
to each other in the context of the steady-state model. They should not be used in
the differential equation models and cannot explain transient dynamics. In order
to model transient dynamics, one must collect data densely over short time spans
following disturbance of the system. A detailed discussion of this is given in [11].
Furthermore, the environmental variables in the flow rates cannot in general be
determined uniquely, for similar reasons. Extensive experience using the method
suggests, however, that the modeling procedure robustly identifies environmental
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determinants. Most alternative models do not parameterize (one or more parame-
ters approaches zero or infinity); the ones that do typically have flow rates based
on similar combinations of environmental variables.
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Figure 3. Model predictions (continuous curve) and hourly obser-
vations (open circles) of numbers of glaucous-winged gulls in each
habitat. Each graph shows one day of data, with the day of the
year indicated in the upper left-hand corner. A. Colony, B. Jetty,
C. Marina, and D. Other. The data points in B and C designated
by a star exceeded the maximum value on the vertical axis. ‘Ob-
servations’/predictions for ‘Other’ were generated by subtracting
the sum of the observed/predicted occupancies for the three focal
habitats from K (the total number of gulls in the system).

Third, our procedure for identifying the 120 model parameters was a nonstan-
dard combination of ML estimation, model selection techniques, and trial-and-error
computations. The final model chosen (Table 1) does not necessarily represent the
120-parameter maximal likelihood incarnation of equation (4). Realistic models of
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field systems are difficult to connect to data because of computational constraints
and limited data sets. We suggest that our procedure, although somewhat ad hoc,
may be useful for solving some of these problems.

Fourth, an overall R2 of 0.57, although quite high for dynamic field data from
a complicated system, indicates a substantial amount of stochasticity relative to
the deterministic model. Departures of model predictions from data are due to at
least four sources of variability: 1) Observational error. Count inaccuracies occur
as a result of poor light conditions, fog, or concealing vegetation; uncertainty as
to whether birds near habitat boundaries are in or out of the habitat; and inflow
and outflow during counts. 2) Environmental stochasticity. Strong winds over the
Strait and rain suppress gull movement; bald eagle flyovers and predation events
disrupt “normal” activities of gulls; and human disturbances occur such as boats
entering the marina. 3) Demographic stochasticity. Gulls, like many vertebrates,
exhibit considerable individual variation in behavior. This variation is due to innate
differences in “temperament”, different histories, and varying physiological states.
4) Error in modeling assumptions. Each of the modeling assumptions is to some
degree overly simplistic, leading to departures of model predictions from the data.
For example, assumption A8 is not completely valid; some prolonged disturbances,
such as deer walking through the colony, can last longer than one hour. Indeed, post
hoc diagnostic analyses of residuals do show some correlation between temporally
subsequent pairs of residuals in all three focal habitats (ρ ≤ 0.45).

Henson et al. [9] provide more detail on the caveats associated with this type of
analysis, including the observation that several of the environmental variables are
correlated (such as temperature and relative humidity) or related through calculated
formulas (such as temperature and THSW).

4. Summary. Gulls exhibit considerable between-individual variation in decision
making. The choice to enter or leave a habitat by one gull may be influenced by
behaviors of other gulls [2] or may be made independently. Given the complexity
of colony life, individual decision-making seems particularly pronounced in nesting
gulls compared to loafing and swimming gulls. Nesting gulls engage in a wide variety
of activities including courtship, copulation, nest-building, egg-laying, incubation,
provisioning young, thermoregulation, territory defense, and response to predators.
Some of these activities involve entering and leaving the colony in response to a wide
variety of contingencies such as approach by predators, the drive to access water
to drink and thermoregulate during hot periods, and the exploitation of ephemeral
food sources near the colony. Moreover, because nesting gulls enter all habitats but
non-nesting gulls enter the colony relatively infrequently, a more complex system of
equations was needed to model the system than that used by Damania et al. [3].

One goal of this study was to identify the environmental factors that drive move-
ment of glaucous-winged gulls among three focal habitats in or adjacent to a breed-
ing colony in the Strait of Juan de Fuca, Washington. The results of this study are
consistent with those of earlier studies of Protection Island gulls that identify envi-
ronmental conditions correlated with behaviors and habitat occupancies. Tide, solar
elevation, temperature, and humidity are to a large degree responsible for shaping
the daily movement patterns and behaviors of these birds [3],[8],[9],[10],[14]. An-
other goal was to demonstrate the utility of a methodology that can be used by
ecologists and wildlife managers to understand and predict daily activity patterns
in breeding seabirds. This study suggests that mathematical modeling can play
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an important role in the establishment of priorities, goals, and policies in wildlife
management.
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