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Abstract. The dynamic behaviour of simple aquatic ecosystems with nutrient
recycling in a chemostat, stressed by limited food availability and a toxicant, is
analysed. The aim is to find effects of toxicants on the structure and function-
ing of the ecosystem. The starting point is an unstressed ecosystem model for
nutrients, populations, detritus and their intra- and interspecific interactions,
as well as the interaction with the physical environment. The fate of the toxi-
cant includes transport and exchange between the water and the populations
via two routes, directly from water via diffusion over the outer membrane of
the organism and via consumption of contaminated food. These processes are
modelled using mass-balance formulations and diffusion equations. At the pop-
ulation level the toxicant affects different biotic processes such as assimilation,
growth, maintenance, reproduction, and survival, thereby changing their bio-
logical functioning. This is modelled by taking the parameters that described
these processes to be dependent on the internal toxicant concentration. As a
consequence, the structure of the ecosystem, that is its species composition,
persistence, extinction or invasion of species and dynamics behaviour, steady
state oscillatory and chaotic, can change. To analyse the long-term dynam-
ics we use the bifurcation analysis approach. In ecotoxicological studies the
concentration of the toxicant in the environment can be taken as the bifurca-
tion parameter. The value of the concentration at a bifurcation point marks
a structural change of the ecosystem. This indicates that chemical stressors
are analysed mathematically in the same way as environmental (e.g. tempera-
ture) and ecological (e.g. predation) stressors. Hence, this allows an integrated
approach where different type of stressors are analysed simultaneously. Envi-
ronmental regimes and toxic stress levels at which no toxic effects occur and
where the ecosystem is resistant will be derived. A numerical continuation
technique to calculate the boundaries of these regions will be given.
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1. Introduction. The individual level is the natural starting point for studying
toxicological effects of biological systems, for the individuals suffer from toxic stress.
However research is not primarily concerned with the fate of a specific individual,
but with that of populations or higher levels of organization, such as communities
or ecosystems, in which the physical environment is also important. In [13, 15, 14,
12, 17] the step from the individual to the population level is made for species with
multiple life-stages, such as Daphnia and fish, which suffer sublethal toxic stress in a
constant environment. An individual-based, physiologically structured population
model was used, mathematically leading to a partial differential equation.

In this paper we study the sublethal effects of toxicants on the functioning and
structure of aquatic ecosystems. The functioning of ecosystems involve the trans-
formation by the biota of material between organics and inorganic pools through
decomposition, nutrient mineralization, assimilation, and production. Structural
properties of an ecosystem are the species composition and its dynamical state,
such as equilibrium or oscillatory behaviour. Besides ecological and environmental
stresses there is stress due to the toxicant. Since the life history of the species
involved is assumed simple (binary fission), the populations are mathematically
treated as a sort of super-individual and mathematically described by ordinary
differential equations. The toxicological exposure is formulated at the population
level.

We consider populations that compose the ecosystem modelled by a simplified
version of the Dynamic Energy Budget (deb) model [23]. For an overview of differ-
ent mathematical model formulations and their analysis of the unstressed ecosys-
tems the reader may consult [18] and references therein. In our model, food is
ingested at a rate given by the Holling type II functional response. A fixed por-
tion of the ingested food is assimilated. The assimilates are used for maintenance,
proportional to population size, and the remaining part for growth.

There is a long history of interest in how the properties of food webs can influence
aspects of ecosystem functioning [26]. Biodiversity is the variation of taxonomic life
forms within a given ecosystem. Vertical diversity is the functional diversity across
trophic levels along the food chain. A phenomenon related to vertical diversity is
the paradox of enrichment. In mathematical models of food chains oscillatory dy-
namics is generally predicted when nutrients at the bottom of the food chain are
abundant. In ecotoxicological studies [6] the predator-prey interaction is impor-
tant, where the effects of bioaccumulation of toxicants is via trophic interactions.
Horizontal diversity is the taxonomic and functional diversity within trophic levels.
Much redundancy among species at one tropic level implies that species can be lost
without a change of the ecosystem functioning (the redundancy hypothesis). On
the other hand, if all species differ to some extent in their resources (niche com-
plementarity), then extinction of one species can have effects. Loss of species may
then lead to fewer utilised niches, stronger competition, and lower process rates,
thus affecting ecosystem functioning. In mathematical models horizontal diversity
is related to competitive exclusion: the number of species is not more than the
number of nutrients.

Toxicological effects on individuals and populations are described by the process-
based debtox [24] approach. Potential effects on physiological processes such as
assimilation, maintenance, growth, and mortality are the possible mode of actions
of the toxicant. The rates of these physiological processes are not constant but
depend on the internal toxicant concentration. Here, this approach is extended to
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derive the effects on the ecosystem behaviour. Multiple nutrients and a toxicant
are supplied into and removed from a spatially well-mixed chemostat at a constant
rate. The kinetics of the toxicant in the organism is modelled with a first order one-
compartment model where two processes are involved describing the uptake rate
(from water and food) and elimination rate. When toxic food is consumed there is
an additional intake rate assumed proportional to the food consumption rate.

In [29, 3, 7, 27] bioaccumulation in food webs is studied. In these papers the toxi-
cological effects are dealt with separately from the ecological effects. An underlying
assumption is that the ecosystem is in equilibrium. We follow the mass-balance and
process based deb approach [24, 23, 19] which allows the analysis of non-equilibrium
dynamical states. In the effect module physiological parameters depend on the in-
ternal toxicant concentration.

We analyse a simple ecosystem model consisting of nutrients and populations
(food chain and food web arrangements) in a chemostat. Control parameters are
the dilution rate, the nutrient supply concentration and the toxicant concentration
in the inflow. We call these parameters control parameters, since in our model
formulation these three entities determine the environment of the ecosystem. To
analyse the long-term dynamics of the resulting model we use the bifurcation anal-
ysis approach. In ecotoxicology studies the concentration of the toxicant in the
environment can be taken as the bifurcation parameter. Then the value of the con-
centration at a bifurcation point marks a structural change of the ecosystem, e.g.
extinction of a species. This indicates that chemical stressors are analysed math-
ematically in the same way as environmental and ecological stressors. Hence, this
approach allows an integrated approach where different types of stressors are anal-
ysed simultaneously. Environmental regimes will be derived where, for a given toxic
stress, no toxic effects occur and where the structural properties remain unchanged
after exposure.

In a previous paper [19] we studied similar issues for a nutrient–prey–predator
model. Here we extend this system by nutrient cycling and mortality of the organ-
isms that compose the populations. The nutrients are recycled by mineralization
of the dead organisms and of the products formed in physiological processes such
as assimilation and maintenance. Similar ecosystem models with nutrient recycling
are discussed in [4, 10]. To study vertical effects of toxic stress on ecosystem func-
tioning, we introduce here a top-predator consuming the predator in the nutrient–
prey–predator system studied in the previous paper [19]. We showed therein that
the feed-back mechanism, where the toxicant is removed from the reactor as internal
concentration with the removed biota while the same internal concentration affects
the dynamics of the biota, is very important. Horizontal effects are studied by
analysing simple food webs of which the ecological functioning has been discussed
in [20, 21].

2. Formulation of the model. We formulate models for a two-nutrient–two-
prey–predator–top-predator system with nutrient recycling where toxicant uptake
is from the water. In the inflow of the chemostat besides two nutrients, with con-
centrations Nri, i = 1, 2, a toxicant with concentration cr enters the reactor. Via
the outflow the nutrient, toxicant, and populations are removed from the reactor,
all with the same rate D, called the dilution rate. However, there is also an extra
sink of toxicant, namely the toxicant stored in the organisms that leave the reactor.
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The three parameters Nr1 + Nr2, D, and cr are control parameters that determine
the external forcing of the system.

Both prey populations are specialists and feed on their nutrient. The preda-
tor is a generalist and consumes both prey populations. Finally the top-predator
consumes the predator population. For each population, products of assimilation,
maintenance, and mortality are added to detritus pools in the water. The labile
(easily degraded) and refractory (not easily degraded) detritus are mineralised and
regenerated as nutrients.

The state variables are the nutrient density, Ni(t), the biomass of the prey pop-
ulation, Ri(t), the biomass of the predator, P (t), the biomass of the top-predator,
F (t), the two variants of the detritus DL(t) (labile) and DR(t) (refractory) the
toxicant concentration in the water cW (t), and the internal toxicant concentrations
cRi

(t), cP (t), cF (t), i = 1, 2. The state variables and parameters of the system are
listed in Table 1.

2.1. Ecosystem model. The mass-balance equations for the ecosystem read

dNi

dt
= (Nri − Ni)D − INiRi

Ni

kNiRi
+ Ni

Ri + βi(αLDL + αRDR) , (1a)

dRi

dt
=

(

µNiRi

Ni

kNiRi
+ Ni

− D − mRi
(cRi

) − hRi
(cRi

)
)

Ri −
IRiP Ri/kRiP

1 +
∑2

j=1 Rj/kRjP

P ,

(1b)

dP

dt
=

(

∑2
j=1 µRjP Rj/kRjP

1 +
∑2

j=1 Rj/kRjP

− D − mP (cP ) − hP (cP )
)

P − IPF

P

kPF + P
F ,

(1c)

dF

dt
=

(

µPF

P

kPF + P
− D − mF (cF ) − hF (cF )

)

F , (1d)

dDL

dt
= mR1

(cR1
)R1 + mR2

(cR2
)R2 + mP (cP )P + mF (cF )F − αLDL − DDL ,

(1e)

dDR

dt
= hR1

(cR1
)R1 + hR2

(cR2
)R2 + hP (cP )P + hF (cF )F − αRDR − DDR+

2
∑

j=1

(INjRj
− µNjRj

)Nj

kNjRj
+ Nj

Rj +

∑2
j=1(IRjP − µRjP )Rj/kRjP

1 +
∑2

j=1 Rj/kRjP

P +
(IPF − µPF )P

kPF + P
F ,

(1f)

where i = 1, 2.
The parameter mp is the maintenance rate and hp is the per capita mortality rate

both for the tree trophic levels, where p ∈ {Ri, P, F}, i = 1, 2. In the unstressed
system these parameters are constant (mp = mp0 and hp = hp0) and with toxic
stress they depend on the internal toxicant concentration in the population defined
below.

Recycling of nutrients is via two forms of detritus. The labile compounds are
products of the maintenance (excretion) process DL, and the refractory compounds
are products from the assimilation (defecation) and mortality (death) processes DR

(see also [10]). Both types of detritus are remineralised with different rates αL and
αR where αL > αR. The partition factor of the recycled products between the two
target nutrients is denoted by βi.
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Table 1. State variables and parameters. The control parameters that

can be experimentally manipulated are D ∈ (0, 0.5) h−1, Nri ∈ (0, 150)

mg dm−3 and cr ∈ (0, 1) mg dm−3. m mass of toxicant [mg], l length of

environment [dm] (l3 is dimension of the volume of the reactor), L length

of organism [dm] and t time [h]. Here we use only the dimensionless ver-

sions of the state-variables, parameters and equations. p, q ∈ {Ri, P, F},

i = 1, 2.

Variable Description Dimension
Ni Nutrient mass density L3 l−3

Ri Prey biomass density L3 l−3

P Predator biomass density L3 l−3

F Top-Predator biomass density L3 l−3

DL Labile detritus biomass density L3 l−3

DR Refractory detritus biomass density L3 l−3

cW Toxicant concentration in the water m l−3

cR Prey internal toxicant concentration mL−3

cP Predator internal toxicant concentration mL−3

cF Top-Predator internal toxicant concentration mL−3

Parameter Description Dimension
D Dilution rate t−1

Nri Nutrient mass density m l−3

cr Toxicant concentration in influent m l−3

µpq max. growth rate t−1

Ipq max. ingestion rate t−1

kRP saturation constant L3 l−3

mP0 maintenance rate coefficient t−1

hP0 hazard rate t−1

αR Labile detritus decay rate t−1 0.1
αL Refractory detritus decay rate t−1 0.01
βi Partition factor of recycling products i = 1, 2 — 0.5
kpu uptake rate l3 L−3 t−1 —
kpa elimination rate t−1 —
cpM0, cpH0 No Effect Concentration (nec) mL−3 0.1
cpM , cpH Tolerance concentration mL−3 0.5
bcfWp Bioconcentration Factor l3 L−3 1.0

2.2. Fate of toxicant. Emission of the toxicant is via the in-flowing water with
concentration cr and dilution rate D. We define the total toxicant concentration in
the reactor as the sum of the dissolved toxicant in the reactor, both in the water
and the biota

cT = cW +
2

∑

i=1

cRi
Ri + cP P + cF F , (2)

where cW is the concentration in the water and cp, p ∈ {Ri, P, F}, i = 1, 2 the
internal concentration in the populations.
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The mass-balance equation for the toxicant reads

dcT

dt
=(cr − cT )D , (3)

where we use the property that the internalised toxicant and the toxicant dissolved
in the water leave the reactor with the same dilution rate.

2.3. Exposer model. The one-compartment model for the internal toxicant con-
centration for the prey, predator and top-predator and the transport equation for
the toxicant through the reactor read

dcRi
Ri

dt
=(kRui

cW − kRai
cRi

)Ri − cRi
Ri

(

D +
IRi

/kRiP P

1 + R1/kR1P + R2/kR2P

)

, (4a)

dcP P

dt
=(kPucW − kPacP )P +

2
∑

j=1

µRjP cRj
Rj/kRjP P

1 + R1/kR1P + R2/kR2P

− cP P
(

D + IPF

F

kPF + P

)

, (4b)

dcF F

dt
=(kFucW − kFacF )F + cP µPF

P

kPF + P
F − cF FD , (4c)

where kpu are the uptake rates and kpa the elimination rates, p ∈ {Ri, P, F}, i = 1, 2
of the toxicant by the populations. We assume that the efficiencies for the intake of
the toxicant equals the assimilation efficiency for both predator-prey interactions.

As in [12, 7, 19], we assume that the uptake and elimination rates are much faster
than other physiological population rates. Then only the classical bioconcentration
factor bcf, being the ratio of the uptake rate and elimination rate (bcfWp =
kpu/kpa), p ∈ {Ri, P, F}, i = 1, 2, is involved and cp = cW bcfWp. The total
toxicant concentration cT , given by (2), reads now

cT = cW

(

1 +
2

∑

j=1

bcfWRj
Rj + bcfWP P + bcfWF F

)

, (5)

of which the dynamics is described by (3).

2.4. Concentration-effect relationship. Direct toxic effects generally reduce
population abundances by increasing mortality, increasing costs for growth or main-
tenance and decreasing assimilation efficiency. In the process-based debtox ap-
proach the populations are affected via a parameter alteration depending on the
internal toxicant concentration: the concentration-effect relationship. In principle
all population processes can be affected: assimilation, maintenance, growth, repro-
duction, and survival. Here we assume that the maintenance rate and the hazard
rate depend on the toxicant concentrations for the prey cRi and predator cP and
top-predator are cF given by

mp(cp) = mp0

(

1 +
(cp − cpM0)+

cpM

)

, (6a)

hp(cp) = hp0

(

1 +
(cp − cpH0)+

cpH

)

, p ∈ {Ri, P, F}, i = 1, 2 . (6b)
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The subscripted plus operator is defined as x+ = max(0, x). This illustrates that
the nec parameters cpM0 and cpH0 are threshold concentration values. These ex-
pressions are substituted in the expressions for mp and hp, p ∈ {Ri, P, F}, i = 1, 2
in (1).

(1), (2), (4), and (6) form together the integrated model where ecological and
toxicological quantities are modelled simultaneously. If not stated otherwise we
consider the food chain configuration whereby Nr = Nr1, Nr2 = 0, N = N1, N2 =
0, R = R1, R2 = 0.

3. Bifurcation analysis. The long-term dynamics behaviour of ecosystems is de-
scribed by the steady solutions of the systems of odes that described their dynamics.
See [9, 30, 25] for an introduction to bifurcation analysis, [1, 18] for applications
to ecosystem models and [28] for chemostat systems. The structural stability is
studied with respect to free or bifurcation parameters. Steady solutions can be
equilibria where the right-hand sides of the systems of odes are zero, periodic so-
lutions and chaotic solutions. For the composition of the ecosystem at equilibrium,
the equilibrium values of the state variables are decisive. Biodiversity is measured
as the number of species with positive abundance. Here we focus on equilibria, the
dependency of their abundances on parameters and the associated transcritical and
Hopf bifurcations.

With a bifurcation analysis, parameters are varied and critical points where the
stability of a system changes and mark regions in the parameter space where the
long-term dynamics change qualitatively. In principle this can be done for all pa-
rameters. In practice, depending on the purpose of the analysis, a limited number
of parameters are chosen as so-called free or bifurcation parameters. For our pur-
pose these are three parameters, namely the control parameters Nr, D, and cr that
determine the loading of the system (Nr for ecology, cr for toxicity and D both).
Computer packages such as auto [5] and locbif [16], can be used to calculate the
bifurcation curves.

The results of the bifurcation analysis of the ecosystem are given in bifurcation
diagrams. These diagrams directly give information about the qualitative long-term
dynamic behaviour (equilibrium, oscillatory or chaotic) at specific environmental
conditions (nutrient input, dilution rate and toxicant input).

3.1. Discontinuous Jacobian matrix. The expressions in (6) show that the af-
fected physiological parameter is continuous with respect to the internal concentra-
tion but that its derivative with respect to this concentration is discontinuous at
the nec concentration. The dynamic behaviour in time is well defined also when
the internal concentration crosses the nec concentration. The right-hand sides of
the odes satisfy the Lipschitz condition with respect to the state variables. Hence,
we have uniqueness of the initial value problem.

When cp = cpM0 or cp = cpH0, p ∈ {R, P, F} (see Eq. (6)) the partial derivatives
of right-hand side functions of the ode system with respect to the state variables are
discontinuous with respect to bifurcation parameters. At this point the Jacobian
matrix is discontinuous. As a consequence, when a parameter is varied the eigen-
values can jump from one half of the complex plane into the other half without a
smooth transition as with the Hopf bifurcation. As a result the bifurcation curves
at which the long-term dynamics changes qualitatively do not have to be smooth
curves at points where the interior concentration crosses the nec.
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We show first that the transcritical bifurcations TCj , j = 1, 2, 3, are not affected
when they describe invasion of a species, for instance the predator into the nutrient-
prey system. The partial derivatives of (1c) with respect to the state variable
(here the predator population P ) and substitution of the equilibrium value (here
P ∗ = 0, F ∗ = 0) reveals that only one term is non-zero, namely the diagonal term

µRP
R∗

kRP +R∗
−D−mP (c∗P )−hP (c∗P ). This expression equals the per capita growth

rate of the predator population when it is rare. The parameter values where this
rate equals zero marks a transcritical bifurcation (see also [28]). Since the rate
is continuously dependent on the parameters, this curve is also continuous with
respect to the internal concentration at levels across the nec level. This holds in a
similar way for invasion of the prey population R and the top-predator population
F .

3.2. Calculation of the nec-isocline. The environmental regime where the ap-
plied toxic stress has no effects is determined for equilibrium states. The points
where cp = cpM0 or cp = cpH0, p ∈ {Ri, P, F} form a codim-1 curve in the Nr, D
bifurcation diagram. This curve is denoted by Ij , where j = 1, 2, 3 is the food chain
length after invasion and is referred to as nec-isocline.

In equilibrium we have cT = cr where cr is assumed to be given. Then the
nec-isocline I3 is fixed by the relationship

cr = cW

(

1 +

2
∑

j=1

bcfWRj
R∗

j + bcfWP P ∗ + bcfWF F ∗
)

, (7)

where cW = cFM0/bcfWF when for instance cF = cFM0. To continue this curve,
the equilibria of the ecosystem (1) are continuated with Nr as a bifurcation param-
eter where D is implicitly fixed by (7).

A standard bifurcation package can be used when we treat D as a state variable
instead of a parameter of which the dynamics is described by

dD

dt
= (cr − cT )D . (8)

When Nr is varied as a bifurcation parameter the equilibrium values for D describe
the wanted curve.

When instead of the toxicant concentration cr, the dilution rate D is fixed, a
similar procedure can be used by continuing system (1) together with

dcr

dt
= (cr − cT )D , (9)

and Nr as bifurcation parameter.

4. Analysis of food chain systems with recycling. In this section we analyse
the long-term dynamics of the ecosystems with increasing food chain length. In Ta-
ble 1 and Table 2 we give the parameter values for the food chain. The physiological
parameter values are those for a bacterium–ciliate–carnivorous ciliate system.

4.1. Effects with constant dilution rate. In this subsection we keep the dilution
rate D = 0.02 constant and vary both the nutrient and toxicant concentrations in
the influent: Nr and cr. The results are shown in Figure 1. Only equilibrium
long-term dynamics is discussed. For the nutrient–prey system the transcritical
bifurcation TC±

1 and the tangent bifurcation T1 (Fig. 1A) occur. Bi-stability occurs
between the tangent bifurcation T1 and the transcritical bifurcation TC+

1 .
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Table 2. Parameter set for the two-nutrient–two-prey–predator sys-

tem. These values were also used in [21]. Observe that the maximum

ingestion rates IR1P and IR2P are taken equal. For all calculations

we assumed that both nutrients are supplied with the same density:

Nr1 = Nr2.

Parameter Unit Values
p = N1 p = N2 p = R1 p = R2 p = P
q = R1 q = R2 q = P q = F

µpq h−1 0.5 0.42 0.2 0.3 0.15
Ipq h−1 1.25 1.05 0.33 0.33 0.25
kpq mg dm−3 8 5.5 9 9.1 10
mp0 h−1 0.025 0.01 0.0075
hp0 h−1 0.025 0.01 0.0075

For the nutrient–prey–predator system a transcritical and Hopf bifurcation TC−

2

and H−

2 occur, shown in Figure 1B. For the nutrient–prey–predator–top-predator
system the same bifurcations denoted by TC−

3 and H−

3 , Figure 1C, occur. The
curves Ij with j = 1, 2, 3 the food chain length, are the nec-isoclines calculated by
continuing system (1) together with (9). These curves describe properties at the
population and the ecosystem level and they are related to the No Effect Concen-
tration (nec) at the individual level [23, 24]. Due to deteriorating effects of the
toxicant the bifurcation curves for the longer food chains are at higher nutrient
levels in the diagram than for the unstressed systems with cr = 0 on the horizontal
axis.

Figure 1D is the superposition of the three diagrams for the different food chain
lengths. From this figure we conclude that the single population system is less
resistant to toxic stress than a food chain. For instance, for inflow concentrations
higher than, say, four there are two end-points. Suppose at the initial state with
Nr = 50 there is a prey population. Now this system is exposed to the toxicant.
Then depending on the initial conditions the prey population can go extinct. In a
second situation before exposure to the toxicant a predator is introduced into the
reactor. In this case the nutrient–prey–predator system establishes itself. When
this system is exposed now to the toxicant with cr = 4 the system is resistant.

4.2. No effect regimes. We are interested in a region in the two-parameter dia-
gram with Nr and D as bifurcation parameters, where the toxic stress has no effects:
the dynamic system is equivalent to the unstressed system and consequently posseses
the same dynamics. The boundaries of the regions in the two-parameter diagram
where no effects occur are the nec-isoclines calculated by continuing system (1)
together with (8). For the nutrient–prey system, in Figure 2A the curve is denoted
by I1. On the right-hand side of this curve I1 the internal concentration is lower
than the nec and therefore the biomass abundances equal those in the unstressed
system, while on the left-hand side the abundances are affected. We call the region
at the right-hand side the No Effect Region (ner).

For the prey–predator system, in Figure 3A the nec-isocline curve I2 connects
the two end-points of the two branches of the Hopf bifurcation curve H−

2 . Observe
that this curve for the nutrient–prey–predator system terminates at the point where
that curve for the nutrient–prey system intersects the transcritical bifurcation curve
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Figure 1. Two-parameter bifurcation diagrams with total nutrient
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Figure 2. Two-parameter bifurcation diagram with nutrient inflow

Nr and dilution rate D as bifurcation parameters for the population

with (cr = 1) toxicity stress. A. The solid line I1 is the nec-isocline.

B. A two-parameter bifurcation diagram for the nutrient–prey system.

Between the two thick lines there is a structural change of the ecosystem

due to toxic stress from cr = 0 to cr = 1.
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Figure 3. Two-parameter bifurcation diagram with nutrient inflow

Nr and dilution rate D as bifurcation parameters for the ecosystem with

toxicity stress in the chemostat system cr = 1. A. The solid line is the

nec-isocline. The bifurcations belonging to the nutrient–prey system

are also shown in Figure 2. B. A two-parameter bifurcation diagram for

the nutrient–prey–predator system. Between the two thick lines there is

a structural change of the ecosystem due to toxic stress.

TC−

2 . This is in agreement with our finding in Section 3.1, namely that the trans-
critical bifurcations TCj , j ∈ {1, 2, 3} are not affected when they describe invasion
of a species, for instance the predator into the nutrient-prey system j = 2. For
the nutrient–prey–predator–top-predator system Figure 4A is similar to that of the
nutrient–prey–predator system. The nec-isocline is labeled I3.

Notice that because the nec values are the same for the three populations there
is a single nec-isocline curve. In general, when the nec values differ for different
trophic levels these curves have to be calculated for each value of the nec values.
These curves are plotted jointly in the diagram, the cross-section of all regions
equals the ner’s.

4.3. Resistance conditions. Here regions in the bifurcation diagrams are consid-
ered where an increase of the toxic stress does not lead to a change of the structure
of the ecosystem. These regions are bounded by bifurcation curves for cr = 0,
the control case, and for the stressed case, here cr = 1. Mathematically structural
changes are related to bifurcations and biologically population extinction or periodic
instead of equilibrium dynamics.

In [8] the term resistance, is defined as: “staying essentially unchanged despite
the presence of disturbance.” When “essentially unchanged” means “the same long-
term dynamic behaviour as the reference state (stable equilibrium, limit cycle of
even chaotic attractor)” and “presence of disturbance” as “the toxic stress,” then
this definition applies to the regions in the bifurcation diagrams where increase of
the toxic stress does not lead to a change in the structure of the ecosystem.

Figure 2B shows that the resistance region is bounded by the transcritical bifur-
cation curve TC±

1 where cr = 1. The effects of toxic stress for the region in the
parameter space between the two transcritical bifurcation curves for cr = 0 and
cr = 1 (light grey) is dramatic. There is a large region with bi-stability. Figure 3B
shows that the toxic effects on the the nutrient–prey–predator system is rather
small. Only at low nutrient enrichment there is effect. From Figure 4B we conclude
that this is also the case for the nutrient–prey–predator–top-predators system. In
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Figure 4. Two-parameter bifurcation diagram with nutrient inflow

Nr and dilution rate D as bifurcation parameters for the ecosystem

with toxicity stress in the chemostat system cr = 1. A. The solid line

is the nec-isocline. The bifurcations belonging to the nutrient–prey

and nutrient–prey–predator system are also shown in Figure 3. B. A

two-parameter bifurcation diagram for the nutrient–prey–predator–top-

predator system with toxicity stress, cr = 0 and cr = 1, in the chemostat.

Between the two thick lines there is a structural change of the ecosystem

due to toxic stress.

this case the resistance region is bounded by the transcritical bifurcation curve TC2

and TC3 for cr = 0 and cr = 1 (light grey). There is a region where the predator
and subsequently the top-predator go extinct when the toxic stress is increased from
cr = 0 to cr = 1. In Figure 4B this region is the small (dark grey) area.

Notice that in order to determine the region of resistance, the diagram for the
stressed system is compared with that for the unstressed system. The property
of resistance depends on both situations, unstressed and stressed, while with the
calculation of the no effect region only the stressed situation is considered. The
end-points of the two branches of the supercritical Hopf bifurcations are connected
by the nec-isocline I2.

5. Pseudo-Hopf bifurcations. In this section we investigate the consequences of
a discontinuous Jacobian matrix with respect to a parameter. Figure 5 is a detail
of the two-parameter diagram for a stressed prey–predator food chain.

In Figure 6 bifurcation diagrams are shown with D as free parameter for different
Nr values: Nr = 72 (Fig. 6A), Nr = 72.2 (Fig. 6B), Nr = 72.5 (Fig. 6C) and
Nr = 73.5 (Fig. 6D). Below the point I2 at which the Jacobian is discontinuous with
respect to D, the equilibrium is unstable. Above that point there is bi-stability of
the stable equilibrium and a stable limit cycle. With Nr = 72 (Fig. 6A) this limit
cycle originates from the lowest Hopf bifurcation point and becomes unstable at a
tangent bifurcation point for this limit cycle denoted by Tc. For Nr = 72.2 (Fig. 6B)
we passed the cusp bifurcation C in Figure 5 where two tangent bifurcations Tc

collide. Now between two tangent bifurcations three limit cycles coexist whereby
the intermediate limit cycle is unstable and the other two are stable.

With Nr = 72.5 two tangent bifurcations disappear again but in another manner
than at the cusp bifurcation. With respect to the situation at Nr = 72.2, the stable
limit cycles that originate at the Hopf bifurcation with the lowest nutrient inflow are
now connected with the Hopf bifurcation with the highest nutrient inflow. Between
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Figure 5. Bifurcation diagram for region where the two branches of

the Hopf bifurcations H−

2 terminate due to a discontinuous Jacobian

matrix and which are connected by the nec-isocline. Point C is a cusp

bifurcation for the tangent bifurcation of limit cycle Tc.

the intermediate Hopf bifurcation and the point I2 there is a stable equilibrium
and an unstable limit cycle which forms the separatrix. Just above the point I2 a
stable limit cycle originates that merges with the unstable limit cycle at the tangent
bifurcation Tc. For Nr = 73.5 only two Hopf bifurcations are present with a stable
limit cycle in the enclosed interval.

We conclude that point I2 acts as a subcritical pseudo-Hopf bifurcation. Figure 5
shows that the tangent bifurcation of the limit cycle undergoes a cusp bifurcation
point C and this explains why the bifurcations in the diagrams presented in Figure 6
possess different patterns.

6. Analysis of food web systems with recycling.

6.1. Unstressed food web system. For the unstressed food web model described
by (1) where mp = mp0 and hp = hp0, p ∈ {Ri, P, F}, i = 1, 2 given in Ta-
ble 2, the calculated bifurcation diagram is shown in Figure 7A. Only curves for
the nutrients–preys–predator system are shown, not of the sub-systems. The tran-
scritical bifurcation curve TC2 and the Hopf bifurcation curve H−

2 are the only
important bifurcation curves. On the right-hand side of the TC2 curve the preda-
tor can invade the nutrients-preys system at stable equilibrium. In the region on the
right-hand side of the Hopf bifurcation curve, the positive equilibrium is unstable
and the system shows oscillatory behaviour.

Qualitatively the diagram resembles that of the unstressed food chain nutrient–
prey–predator system. This is explained as follows. It is easy to show that if both
prey populations are identical there exists an equivalent food chain model described
by where the saturation constant is twice that for the nutrient–prey interactions.

6.2. Stressed food web system. Figure 7D gives the diagram for the stressed
food web system with cr = 1. Only for low dilution rates and nutrient levels the
internal toxicant concentration becomes larger than the nec value. In Figure 7B
and Figure 7C the diagrams are shown for food chains (no top-predator) with the
prey R2 and prey R1 population. respectively. These diagrams show the extreme
cases when the applied toxic load is lethal for one of the two prey populations.
Comparing Figure 7D with Figure 7B and Figure 7C shows that the effects of toxic
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Figure 6. One-parameter bifurcation diagrams for the prey–predator

system with dilution rate D as free parameter, where A. Nr = 72, B.

Nr = 72.2, C. Nr = 72.5 and D. Nr = 73.5. The equilibrium values

or the extreme values of the nutrient density in the chemostat N are

plotted. Points H−

2 are Hopf bifurcation points where the equilibrium

becomes unstable. Point I2 is the point where the internal concentration

equals the nec-value and where the Jacobian matrix is discontinuous.

Point Tc is a tangent bifurcation point for this limit cycle.

stress on the food web model resembles that for nutrient–prey–predator food-chain
models. These results suggest redundancy when ecosystem functioning is considered
while structure and biodiversity are affected.

7. Discussion and conclusions. The ecosystem model (1) is a straightforward
extension of the model for the nutrient–prey–predator system in [19], but now with
nutrient recycling via two forms of detritus, another nutrient and prey population
and a top-predator. Comparison with the results reported there and obtained here
show an essential effect of recycling for low dilution rates.

In [6] many direct and indirect effects on the ecosystem level reported in the
literature are classified. Direct effects lead to reduced population abundances due
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Figure 7. Two-parameter bifurcation diagram with total nutrient

inflow and dilution rate D as bifurcation parameters for different com-

positions of the food web. For the stressed systems the toxicant concen-

tration in the inflow is cr = 1. The drawn line is the nec-isocline curve.

A. Unstressed food web system cr = 0, with Nr1 = Nr2 and dilution rate

D as bifurcation parameters. B. Stressed system, cr = 1, with only the

competitor R2, and Nr2 and dilution rate D as bifurcation parameters.

C. Stressed system, cr = 1, with only the prey R1, and Nr1 and dilution

rate D as bifurcation parameters. D. Stressed system, cr = 1, with prey

R1 and competitor R2, nutrient inflow Nr1 = Nr2 and dilution rate D

as bifurcation parameters.

to negative effects on the population growth. They are measured in single species
experiments. In multi-species ecosystems a toxicant can exert indirect effects on
resistant populations by a number of mechanisms, such as cascading effects in food
chains by altering trophic or competitive interactions. Indirect effects enhance,
mask, or spuriously indicate direct toxic effects. In our approach ecological, phys-
ical/environmental, and toxicological factors affect ecosystem process rates. As a
result direct and indirect effects on the ecosystem are taken into account as well as
the feed-back mechanisms between the concentration of dissolved toxicant and the
ecosystem state. For instance, despite high toxicant concentrations in the influent
(ten times the nec-values), the water toxicant concentrations in the reactor need
not be high. This is the result of the fact that the supplied toxicant-free (unstressed)
nutrient is converted in the reactor into biomass which takes up the toxicant and
removes it partly from the reactor together with the removed individuals. In large
regions of the bifurcation diagram the concentration of dissolved toxicant, cW , in
the effluent is low even when cr is high in the influent. In the literature generally the
concentration toxicant in the water cW is assumed constant and known in advance,
see [7].
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In [24] direct and indirect effects on the individual or population level are dis-
cussed for the reproduction. Since processes, assimilation (i.e. the combination of
feeding and digestion), growth, maintenance, mortality and reproduction are inter-
linked, changes of any of these processes can result in changes in the reproduction.
Here the organisms propagate by binary fission and maintenance and mortality as
modes of action for all populations, are directly affected.

In [11] the bifurcation technique is used to calculate the effects of toxicity on
ecosystem functioning. In this model the death rate depends linearly on the tox-
icant concentration. The resulting expression equals the concentration-effect rela-
tionship (6b) where the nec concentration equals zero. The toxicant concentration
in the system is taken constant. Hence no emission, transport, and exposer models
are formulated. Therefore the feed-back, that is the dependency of the toxicant
concentration on the ecosystem state of the system, cannot be considered.

Bifurcation analysis techniques for the assessment of toxic effects on ecosystem
functioning fits well in the modelling philosophy that simplified models will not
provide precise forecasts for real ecosystems. It enables us to understand a range
of potential outcomes by dealing with extreme situations. By reformulation of the
set of equations where a state variable is treated as a parameter and a parameter
as a variable, continuation techniques can be used to determine under which toxic
stress levels or environmental conditions the ecosystem is resistant. Open systems
(chemostat reator), as well as closed systems (batch reactors) without mass ex-
change with the environment, can be analysed with this approach. This facilitates
the use of the same modelling formalisms for indoor laboratory and outdoor natural
field systems.

Acknowledgements. BK would like to congratulate Tom Hallam with his birth-
day.
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