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Abstract. In this paper, we formulate a mathematical model for malaria
transmission that includes incubation periods for both infected human hosts
and mosquitoes. We assume humans gain partial immunity after infection and
divide the infected human population into subgroups based on their infection
history. We derive an explicit formula for the reproductive number of infec-
tion, R0, to determine threshold conditions whether the disease spreads or dies
out. We show that there exists an endemic equilibrium if R0 > 1. Using an
numerical example, we demonstrate that models having the same reproduc-
tive number but different numbers of progression stages can exhibit different
transient transmission dynamics.

1. Introduction. Malaria is by far the world’s most important tropical parasitic
disease, and it kills more people than any other communicable disease except tu-
berculosis. Malaria is a public health problem today in more than 90 countries
inhabited by some 2,400 million people - 40 percent of the world’s population.
Each year 350-500 million cases of malaria occur worldwide, and over one million
people die, most of them young children in sub-Saharan Africa. In areas of Africa
with high malaria transmission, an estimated 990,000 people died of malaria in
1995 - over 2,700 deaths per day, or 2 deaths per minute. Meanwhile, Asia, Latin
America, the Middle East, and parts of Europe have also been affected. In 2002,
malaria was the fourth cause of death in children in developing countries. Malaria
caused 10.7% of all children’s deaths in developing countries. In Malawi in 2001,
malaria accounted for 22% of all hospital admissions, 26% of all outpatient visits,
and 28% of all hospital deaths. Not all people go to hospitals when sick or having
a baby, and many die at home. Thus the true numbers of death and disease caused
by malaria are likely much higher [5, 23].

Malaria is not transmitted directly from human to human but through mosquito
vectors. Malaria in humans is due to infection by one of four Plasmodium species.
The infection in humans begins when sporozoites are injected into the blood of a
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human host by an infected female mosquito of the genus Anopheles. The sporo-
zoites migrate to the liver where they enter liver cells and develop into schizonts,
which give rise, via asexual reproduction, to the form which invades the blood cells,
the merozoites. In the blood, some merozoites differentiate into sexual erythrocytic
stages (gametocytes), and the gametocytes are ingested by a mosquito when it
ingests human blood. Within the mosquito the gametocytes develop into microga-
metes and macrogametes (the male and female gametes) that fuse to form a zygote.
This becomes a motile ookinete form which bores through the gut wall of the vector
and forms an oocyst from which large numbers of sporozoites are released. These
sporozoites then invade the salivary glands of the mosquito from which they are
injected into human hosts when the vector feeds. Such a life-cycle of the Plas-

modium species causes the transmission of malaria between infected humans and
mosquitoes [17, 22].

There is acquired immunity in humans although the mechanisms of immunity
to malaria are not fully understood. The acquired immunity appears to depend
on both the duration and the intensity of past exposure to infection. Recovery
from a primary infection with malaria does not imply fully protective immunity
against reinfection. Immunity against malaria evidently influences the production
of gametocytes. Frequency and intensity of gametocytemia decrease with increasing
age until they reach a minimum among adults [22].

Mathematical models for the transmission dynamics of infectious diseases have
proven useful for the purpose of providing a logical structure within which to in-
corporate knowledge and test assumptions about the complex epidemics, in a way
that could not be done by simple thought processes. Mathematical models for
malaria have played an important role in helping researchers understand this epi-
demic, anticipate and plan for the future, and design and analyze control strategies.
The earliest malaria mathematical model can be traced to the model formulated
by Ross in 1911 [19]. MacDonald extended the Ross model in 1957 [12]. Since
then, many other modeling attempts have been made to describe and to predict the
transmission dynamics of malaria in the literature. (See e.g., [1, 2, 6, 7, 13]).

The sophistication of the epidemiological modeling efforts has grown steadily. A
container-inhabiting mosquito simulation model was developed in [8]. Compart-
mental SEIR (susceptible-exposed-infected-recovered) differential equations models
including asymptomatic immune humans were studied more recently in [14–16].
SEIR differential equations models with different levels of acquired immunity and
the loss of immunity among human host populations were formulated in [24,25], and
the effects of social and economic conditions and temperature on the transmission
were investigated by using numerical simulations in some of these studies. However,
it seems that gradual partial immunity induced by infections and hence multiple
reinfections have not been considered.

In this paper, we introduce and study a simple compartmental malaria model
where the host human population consists of infection-progression stages with re-
peated infection until the frequency and intensity of gametocytemia reach a mini-
mum. We provide fundamental analysis for the model, including the derivation of
an explicit formula for the reproductive number and the investigation of the exis-
tence of an endemic equilibrium. The model is derived in Section 2 and analyzed
in Sections 3 and 4. The results are discussed in Section 5.
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2. Model formulation. We consider that malaria is transmitted between popu-
lations of humans and mosquitoes. We divide the human population into groups
of susceptible, incubating, infective, and recovered individuals, and the mosquito
population into groups of susceptible, incubating, and infective individuals. Using
index h for the human host, we let Sh

0 denote the number of susceptible people
who have never been infected, Sh

k
, k = 1, · · · , n, the number of people who at time

t are susceptible and have been infected k times prior to time t, Eh

k
the number

of incubating people, who are infected but not yet infectious at t, and have been
infected k times prior to time t, and Ih

k
the number of infectious people at time t,

who have also been infected k times prior to t. Then, the model for the humans can
be illustrated as in Figure 1, and the model equations for the humans are given by

dSh
0

dt
= Λh

−
(

dh + σ0λ
h
)

Sh

0 ,

dSh

k

dt
= ηh

k−1I
h

k−1 −
(

dh + δh

k−1 + σkλh
)

Sh

k , k = 1, · · · , n − 1,

dEh

k

dt
= σkλhSh

k −
(

dh + δh

k + γh

k

)

Eh

k , k = 0, · · · , n − 1,

dIh

k

dt
= γh

k
Eh

k
−
(

dh + δh

k
+ ηh

k

)

Ih

k
, k = 0, · · · , n − 1,

dSh
n

dt
= ηh

n−1I
h

n−1 −
(

dh + δh

n−1

)

Sh

n
,

(2.1)

where Λh is the input flow of the susceptible people due to births or immigration,
dh is the natural death rate, δh

k
is the disease-induced death rate for people having

been infected k times, γh

k
is the rate incubating people become infectious such that

1/γh

k
is the incubation period of incubating people with disease history k, ηh

k
is

the recovery rate for infectious people with disease history k, λh is the infection
rate, or the incidence of infection, from an infectious mosquito to a human who
is currently susceptible, and σk is the rate measuring the reduction of infection or
the immunological memory for people who have been infected before, such that
0 ≤ σk ≤ 1 and σk+1 < σk, for k = 1, · · · , n − 1. For notation convenience,
we also include σ0 with σ0 = 1. Notice that if there is no infection, the human
population has an asymptotically stable steady state, or equilibrium, such that
lim

t→∞

Sh
0 (t) = Λh/dh.

The transmission of malaria is through mosquitoes. Let Nh =
∑

n

k=0 Sh

k
+

∑n

k=1

(

Eh

k
+ Ih

k

)

be the total human population size, and Nv be the total mosquito

population size. Then the average number of mosquitoes per human host is Nv/Nh.
Let r be the number of bites on a human by a female mosquito per unit of time.
Then, the proportion of infected bites on a human that produce an infection can
be approximated by rIv/Nv. Suppose that the transmission probability to humans
per infected bite is βv. Then, the infection rate, or the incidence of infection, to a
human host, λh, is determined by

λh = βvr
Iv

Nv

Nv

Nh
= βvr

Iv

Nh
. (2.2)

To account for the transmission dynamics between the mosquito and human
populations, we divide the mosquito population into groups of susceptible, incubat-
ing, and infective individuals, illustrated as in Figure 2. Using the index v for the
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Figure 1. In this epidemic model for human, as a susceptible person is
first infected this person enters the incubating group Eh

0 , and then becomes

infectious after an incubating period, entering group Ih

0 . After recovering, the

person becomes susceptible again with partial immunity, entering group Sh

1 .
When the person is recovered from the second infection, he/she becomes sus-
ceptible again but with more immunity and reduced susceptibility. Gradually,
this person moves to the final group Sh

n with complete immunity.

Sv Ev Iv
Λv λvSv γvEv

- - -

Figure 2. The mosquito population is divided into groups of susceptible,
incubating, and infective individuals. The lifespan of mosquitoes is shorter
than their infective period. Hence, it is assumed that there is no immune nor
recovered group of mosquitoes.

mosquitoes, we let Sv, Ev, and Iv denote the number of susceptible, incubating,
and infective mosquitoes, respectively. Since the lifespan of mosquitoes is shorter
than their infective period, we assume there is no immune nor recovered group of
mosquitoes. Then the model equations for the mosquitoes are given by

dSv

dt
=Λv

− dvSv
− λvSv,

dEv

dt
=λvSv

− (dv + γv)Ev,

dIv

dt
=γvEv

− dvIv,

(2.3)

where Λv is the input flow due to births or immigration, dv is the natural death rate,
and γv is the rate of incubating individuals becoming infectious for mosquitoes. If
there is no infection, the mosquito population has an asymptotically stable steady
state Λv/dv.
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The infection rate for mosquitoes can be determined in a similar way as for the
human host such that

λv = r

n−1
∑

k=0

βh

k
Ih

k

Nh
, (2.4)

where βh

k
is the transmission probability per bite to a mosquito from an infectious

human host in group Ih

k
.

3. The reproductive number. It follows from systems (2.1) and (2.3) that if
Iv = 0 and hence λh = 0, then Eh

k
= 0, k = 0, 1, · · · , n − 1, and Ih

k
= 0, k =

0, 1, · · · , n − 1. If Ih

k
= 0, k = 0, 1, · · · , n − 1, then λv = 0, which leads to Ev = 0

and Iv = 0. Therefore, there exists an infection-free equilibrium with Sh
0 = Λh/dh,

Sh

k
= 0, k = 1, · · · , n− 1, Eh

k
= 0, Ih

k
= 0, k = 0, 1, · · · , n− 1, Sv

0 = Λv/dv, Ev = 0,
and Iv = 0.

The local stability of the infection-free equilibrium determines whether the dis-
ease spreads if the infection is first introduced into the susceptible human and
mosquito populations. Such thresholds are characterized by the reproductive num-
ber, R0, such that if R0 < 1, the disease dies out, and if R0 > 1, the disease spreads.
The local stability of the infection-free equilibrium can be determined by using the
next-generation operator method [20], or by locating the eigenvalues of the Jaco-
bian matrix of system (2.1) and (2.3) at the infection-free equilibrium. We derive
an explicit formula for the reproductive number R0 by investigating the eigenvalues
of the Jacobian matrix at the infection-free equilibrium as follows.

We first linearize system (2.1) and (2.3) at the infection-free equilibrium E0 :=
(Sh

0 , Sh
1 , · · · , Sh

n, Eh
1 , · · · , Eh

n−1, I
h
1 , · · · , Ih

n−1, I
v, Ev, Sv) =

(

Λh/dh, 0, · · · , 0, Λv/dv
)

,
and obtain the following Jacobian matrix, at E0,





J11 · 0
0 J22 0
0 · −dv



 , (3.1)

where J11 = diag
(

−dh,−c0, · · · ,−cn−1

)

, with ck = dh + δh

k
, k = 0, · · · , n − 1, and

J22 =





D11 0 D13

D21 D22 0
0 D32 D33



 ,

with

D11 =diag
(

−(c0 + γh

0 ), · · · ,−(cn−1 + γh

n−1)
)

,

D21 =diag
(

γh

0 , · · · , γh

n−1

)

,

D22 =diag
(

−(c0 + ηh

0 ), · · · ,−(cn−1 + ηh

n−1)
)

,

and

D13 =











rβv 0
0 0
...

...
0 0











, D32 =

(

0 · · · 0

rβh
0

Sv

Sh
· · · rβh

n−1

Sv

Sh

)

, D33 =

(

−dv γv

0 −(dv + γv)

)

.

Here Sh = Λh/dh and Sv = Λv/dv.
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Since J11 is a diagonal matrix with all elements negative, the local stability of
the infection-free equilibrium is completely determined by the stability of matrix
J22, or more specifically, by the locations of the eigenvalues of J22.

We consider ρI2(n+1) − J22, where I2(n+1) is the 2(n + 1) × 2(n + 1) identity
matrix. Since there is only one nonzero element rβv on the first row of D13, and
D11 is diagonal, ρ = −(ck + γh

k
), k = 1, · · · , n − 1, are eigenvalues of J22. After

we eliminate the second through the nth rows and columns of ρIn − D11, where
In is the n × n identity matrix, and hence those corresponding rows and columns
of ρI2(n+1) − J22, the diagonal elements −(ck + ηh

k
), k = 1, · · · , n − 1, are the

only elements on the corresponding rows and columns in ρI2(n+1) − J22. Then,

ρ = −(ck + ηh

k
), k = 1, · · · , n − 1, are also the eigenvalues of J22. Again, we

eliminate those rows and columns corresponding to ρ− (ck + ηh

k
), k = 1, · · · , n− 1.

Then, the stability of the infection-free equilibrium is determined by the 4×4 matrix

J4 :=











−(dh + δh
0 + γh

0 ) 0 rβv 0
γh
0 −(dh + δh

0 + ηh
0 ) 0 0

0 0 −dv γv

0 rβh
0

Sv

Sh
0 −(dv + γv)











. (3.2)

Notice that all off-diagonal elements of matrix J4 are nonnegative. We consider
matrix −J4. The three leading principal minors, up to the 3 × 3 one, of J4 are
positive. Then, it follows from M-matrix theory [10, 18] that if the 4 × 4 leading
principal minor, that is, the determinant of −J4 is positive, the infection-free equi-
librium is locally asymptotically stable. On the other hand, if the determinant of
−J4, that is that of J4, is negative, there exists at least one positive eigenvalue of
J4. Then the infection-free equilibrium is unstable.

Simple algebra shows that the determinant of J4 is given by

detJ4 = dv (dv + γv)
(

dh + δh

0 + γh

0

) (

dh + δh

0 + ηh

0

)

− rβvγh

0 γvrβh

0

Sv

Sh
.

Define

R0 =

√

rβvγv

dv (dv + γv)

rΛvdh

Λhdv

βh
0 γh

0

(dh + δh
0 + γh

0 )(dh + δh
0 + ηh

0 )
. (3.3)

Then,

det J4 = dv (dv + γv)
(

dh + δh

0 + γh

0

) (

dh + δh

0 + ηh

0

) (

1 − R2
0

)

.

Hence, if R0 < 1, the determinant of J4 is positive, which leads to the local asymp-
totical stability of the infection-free equilibrium, and if R0 > 1, det J4 < 0, which
implies the instability of the infection-free equilibrium. In summary, we have the
following result.

Theorem 3.1. Define the reproductive number of infection, R0, as in (3.3). Then,

the infection-free equilibrium E0 is locally asymptotically stable if R0 < 1, and is

unstable if R0 > 1.

Define the reproductive number of infection for the human population by

Rh

0 =
rΛvdh

Λhdv
βh

0

γh
0

(

dh + δh
0 + γh

0

) (

dh + δh
0 + ηh

0

) (3.4)
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and the reproductive number of infection for the mosquito population by

Rv

0 = rβv
γv

dv (dv + γv)
. (3.5)

The reproductive number defined in (3.3) is composed of the two reproductive
numbers such that

R0 =
√

Rh
0Rv

0 . (3.6)

Notice that the definition of R0 in (3.6) is a geometric mean of the two reproductive
numbers Rh

0 and Rv
0 , and it also agrees with the dimension for a reproductive

number.
Notice that 1/

(

dh + δh
0 + γh

0

)

is the average incubation period of first infected

humans who survive to the first infectious stage Ih
0 , or the death-adjusted expected

incubation period in stage 0 [9,11]; 1/γh
0 is the waiting time in the first incubating

stage (i.e., the mean time that an incubating human who progresses to the first infec-
tious stage spends in the stage); then γh

0 /
(

dh + δh
0 + γh

0

)

is the probability that an

incubating human survives to the first infectious stage. Likewise, 1/
(

dh + δh
0 + ηh

0

)

is the death-adjusted infectious period. Hence, the mean duration of first infection
within the human population is

τh :=
γh
0

(

dh + δh
0 + γh

0

) (

dh + δh
0 + ηh

0

) .

Since Λh/dh and Λv/dv are the steady states of the human and mosquito popu-
lations, the mean number of bites per human from a mosquito is

rh = r
Λvdh

Λhdv
.

Therefore, the reproductive number of infection for the human population can be
expressed as

Rh

0 = rhβh

0 τh.

Similarly, we can define the mean duration of infection within the mosquito
population by

τv =
γv

dv (dv + γv)
,

and denote rv := r. Then, the reproductive number of infection for the mosquito
population can be expressed as

Rv

0 = rvβvτv .

Notice that the transmission of malaria is through the cycle of the infection of sus-
ceptible human hosts due to the bites of infected female mosquitos and the infection
of susceptible mosquitoes by biting on infected humans. Hence, the reproductive
number of infection for the malaria transmission in the human and mosquito pop-
ulations is the square root of the product of the reproductive number of infection
in the humans and the reproductive number of infection in the mosquitoes, as in
(3.6). Even if the reproductive number of infection in the humans is less than one,
it is possible that the disease will spread if the reproductive number of infection in
the mosquitoes is large enough such that the product becomes greater than one.
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4. The endemic equilibrium. The positive components of an endemic equilib-
rium satisfy the equations for the humans

Λh =
(

dh + σ0λ
h
)

Sh

0 , (4.1a)

ηh

k−1I
h

k−1 =
(

dh + δh

k−1 + σkλh
)

Sh

k , k = 1, · · · , n − 1, (4.1b)

σkλhSh

k
=
(

dh + δh

k
+ γh

k

)

Eh

k
, k = 0, · · · , n − 1, (4.1c)

γh

k
Eh

k
=
(

dh + δh

k
+ ηh

k

)

Ih

k
, k = 0, · · · , n − 1, (4.1d)

ηh

n−1I
h

n−1 =
(

dh + δh

n−1

)

Sh

n
, (4.1e)

and the equations for the mosquitos

Λv =dvSv + λvSv,

λvSv =(dv + γv)Ev,

γvEv =dvIv.

(4.2)

It follows from (4.1b) and (4.1c) that

Sh

k
=

ηh

k−1

ck−1 + σkλh
Ih

k−1, k = 1, · · · , n − 1,

Eh

k =
σkλh

ck + γh

k

Sh

k =
ηh

k−1σkλh

(ck + γh

k
)(ck−1 + σkλh)

Ih

k−1, k = 1, · · · , n − 1,

(4.3)

where we use the same notations as in Section 3. Then it follows from (4.1d) that

Ih

k =
γk

ck + ηh

k

Eh

k =
ηh

k−1γ
h

k
σkλh

(ck + γh

k
)(ck + ηh

k
)(ck−1 + σkλh)

Ih

k−1, k = 1, · · · , n − 1,

and hence

Ih

k
=

k
∏

i=1

ηh

i−1γ
h

i
σi

(ci + γh
i
)(ci + ηh

i
)(ci−1 + σiλh)

(λh)kIh

0 , k = 1, · · · , n − 1. (4.4)

Substituting (4.4) into (4.3), we have

Nh

k := Sh

k +Eh

k +Ih

k =
ηh

k−1

(

(ck + γh

k
)(ck + ηh

k
) + (ck + γh

k
+ ηh

k
)σkλh

)

(ck + γh

k
)(ck + ηh

k
)(ck−1 + σkλh)

Ih

k−1. (4.5)

Write Ak := (ck + γh

k
)(ck + ηh

k
), and Bk := ck + γh

k
+ ηh

k
, k = 0, · · · , n − 1. Then

Nh

k =

(

Ak + Bkσkλh
)

ηh

k−1(λ
h)k−1Ih

0

(ck + γh

k
)(ck + ηh

k
)(ck−1 + σkλh)

k−1
∏

i=1

ηh
i−1γ

h
i
σi

(ci + γh

i
)(ci + ηh

i
)(ci−1 + σiλh)

=

(

k
∏

i=1

ηh
i−1γ

h
i−1σi−1

(ci + γh

i
)(ci + ηh

i
)

)

(Ak + Bkσkλh)(λh)k−1

k
∏

i=1

(ci−1 + σiλh)

Ih
0

γh
0 σ0

,
(4.6)

for k = 1, · · · , n − 1.
It follows from (4.1a) that

Sh

0 =
Λh

dh + σ0λh
,

and then

Eh

0 =
Λh

c0 + γh
0

σ0λ
h

dh + σ0λh
, Ih

0 =
Λhγh

0

(c0 + ηh
0 )(c0 + γh

0 )

σ0λ
h

dh + σ0λh
. (4.7)
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Hence

Nh

0 =
Λh

dh + σ0λh

A0 + B0σ0λ
h

(c1 + ηh
0 )(c1 + γh

0 )
. (4.8)

Moreover, it follows from (4.1e) that

Sh

n =
ηh

n−1

cn−1
Ih

n−1 =

(

n
∏

i=1

ηh
i−1γ

h
i−1σi−1

(ci + γh

i
)(ci + ηh

i
)

)

(An + Bnσnλh)(λh)n−1

n
∏

i=1

(ci−1 + σiλh)

Ih
0

γh
0 σ0

= Nh

n ,

(4.9)
where we let γh

n
= ηh

n
= σn = 0 and cn = 1 such that An = 1 = Bn.

Substituting (4.7) into (4.4), (4.6), and (4.9), respectively, and then summing up
Nh

k
over k = 0, 1, · · · , n, we have

Ih

k
= γh

k
σkQk

(λh)k+1

k
∏

i=0

(ci−1 + σiλh)

, k = 0, 1, · · · , n − 1,

Nh =
n
∑

k=0

Qk

(Ak + Bkσkλh)(λh)k

k
∏

i=0

(ci−1 + σiλh)

,

(4.10)

where Qk :=

Λh
k−1
∏

i=0

ηh

i
γh

i
σi

k
∏

i=0

(ci + γh

i
)(ci + ηh

i
)

, c−1 := dh, and
−1
∏

i=0

ηh

i
γh

i
σi = 1 by convention.

Solving (4.2) for Iv and using (2.2), we obtain

Iv =
Λvγvλv

dv(dv + γv)(dv + λv)
=

Nhλh

βvr
. (4.11)

Then solving (4.11) for λv yields

λv =
(dv)2(dv + γv)Nhλh

βvrΛvγv − dv(dv + γv)Nhλh
. (4.12)

Substituting (4.12) into (2.4), we have

(Nh)2(dv)2(dv + γv)λh =
(

βvrΛvγv
− dv(dv + γv)Nhλh

)

r

n−1
∑

k=0

βh

k Ih

k ,

or equivalently,

λh =
Λvγvβvr2

dv(dv + γv)

n−1
∑

k=0

βh

k
Ih

k

Nh

(

Nhdv + r
n−1
∑

k=0

βh

k
Ih

k

) . (4.13)

Write G :=
(

Λvγvβvr2
)

/(dv(dv + γv)) and define function F :=

(

n−1
∑

k=0

βh

k
Ih

k

)

·

(

(Nh)2dv + Nhr
n−1
∑

k=0

βh

k
Ih

k

)−1

. Then substituting (4.10) into this function and
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multiplying the numerator and denominator both by

(

n
∏

i=0

(ci−1 + σiλ
h)

)2

yields

F (λ) = G
W1(λ)

W2(λ) + W3(λ)
, (4.14)

where

W1(λ) :=

n
∏

i=0

(ci−1 + σiλ)

n−1
∑

k=0

βh

k γh

kσkQk

n
∏

i=k+1

(ci−1 + σiλ)λk+1,

W2(λ) :=dv

(

n
∑

k=0

Qk

n
∏

i=k+1

(ci−1 + σiλ)(Ak + Bkσkλ)λk

)2

,

W3(λ) :=r

n
∑

k=0

Qk

n
∏

i=k+1

(ci−1 + σiλ)(Ak + Bkσkλ)λk

·

n−1
∑

k=0

βh

k
γh

k
σkQk

n
∏

i=k+1

(ci−1 + σiλ)λk+1.

Here we write λh = λ for convenience. Then it follows from (4.13) that there exists
an endemic equilibrium if and only if there exists a positive solution λ for F (λ) = λ.

Since W1(0) = 0 = W3(0) and W2(0) =

(

dvQ0

n
∏

i=1

ci−1A0

)2

, we have F (0) = 0.

Notice that Wi(λ) are all polynomials of degree 2(n + 1) in λ. Then

lim
λ→∞

F (λ) = G
W1(∞)

W2(∞) + W3(∞)
> 0,

where

W1(∞) =
n
∏

i=0

σi

n−1
∑

k=0

βh

k
γh

k
σkQk

n
∏

i=k+1

σi,

W2(∞) = dv

(

n
∑

k=0

Qk

n
∏

i=k+1

σiBkσk

)2

,

W3(∞) = r

n
∑

k=0

Qk

n
∏

i=k+1

σiBkσk

n−1
∑

k=0

βh

kγh

k σkQk

n
∏

i=k+1

σi,

are all finite. Hence there exists an endemic equilibrium if F ′(0) > 1.
Again, since W1(0) = 0 = W3(0), F ′(0) = GW ′

1(0)/W2(0). Simple calculation
gives

W ′

1(0) =

n
∏

i=0

ci−1β
h

0 γh

0 σ0Q0

n
∏

i=1

ci−1.

Then

F ′(0) = G
dhβh

0 γh
0 σ0

dvQ0A2
0

=
Λvγvβvr2

dv(dv + γv)

dhβh
0 γh

0

dvΛh(c0 + γh
0 )(c0 + ηh

0 )
= R2

0.

Therefore we have the following result.

Theorem 4.1. There exists an endemic equilibrium for systems (2.1) and (2.3) if

R0 > 1.



A MALARIA MODEL WITH PARTIAL IMMUNITY IN HUMANS 799

5. Concluding remarks. Humans acquire partial immunity to malaria after in-
fection, although the mechanisms of immunity are not fully understood. The ac-
quired immunity depends on both the duration and the intensity of past exposure
to infection. Recovery from a primary infection with malaria does not imply fully
protective immunity against reinfection, which influences the production of game-
tocytes. Frequency and intensity of gametocytemia decrease with increasing age
until they reach a minimum among adults. To better understand how the partial
immunity affects the transmission of malaria, we have formulated a compartmental
model, based on a system of differential equations in this paper, where we divided
the human population into groups of susceptible, incubating, infective, and recov-
ered individuals, with disease progression stages and partial immunities.

We derived an explicit formula in (3.3) for the reproductive number, R0, by
investigating the local stability of the infection-free equilibrium. By defining the
reproductive numbers of infection for the humans and mosquitoes, respectively,
the reproductive number of infection for the entire modeled human and mosquito
populations is the square root of the product of the two reproductive numbers,
where the square root takes care of the scalar matching for the model. We also
showed that when the reproductive number R0 is greater than one, there exists an
endemic equilibrium. Although having not been able to prove its uniqueness and
stability, we believe it is unique and stable, when it exists.

We notice that although there are multiple disease-progression stages for humans,
the calculation of the reproductive number Rh

0 for humans depends on only the av-
erage incubation period of first infected humans who survive to the first infectious
stage, the waiting time in the first incubating stage, and the probability that an
incubating human survives to the first infectious stage, but not the infection param-
eters from recovery and reinfection. This is not surprising if we remember that the
reproductive number characterizes the epidemic threshold under which the number
of infected individuals will either increase or decrease as a small number of infectives
introduced into a fully susceptible population. Therefore the reproductive number,
in general, only accounts for the initial growth of infection for infectious diseases.
However, the other parameters play a role in determining the endemic equilibrium
and the transient transmission dynamics. A numerical example provided below
illustrates such a phenomenon.

We consider two cases, respectively. In case one, the human population consists
of Sh

0 , Eh
0 , Ih

0 , and Sh
1 , and in case two, the human population consists of Sh

0 , Eh
0 ,

Ih
0 , Sh

1 , Eh
1 , Ih

1 , and Sh
2 . Parameters for case one are given by

Λh = 100, dh = 0.125, δ0 = 0.35, γ0 = 0.5, η0 = 0.6, r = 5, βh
1 = 0.35,

Λv = 400, dv = 0.5, γv = 0.45, βv = 0.6,

and the parameters for case two are given by

Λh = 100, dh = 0.125, δ0 = 0.35, δ1 = 0.2, γ0 = 0.5, γ1 = 0.4,
η0 = 0.6, η1 = 0.8, σ1 = 0.65, r = 5, βh

1 = 0.35, βh
2 = 0.3,

Λv = 400, dv = 0.5, γv = 0.45, βv = 0.6.

The reproductive numbers are the same in both cases as Rh
0 = 1.6579, Rv

0 =
1.4311, and R0 = 1.5403. Hence the initial infections are the same for the two
cases. However, the endemic equilibrium and the transient transmission dynamics
are different. We list the sizes for Ih

0 and Iv at the endemic equilibria for the two
cases in Table 1. The transient transmission dynamics are demonstrated in Figure
3.



800 JIA LI

Table 1. The final sizes at the Endemic Equilibrium.

Number of stages Ih
0 Iv

1 41.86 108.74
2 44.48 153.59
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Figure 3. Two cases are considered where the human population consists
of either one group of incubating and infected individuals, or two groups of
incubating and infected individuals, respectively. The reproductive numbers
are the same so that the initial infections are the same for the two cases, but
their endemic values and transient transmission dynamics are different. Only
Ih

0 and Iv are plotted for both cases.

While the reproductive number still provides important information for disease
prevention and control, in particular, in determining whether the infection takes off
initially, the time-dependent running reproduction number, which represents the
number of secondary infection caused by a single individual in the population who
becomes infective at time t, may provide more appropriate information for disease
control [4]. It is worth further investigations based on a running reproduction
number in the future.
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