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Abstract. Most animal populations are characterized by balanced sex ratios,

but there exist several exceptions in which the sex ratio at birth is skewed. An

interesting hypothesis proposed by Clark (1978) to explain male-biased sex ra-
tios is the local resource competition theory: the bias may be expected in those

species in which males disperse more than females, which are thus more prone

to local competition for resources. Here we discuss some of the ideas underly-
ing Clark’s theory using a spatially explicit approach. In particular, we focus

on the role of spatiotemporal heterogeneity as a possible determinant of bi-

ased sex ratios. We model spatially structured semelparous populations where
either Ricker density dependence or environmental stochasticity can generate

irregular spatiotemporal patterns. The proposed discrete-time model describes
both genetic and complex population dynamics assuming that (1) sex ratio is

genetically determined, (2) only young males can disperse, and (3) individuals

locally compete for resources. The analysis of the model shows that no skewed
sex ratios can arise in homogeneous habitats. Temporal asynchronized fluctua-

tions between two distinct patches coupled with dispersal of young males is the

minimum requirement for obtaining skewed sex ratios of demographic nature
in local adult populations. However, the establishment of a male-biased sex

ratio at birth in the long run is possible if dispersal is genetically determined

and there is genetic linkage between sex ratio determination and dispersal.

1. Introduction. Sex ratio is determined in nature via a wide range of mech-
anisms, varying between chromosome-mediated and environmental determination
[34]. Nevertheless, independently of the underlying processes, in most animal species
the sex ratio resulting from reproduction is balanced, i.e., individuals generate an
approximatively equal number of male and female newborns in each reproductive
event. Although the study of the sex ratio evolution goes back to Charles Darwin’s
work, the first formal explanation of the optimality of a balanced sex ratio is due
to Fisher [18].

Fisher’s explanation is fairly simple: if males [females] of a population had a
greater reproductive value than females [males], then parents should bias the sex
ratio of their offspring and produce more males [females] than females [males]; as
a result, this skewed sex ratio at birth would eventually lead to a skewed sex ratio
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in the adult population, as there would be more adult males [females] than females
[males]; therefore, the excess of males [females] would decrease their own reproduc-
tive value, and parents should consequently bias their energetic investment towards
a female- [male-] skewed sex ratio. The only possible outcome of this recursive
process is a balanced sex ratio [18, 19].

There are cases, however, in which Fisher’s argument does not hold. In fact,
in several animal species the sex ratio at birth is skewed. Examples range from
insects to mammals and even to non-human primates [34]. The simplest case is
that of species with a marked sexual dimorphism. In this case, Fisher’s theory can
be simply extended by assuming that parents invest the same amount of energy
for giving birth to males and females, rather than produce the same number of
newborns of each sex. This phenomenon has been widely reported in the literature
[40].

On the other hand, sexual dimorphism is not present in many species that do
reproduce with skewed sex ratios. In such cases, Fisher’s theory of sex allocation in
its basic formulation cannot explain the bias. As a matter of fact, in some species a
difference in males’ and females’ reproductive values may indeed persist even if male
and female abundances in the population are balanced: as a consequence, evolution
should shape the sex ratio accordingly [10]. This has been widely verified in insects
(in particular in parasitoid wasps and eusocial hymenoptera [10, 21, 2, 68, 26, 69]).
As for vertebrates (like birds, ungulates, and primates), the outcomes of similar
analyses are far more controversial [13, 14, 69].

Several alternative theories have been proposed in the literature to explain the
emergence of skewed sex ratios. The best known are:

1. Hamilton’s theory of local mate competition [24], in which males are subject
to local competition for mating (see [65, 66, 57, 51, 52, 53] for experimental
tests);

2. the so-called Trivers & Willard hypothesis [61], according to which the sex
ratio of the offspring is influenced by the nutrition condition of the mother
[30, 31, 4, 5, 49, 50];

3. the helper repayment hypothesis, in which newborns of a given sex eventu-
ally help their own parent (e.g., in building the nest), thus promoting a bias
towards the sex of the helpers [20, 17, 43, 23];

4. the local resource competition theory, originally proposed by Clark [11], which
assumes male dispersal and competition between females for local resources
and is the focus of the present work.

Interestingly, some recent works attempt to combine some of these theories in order
to achieve a greater realism [73].

Clark’s theory applies to animal species in which males disperse from the native
site, while females are subject to competition for access to local resources. As a
result of these two conditions, evolution should favor the emergence of a male-biased
sex ratio. The birth of non-dispersing daughters, in fact, increases the strength
of local competition for resources in the native patch. On the contrary, young
males can avoid local competition through dispersal. Like all its predecessors, the
local resource competition theory opened a very fruitful research line, from both a
theoretical and an experimental standpoint, and has been applied to a variety of
animal species, from insects to birds, ungulates, and primates [12, 13, 54, 29, 42].

Several mathematical models have been proposed to formally discuss some of the
ideas underlying the local resource competition theory. In particular, sex-specific
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dispersal has been proved necessary to the establishment of biased sex ratios in finite
subpopulations [6]. The effects of different mating and dispersal systems have been
explored [7], also in a spatially explicit context [58]. In particular, many arguments
are based on kin selection [56, 58, 59, 71] and evolution of dispersal [47, 39, 41, 60,
44, 35, 32]. Other studies tackle the difficult problem of the coevolution of dispersal
and sex ratio [36, 37, 70, 72] using kin selection or the heterogeneity of the landscape
(patterns of either low or high quality) as basic mechanisms.

However, all these approaches have typically used fairly simple descriptions of
population dynamics. Therefore, they have not explored the potential role of demo-
graphic processes (and, in particular, of demographic fluctuations) in promoting the
establishment of biased sex ratios [36]. Demographic fluctuations can profoundly
affect patch quality, as more crowded sites provide less resources per capita. Al-
though some studies have already tackled the topic of differential habitat quality,
(e.g., [72] and references therein), this heterogeneity has been typically described in
a static way, thus disregarding its dependence on the density of individuals actually
inhabiting the habitat, as implicitly assumed by Clark in her seminal paper.

If demographic fluctuations in different patches are not synchronized, it is con-
ceivable that male dispersal from crowded patches can be advantageous, as indi-
viduals migrate to patches that are likely to be less crowded, namely with lower
competition. In a density-dependent context, the spatiotemporal heterogeneity re-
quired for dispersal to be potentially advantageous can be basically produced by
two different mechanisms: an overcompensatory demography implying oscillations
or chaos, or a compensatory demography with environmental stochasticity. As for
the former, non-equilibrial behavior of logistic or Ricker maps may produce so called
out-of-phase dynamics (i.e., dynamics in which different spatial patches have differ-
ent population densities at a given time; see [16, 15]). As for the latter, spatially
uncorrelated stochasticity may act so as to break the dynamical coherence of the
habitat (sensu [16]), thus leading to spatiotemporal heterogeneity as well.

The paper is organized as follows. In the next section we describe a local model
for the demography and genetic dynamics of a population in which the sex ratio
is genetically determined. Then, we make the model spatially explicit in order to
investigate the role of spatiotemporal heterogeneity generated by desynchronized
population dynamics in promoting genotypes with biased sex ratios. After that,
we analyze the consequences on the establishment of skewed sex ratios of letting
dispersal be genetically determined and linked to sex ratio determination. Finally,
the biological implications of our theoretical analysis are discussed.

2. A local model for the demography and sex ratio genetic dynamics of
a population. We consider a diploid animal population in which the sex ratio at
birth is genetically determined by means of a single autosomal gene with two alleles,
the resident allele A and the mutant allele a (genotypes AA, Aa, and aa). We limit
our analysis to semelparous species and suppose that only females are responsible
for the determination of the sex of the offspring. In addition, we assume that the
population size is so large that kin selection mechanisms are negligible [72]. All
females produce on average E0 = Em + Ef offspring, where Em and Ef denote the
abundances of male and female newborns, respectively. However, while AA females
produce sons and daughters according to a balanced sex ratio (Em/Ef = 1), aa
females procreate with a male-biased sex ratio s = Em/Ef ≥ 1, and Aa females
are characterized by an intermediate (skewed) sex ratio r (with s ≥ r ≥ 1). Such
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Table 1. Abundance of male (mt) and female newborns (ft)
of each genotype generated by mothers of different genotypes at
time t. E0 is the mean offspring production of mothers, while pM

t

is the allelic frequency of allele A in males at time t.

a mechanism for the determination of the sex ratio is rather common, for instance,
in wasp species [65, 55, 67, 53].

Under these hypotheses, it is straightforward [48] to compute abundance, sex, and
genotype of the offspring produced by mothers of any given genotype. Consider, for
instance, aa females. Since they reproduce according to the unbalanced sex ratio s,
during a single reproductive event they produce E0 (s/(s+1)) gametes (eggs) that will
become male offspring and E0 (1/(s+1)) gametes that will become female offspring.
If we denote by pM

t [pF
t ] the frequency of the resident allele in the genetic pool

of adult males [females] at generation t and assume random mixing for gametes,
we find that eggs are fertilized by A and a male gametes with probability pM

t and
(1− pM

t ), respectively. In this way we are implicitly assuming that the frequencies
of A and a gametes correspond to the allelic frequencies. Therefore, during one
reproductive event aa mothers generate E0p

M
t (s/(s+1)) aa sons, E0(1−pM

t ) (s/(s+1))
Aa sons, E0p

M
t (1/(s+1)) aa daughters and E0(1− pM

t ) (1/(s+1)) Aa daughters. The
computation for the other genotypes is reported in Table 1.

In order to describe the population demography, we have to define the relation-
ships between two subsequent generations of adult males (M) and females (F ).
Two-sex models are relatively complex and thus quite rare in the ecological liter-
ature (see [9] for an example and a discussion on this). However, since we aim at
studying the skewness of the sex ratio, we must account for population densities of
both sexes. The abundance of the newborns of each sex can be easily deduced from
Table 1 after suitable algebraic manipulations. As a consequence of a reproductive
event, the density of male newborns (or young males) mt is

mt = mAA
t + mAa

t + maa
t = E0

(
1
2
FAA

t +
r

r + 1
FAa

t +
s

s + 1
F aa

t

)
, (1)

where mX
t and FX

t are the densities of male newborns and of mothers with genotype
X, respectively. In a similar way, the abundance of female newborns (or young
females) ft can be computed as

ft = fAA
t + fAa

t + faa
t = E0

(
1
2
FAA

t +
1

r + 1
FAa

t +
1

s + 1
F aa

t

)
,

where fX
t is the density of female newborns with genotype X.
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In this paper we want to explore whether differences of patch quality caused
by temporal variations of local population densities can lead to skewed sex ratios.
There are basically two mechanisms that can provide these kinds of spatiotem-
poral fluctuations: either strong density-dependent local demography or spatially
uncorrelated environmental stochasticity. We will use the Ricker model [46] as a
prototype of the first mechanism and the stochastic version of the Beverton-Holt
model [1] as a prototype of the second. In fact, the Ricker model can exhibit self-
sustained oscillations of both regular (cyclic) and irregular (chaotic) nature. By
contrast, the Beverton-Holt model predicts stationary dynamics no matter what
values are attributed to model parameters [27], but a stochastic version account-
ing for demographic fluctuations can be easily derived by assuming that exogenous
drivers act as a multiplicative noise.

Let us first consider the case in which there is no metapopulation structure. If
we introduce density-dependent fertilities and assume that only a fraction σM [σF ]
of male [female] newborns survive and become reproductive adults after one year,
the dynamical relationships between subsequent adult generations are given by

Mt+1 = σME0g (Ft,Mt)
(

1
2
FAA

t +
r

r + 1
FAa

t +
s

s + 1
F aa

t

)
(2a)

Ft+1 = σF E0g (Ft,Mt)
(

1
2
FAA

t +
1

r + 1
FAa

t +
1

s + 1
F aa

t

)
, (2b)

where g (Ft,Mt) is the function used to describe density dependence. In particular,
in the case of the Ricker model we have

g (Ft,Mt) = gR (Ft,Mt) = e−β(Ft+Mt) ,

while for the Beverton-Holt model with environmental stochasticity we have

g (Ft,Mt) = gBH (Ft,Mt) =
ez(t)

1 + β (Ft + Mt)
,

where z(t) follows a normal distribution with mean 0 and standard deviation ξ. In
both formulations β is a positive parameter scaling the intensity of density depen-
dence. To avoid confounding effects, we assume that the survival parameters of
males and females in Eqs. (2) are equal (σF = σM ). Any difference in the survivals
would in fact result in a bias towards the favored sex.

Eqs. (2) do not consitute per se a well-defined dynamical system, because they
do not allow the computation of the density of the various genotypes in the next
generation. To formalize the genetic dynamics, we start by computing the frequency
pm

t of the dominant allele A in the young males of the population as

pm
t =

2mAA
t + mAa

t

2mt
.

The assumption of semelparous species implies that the allelic frequencies in off-
spring after a reproductive event transcribe to the adult individuals of the next
generation, i.e., pM

t+1 = pm
t . Similar relations hold for the allelic frequency pf

t of
the dominant allele A in the young females (i.e., pF

t+1 = pf
t = (2fAA

t +fAa
t )/2ft).
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Therefore, using data from Table 1, we get
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Taken together, the two sets of equations (2) and (3) fully describe the de-
mographic and genetic processes in the population provided we invoke the Hardy-
Weinberg principle [25, 64]. In fact, in this case we can obtain genotype abundances
as

FAA
t =

(
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t

)2
Ft

FAa
t = 2pF

t

(
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t

)
Ft (4)
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Thus, the proposed population model is as follows:
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The underlying hypotheses of the Hardy-Weinberg principle do not always hold
[48], therefore one might wonder whether the introduction of (4) may lead to signif-
icant errors in our analysis. We have analyzed the behavior of an extended model
obtained without invoking the Hardy-Weinberg principle. This model requires an
additional equation for the dynamics of the frequency of genotype Aa. Our nu-
merical investigations (not reported here for brevity) have shown that the errors
introduced by using the Hardy-Weinberg principle are very small and temporally
limited to the first iteration of the model. Thus, the results presented in the remain-
der of the paper refer to the more compact model (5) derived by taking advantage
of (4).

It is interesting to note that model (5) has a cascade structure, i.e., its Jacobian
matrix is block upper triangular. This means that Eqs. (5c-5d) are decoupled
from Eqs. (5a-5b), thus forming a genetic submodel. Extensive simulations of this
submodel (not shown for brevity) make clear that the genetic pool of the population
slowly, but systematically, evolves towards a monomorphic condition in which the
only existing allele is A (pM,F

t = 1) and all individuals share the same genotype
AA. As a consequence, the sex ratio is obviously balanced both at birth and in the
adult population, independently of the values attributed to the parameters r and s.
Because genetics and demography are decoupled in model (5), this result is robust
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to changes in the functional form used to describe density dependence and, in turn,
in population demographic dynamics.

All these results are summarized in Fig. 1, which shows how the attractors of
the population model (5) typically vary with respect to the mean fertility E0. For
increasing values of the parameter, the behavior of the model obtained with the
Ricker density dependence (left panels) undergoes several qualitative changes. For
very low values of E0, both males and females in the population are doomed to
extinction, while at higher fertilities they can coexist at a stationary equilibrium,
along a cycle or along a chaotic attractor (panel A). However, for any value of E0,
male and female densities remain identical. In the long run the frequencies of the
dominant allele approach unity whatever the value of E0 (panel C). In the case of the
Beverton-Holt density dependence with environmental stochasticity (right panels),
increasing values of E0 (beyond the extinction threshold) produce larger and larger
demographic oscillations (panel B) but no genetic polymorphism (panel D). To sum
up, the analysis of population model (5) confirms the evidence (see Introduction)
that no skewed sex ratios can be found in a non-spatial context.

3. The model for spatially explicit populations. We turn now to describing
populations living in a spatially structured habitat, which is the main goal of our
analysis. The simplest way for making our demographic and genetic approach spa-
tially explicit is by coupling via dispersal two identical patches whose local dynamics
in isolation can be described by model (5). Two-patch models with undifferentiated
sexes have been extensively studied in the literature as simple, yet insightful, models
for spatial interactions [28, 38, 62, 63]. The complexity of demographic behaviors
that emerges from such one-sex models is so rich that very rare are the analyses of
two-sex maps (see [45] for a counterexample).

However, to investigate the theory of local resource competition [11], it is neces-
sary to separately account for the abundance of the two sexes. We assume that (1)
only young males disperse and (2) dispersal takes place just after the reproductive
season [22]. These hypotheses imply that young males are still subject to compe-
tition for accessing local resources, but they have the chance of escaping from low
quality, densely populated sites. As a consequence of the introduction of young male
dispersal, equations (5a) and (5c) in our model have to be modified accordingly. To
this purpose, we need to reconsider Eq. (1). If the density of young males in patch 1
(M1

t ) is measured just after dispersal has occurred, we have

M1
t = (1−D)

(
mAA1

t + mAa1

t + maa1

t

)
+

+ αD
(
mAA2

t + mAa2

t + maa2

t

)
,

where D is the dispersal coefficient (i.e., the proportion of young males dispersing
each year) and α is the fraction of individuals that survive dispersal. Notice that if
α < 1, dispersal comes along with an extra-mortality term, which is a rather com-
mon hypothesis in the literature on fragmented habitats [8]. Therefore, Eqs. (5a)
and (5c) for patch 1 read respectively as

M1
t+1 = σMM1

t ,

pM1

t+1 =
(1−D)

(
2mAA1

t + mAa1

t

)
+ αD

(
2mAA2

t + mAa2

t

)
2M1

t

.
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Figure 1. Attractors of model (5) with respect to the mean fertil-
ity E0. Top panels (A) and (B) are the population densities of ei-
ther sex; bottom panels (C) and (D) are the frequencies of the resi-
dent alleles in males and females. Left panels (A) and (C) have been
obtained with a deterministic Ricker demography (g = gR), while
right panels (B) and (D) with a stochastic Beverton-Holt model
(g = gBH , see text for details). For each value of E0 model (5)
has been iterated for 10000 time steps with 10 randomly generated
initial conditions. The gray stripes mark the region in the param-
eter space in which the population goes extinct. Parameter values:
s = 1.6, r = 1.3, σM = σF = 0.5, and β = 1 (left panels), or
β = 0.5 and ξ = 0.1 (right panels).

These equations, together with Eq. (5b) and (5d) for female dynamics, and the four
relevant counterparts for patch 2, describe the demography and the genetic dynam-
ics of the metapopulation living in the two-patch habitat. It is interesting to notice
that, when spatial interactions are accounted for, the genetic and demographic dy-
namics of the local populations are interdependent and can no longer be studied
separately. In other words, the cascade structure found in the non-spatial model
is destroyed by spatial coupling. With more than one patch, thus, the absolute
abundances of the individuals of each genotype do matter and must be explicitly
considered.
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Figure 2. Attractors of the two-patch metapopulation model for
different values of the mean fertility E0. Left [right] panels have
been obtained with the Ricker (g = gR) [Beverton-Holt (g = gBH)]
model for density dependence. In particular, panels (A) and (B)
show the density of males in patch 1; (C) and (D) display the
differences between the total densities in the two patches (N1

t −
N2

t = F 1
t +M1

t −F 2
t −M2

t ); (E) and (F) represent the demographic
sex ratio in patch 1 (note the logarithmic scale); (G) and (H) show
the frequency of the resident allele in males of the same patch.
Parameter values: D = 0.1 and α = 1. Other parameters and
technical details as in Fig. 1.

The analysis of the metapopulation model, performed via extensive model simu-
lation over wide regions of the parameter space, shows that in the long run no alleles
other than the dominant allele A can persist in the genetic pool of the population
(i.e., pM,F

t

1,2
= 1). As an example, Fig. 2 reports how some representative variables

of our spatially explicit model typically vary with the mean fecundity E0, both with
deterministic Ricker and stochastic Beverton-Holt demographies.

In the first case (Fig. 2, left panels), the demography of the two local popu-
lations can be periodic or chaotic at high E0 (panel A). As shown in panel C,
the dynamics of the two subpopulations can be either in-phase (i.e., N1

t − N2
t =

F 1
t + M1

t − F 2
t −M2

t = 0 ∀t) or out-of-phase (N1
t 6= N2

t ). In particular, out-of-
phase attractors can emerge for high values of E0 if the local dynamics is periodic
or chaotic. Interestingly, if the dynamics is out-of-phase, the sex ratio in local
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adult subpopulations–the so called demographic sex ratio [69]–can be biased to-
wards males (panel E). We remark that this bias has only a demographic origin,
as it is apparent from the correlation between the emergence, crisis, and disappear-
ance of either periodic or chaotic out-of-phase invariants (panels A and C) and the
relevant modifications of the demographic sex ratio (panel E). However, the genetic
pool of the population remains monomorphic and all the individuals in the popu-
lation share the same genotype AA (panel G). Also, the demographic sex ratio of
the metapopulation as a whole is still balanced, i.e., (M1

t +M2
t )/(F 1

t +F 2
t ) = 1. Quali-

tatively similar results hold in the case of the stochastic Beverton-Holt demography
(Fig. 2, right panels), in which spatially uncorrelated environmental stochasticity
can produce demographic fluctuations (panel B), out-of-phase dynamics (panel D)
and skewed demographic sex ratios (panel F), but no biases in the sex ratio at birth
(panel H). All these result remains true also if some extra-mortality is added to
dispersal (i.e., if α < 1).

In summary, we have found that in a two-patch system the population is always
monomorphic and the sex ratio at birth remains balanced. The result is very robust
not only to changes in the values attributed to genetic and demographic parameters
other than E0, but also to the weight given to sex and age in the functional forms
used for density dependence. In particular, we have alternatively assumed that
fertility might depend on the density of (1) females only, (2) young of both sexes, or
(3) young females only. Also, introducing a dependence of the genetic parameters
s and r on the density of (young) males and females in the population or the
sex ratio itself is not sufficient to originate polymorphisms. In any of the above
cases, we have obtained results that are qualitatively similar to those reported in
Fig. 2. Therefore, even if we explicitly account for space, we can obtain skewed
demographic sex ratios at the local scale, but we cannot find genetic polymorphism
in the population, even less fixation of a skewed sex ratio at birth. This result
shows that Clark’s theory does not work when an explicit description of density
dependence in a metapopulation structure is introduced.

4. Genotype-dependent dispersal. Since dispersal can be genotype dependent
(e.g., [47, 44, 32] and references therein), we may wonder whether coevolution of
dispersal and sex ratio can lead to the fixation of genes that codify for skewed
sex ratios at birth. A complete analysis of this coevolution problem in two-sex
spatially explicit models with complex demographies is a quite difficult task. To keep
the problem affordable, we study a simpler problem, namely whether skewed sex
ratios at birth can arise if there exists a correlation between the genetic information
codifying the sex ratio and the propensity of males to disperse. In other words, we
investigate whether a linkage [48] between two distinct genes, one regulating the
skewness of the sex ratio and the other controlling the propensity to disperse, can
lead to genetic polymorphism or substitution of the resident allele.

To this end, we introduce genotype-dependent dispersal into our model by sim-
ply differentiating the dispersal coefficients corresponding to different genotypes.
Specifically, we assume that (1) aa young males disperse more than AA males
(Daa ≥ DAA), and (2) the dispersal ability of the heterozygote Aa males is inter-
mediate between those of the homozygotes (DAa = (DAA+Daa)/2). The abundance
M1

t of young males in patch 1 immediately after dispersal has occurred can now be
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computed as

M1
t = (1−DAA)mAA1

t + (1−DAa)mAa1

t + (1−Daa)maa1

t +

+ α
(
DAAmAA2

t + DAamAa2

t + Daamaa2

t

)
.

The model equations for allelic frequencies in males have also to be modified. For
instance, in patch 1 we have that

pM1

t+1 =
2(1−DAA)mAA1

t + (1−DAa)mAa1

t + α
(
2DAAmAA2

t + DAamAa2

t

)
2M1

t

.

Similar relationships obviously hold for patch 2. The equations describing female
dynamics do not need any modification.

Fig. 3 shows the results in a two-patch metapopulation with genotype-dependent
dispersal as the fertility parameter E0 is varied over a broad range of values, with
both endogenous heterogeneity (Ricker demography) and exogenous spatial diver-
sification (Beverton-Holt density dependence and environmental stochasticity). As
for the Ricker case (left panels of Fig. 3), if fertilities are low (E0 / 50 in the ex-
ample), then either stationary or periodic dynamics arise (panel A) and only the
dominant allele persists in the long run (panel E). A similar result holds for the
stochastic Beverton-Holt model. However, for higher fertilities genotypes corre-
sponding to skewed sex ratios can establish.

More specifically, the mutant allele a can invade the genetic pool of the population
as soon as E0 exceeds the threshold value (E0 ≈ 50, Fig. 3E) at which out-of-phase
attractors emerge (panel C). Therefore, for intermediate fertilities (50 / E0 / 115 in
Fig. 3) we can have polymorphic populations in which the frequency of the resident
allele A is smaller than unity. It is thus possible for the mutant allele to persist in
the long run, and, correspondingly, the sex ratio at birth is skewed.

Also, for intermediate to high fertilities (E0 ' 75, Fig. 3E) the resident allele A
can be excluded from the genetic pool of the population and completely replaced by
the mutant allele a. For these parameter settings, in fact, the homozygote aa may
prevail in the long run. In these cases, the sex ratio at birth is simply s. We notice
that the detection of the attractor leading to substitution in the parametric interval
75 / E0 / 115 is made difficult by the presence of a chaotic invariant leading to
genetic polymorphism in the population.

On the other hand, for intermediate fertilities 50 / E0 / 115 there can be coexis-
tence of multiple different attractors, each giving rise to a different genetic outcome
(Fig. 3E). In the example of Fig. 3, for 50 / E0 / 75 one of the attractors leads to
a balanced sex ratio, while the other leads to genetic polymorphism (and, thus, to
a skewed sex ratio). For 75 / E0 / 115 one attractor determines polymorphism,
while the other is responsible for complete substitution of the resident allele. Multi-
stability is ecologically interesting because it implies that populations characterized
by the same survival and fertility parameters, as well as by the same dispersal abili-
ties, may be genetically different depending upon the relative abundance of different
genotypes among the founders or the ancestral subpopulation densities.

Results for exogenous heterogeneity (stochastic Beverton-Holt model) have some
significant differences (Fig. 3, right panels). In fact, demographic oscillations may
arise also in this case and, as a consequence, out-of-phase dynamics may be gener-
ated (panel D). However, genotype evolution is rather different with respect to the
case of Ricker density dependence in a deterministic context. In fact, we have found
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Figure 3. Attractors of the spatially explicit two-patch system
with genotype-dependent dispersal for different values of the mean
fertility E0. Left [right] panels have been obtained with the Ricker
(g = gR) [Beverton-Holt (g = gBH)] model for density dependence.
In particular, panels (A) and (B) show male density in patch 1; (C)
and (D) display the difference between the total densities in the two
patches (N1

t −N2
t = F 1

t + M1
t −F 2

t −M2
t ); (E) and (F) report the

frequency of the resident allele in males in patch 1. Parameter
values: α = 1, DAA = 0.1, DAa = 0.2 (left panels), DAa = 0.5
(right panels), Daa = 0.3 (left panels), Daa = 0.9 (right panels).
For other parameter values and technical details see Fig. 1.

that, although the genetic pool of the population can be polymorphic, neither coex-
istence between multiple attractors nor complete substitution of the mutant allele
is possible, for any of the parametric combinations we have explored.

To sum up, our model shows that the emergence of male-biased sex ratios at
birth is possible if dispersal is genotype-dependent in cases where demography is
fluctuating in an out-of-phase manner between different patches. In general, this
condition may be satisfied with strong-density dependence if the fertility parameter
E0 is sufficiently high. The E0 threshold depends on the other parameters defining
the metapopulation, in particular on the dispersal rates. It is thus interesting to
numerically evaluate in the parameter space (DAA, Daa) the minimum value of E0

for which genetic polymorphism and substitution may arise. To this end, we have
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used the following condition

E∗
0 = arg min

0≤E0≤200

[
max

(
pM 1

T,...,T+100, p
F 1

T,...,T+100, p
M 2

T,...,T+100, p
F 2

T,...,T+100

)
< γ

]
,

(6)
where T is a suitably large number of time steps that lets us avoid transient dy-
namics and γ is a convenient numerical threshold. We have set γ = 0.99 to detect
the emergence of polymorphism and γ = 0.01 for the complete substitution of the
resident allele.

Fig. 4 shows the results obtained with Ricker density dependence in terms of
polymorphism (left panels) and substitution (right panels) for two different values
of dispersal success α (no mortality during dispersal in top panels and 10% mortal-
ity in bottom panels). As already discussed in the previous section, in the scenario
of genotype-independent dispersal (that is DAA = Daa = DAa) the mutant al-
lele cannot invade the population, which still remains monomorphic (pM,F

t

1,2
= 1).

Nevertheless, both polymorphism (panel A) and substitution of the resident allele
(panel B) are possible for suitable combinations of dispersal and fertility parame-
ters. In particular, polymorphism can occur if the value of the dispersal coefficient
DAA does not exceed a threshold which is given by DAA ≈ 0.5. As it is obvious
from Eq. (6), the parametric region where substitution can take place is completely
included in the region where polymorphism can arise. Quite interestingly, though,
the complete substitution of the resident allele can occur only for sufficiently small
values of both DAA and Daa. The addition of a small extra-mortality term during
dispersal (panels C and D of Fig. 4) does not qualitatively alter the results obtained
with α = 1.

The analysis just performed with endogenous heterogeneity can be repeated for
Beverton-Holt demography with environmental stochasticity. As shown in Fig. 5,
polymorphism is possible even in this case and in a way that is qualitatively similar
to the outcome obtained with Ricker density dependence (see again Fig. 4A). As
already pointed out in Fig. 3F, substitution has not been found in the same region
of the parameter space. Also, even a small mortality due to dispersal (as little
as 1%, α = 0.99) turns out to be sufficient to prevent the emergence of genetic
polymorphism. This suggests that exogenous heterogeneity is much less favorable
than endogenous heterogeneity to the establishment of genes codifying for skewed
sex ratios at birth.

5. Discussion and conclusions. In this paper we have described a demographic
and genetic model aimed at formalizing some features of Clark’s local resource com-
petition theory [11]. We have derived a simple metapopulation model (a nonlinear
map) to describe both the genetic and the demographic dynamics of a semelparous
animal population characterized by strong density dependence at the local scale
and male dispersal. Sex ratio at birth is genetically determined by the mother’s
genotype. The spatial and sex structure of the model, together with nonlinearity
and environmental stochasticity have made the analysis amenable to numerical sim-
ulations only. We have introduced genotype-dependent dispersal and, specifically,
we have considered the simple case in which there exists a correlation between the
genetic information codifying for skewed sex ratios and the propensity of males to
disperse. Then, we have performed a sensitivity analysis of the model outcomes
with respect to dispersal parameters.
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Figure 4. Conditions in the dispersal parameter space
(Daa, DAA) for which polymorphism (panels A and C) and
substitution of the resident allele (panels B and D) can arise
in the genotype-dependent dispersal model with Ricker density
dependence (g = gR). For each point of the parameters space we
have evaluated the minimum value of the fertility parameter E0

that gives rise to polymorphism and substitution (condition (6)).
Black areas correspond to no polymorphism or no substitution
in the interval 0 ≤ E0 ≤ 200. Top panels are obtained with
α = 1, bottom panels with α = 0.9. For each parameter setting
model equations have been iterated for 10000 time steps with
10 randomly generated initial conditions. Unspecified parameter
values as in Fig. 1.

Figure 5. Conditions in the dispersal parameter space
(Daa, DAA) for which polymorphism can arise in the genotype-
dependent dispersal model with stochastic Beverton-Holt demog-
raphy (g = gBH). All simulations have been performed with
α = 1. Other parameter values and technical details as in Fig. 1.
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The model analysis shows that no biased sex ratio at birth can evolve in a spa-
tially homogeneous setting (Fig. 1). More interestingly, we show that in a spatially
structured population subject to local resource competition (sensu Clark [11]) the
sex ratio in local adult populations may be skewed. However, this bias is only
due to demographic dynamics (Fig. 2). Without further hypotheses on the genetic
characteristics of the species, the skewness of the sex ratio cannot establish in a
metapopulation at birth. In contrast, the linkage between genotype-dependent sex
ratio and genotype-dependent dispersal in a spatially heterogeneous habitat is a
sufficient mechanism for the establishment of male-biased sex ratio at birth in the
population (Fig. 3). In any case, the mutant allele can invade the resident only
in presence of out-of-phase demographic fluctuations or with spatially uncorrelated
environmental stochasticity. The region in the parameter space occupied by com-
binations of genotype-dependent dispersal coefficients leading to skewed sex ratios
can be found with the model and turns out to be fairly large (Figs. 4 and 5). There-
fore, our findings are robust and do not depend on a very particular choice of the
parameter setting.

The model proposed in this work is flexible and may be easily modified so as to
increase the realism of genetic, demographic and dispersal processes. With regard
to genetics, a natural extension of our work would be that of studying the inter-
play between the evolution of the dispersal ability and the sex ratio transmission.
This would require the study of the genetic dynamics for two different phenotypic
traits with different degrees of genetic linkage. From a demographic viewpoint, our
hypothesis of semelparous species clearly limits the applicability of our model; there-
fore, a useful extension could be that of removing this hypothesis in order to study
how age structure could possibly influence the emergence of a bias in the sex ratio.
Also, the mathematical description of the dispersal process could be enhanced, for
instance by considering the possibility of performing directed movements. Finally,
the spatial structure of the model itself could be easily extended to introduce more
than two patches. From a technical viewpoint, this would require the study of a
coupled map lattice [33].

Thanks to its simplicity, however, our model represents in its current form a
first step towards a better understanding of the demographic mechanisms that may
promote the establishment of biased sex ratios at birth in spatially structured pop-
ulations subject to local intraspecific competition for resources.
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