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Abstract. Viral infections are one of the leading source of mortality world-
wide. The great majority of them circulate and persist in wild reservoirs and
periodically spill over into humans or domestic animals. In the wild reservoirs,
the progression of disease is frequently quite different from that in spillover
hosts. We propose a mathematical treatment of the dynamics of viral infec-
tions in wild mammals using models with alternative outcomes. We develop

and analyze compartmental epizootic models assuming permanent or tempo-
rary immunity of the individuals surviving infections and apply them to rabies
in bats. We identify parameter relations that support the existing patterns in
the viral ecology and estimate those parameters that are unattainable through
direct measurement. We also investigate how the duration of the acquired
immunity affects the disease and population dynamics.

1. Introduction. The last couple of decades have brought the realization that
improved health care services and the development of new drugs and vaccines are
insufficient to remove the threat of infectious diseases. Despite overly optimistic
predictions, a variety of emerging and re-emerging infectious diseases, including
HIV, SARS, Ebola, and drug-resistant tuberculosis, have spread in developed and
developing countries alike, and viral infections remain a leading source of mortal-
ity worldwide [21, 18]. The majority of all human infections depend on animal
reservoirs for their maintenance. An estimated 61% of the 1,415 species of infec-
tious organisms known to be pathogenic in humans are transmitted by animals, for
which the human represents a dead-end host [10]. Nearly half (49%) of all emerging
viruses cause encephalitis or serious neurological clinical symptoms with 80% of
neurotropic viruses being zoonotic [19].

The majority of mathematical models used to investigate viral infections in
wildlife are variants on the traditional SEIR framework long used to describe disease
dynamics in humans and domestic animals [13, 2]. These models follow the pro-
gression of a stereotypical infection from the moment of viral transmission through
latent and infectious periods and ultimately to recovery or death of the host. Such
models provide a relatively simple environment for theoretical analysis of disease
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Figure 1. Diagrams of epizootic models with permanent and tem-
porary immunity. The force of infection is λ = β I/N .

evolution and a good interface with clinical data including case histories, vaccina-
tion, and treatment records, etc. These data are frequently available in the case of
human diseases for which early symptoms can be identified and recorded. They are
also collectible for some livestock diseases, where surveillance and control of host
populations is sometimes feasible. Comparable data are not so readily available in
the case of diseases of wild fauna. In a wild context, it is often practically impossi-
ble to distinguish different phases of a disease’s progression by direct observation.
Trackability of individual animals by recapture varies from difficult in the case of
foxes and raccoons to infeasible in the case of numerous and highly gregarious bats
and rodents. However, snapshot field data can be used to estimate prevalence of
active viral infections and of titers of virus-specific antibodies (which indicate past
exposure to virus) in wild populations. Moreover, experimental infection studies
can be used to assess individual susceptibility [12]. Such studies confirm that ex-
posure to virus need not result in symptomatic infection but may rather produce
a subclinical response with immune system activation and consequent protection
from reinfection.

In this paper we propose models that capture the nonstereotypical nature of viral
exposures. In these models, the course of infection can follow alternative pathways
leading either to infectiousness or immunization. These models provide an interface
with existing snapshot data and allow us to analyze the potential role of passive
infection in the persistence of disease in the population. The paper is organized as
follows. In Section 2 we formulate and analyze models that assume permanent and
temporary protection in the immunized class. In Section 3 we apply our analysis to
the case of rabies in bats, which accounts for about 90% of indigenous human rabies
cases in U.S. [9, 17]. We determine regions in the parameter space consistent with
observations on bat rabies [22, 8]. We also investigate the effect of the duration of
infection-derived immunity on disease progression in a bat population. We use the
final section to discuss some future research directions.

2. Model formulation and analysis. We formulate and analyze models of dis-
ease dynamics under two distinct assumptions: 1) surviving hosts develop lifelong
immunity (Fig. 1A) and 2) they develop immunity that wanes in time (Fig. 1B).

Each model divides the host population into three classes: susceptible (S), in-
fected (I), and immunized (R). Contacts between susceptible and infected indi-
viduals result in flows from the susceptible class to the other two classes. When
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exposed, susceptible hosts become actively infectious with probability p. The infec-
tion is assumed lethal: infected hosts ultimately die of the disease. An additional
flow allows individuals in the immunized class, upon re-exposure, to enter the infec-
tious class. The relative susceptibility parameter q governs this flow and therefore
measures the efficacy of acquired immunity. In the model with temporary immunity
(MTI), protection wanes at rate ν; i.e., the average duration of immunity is 1/ν.

The model with permanent immunity (MPI) is expressed by the following system:

dS
dt

= bN − β SI
N

− mS

dI
dt

= pβ SI
N

+ qβ RI
N

− (m + d)I

dR
dt

= (1 − p)β SI
N

− qβ RI
N

− mR

(1)

where N = S + I + R is the total population size, b and β stand for the birth rate
and the effective contact rate, respectively, m is the natural loss rate due to death
and dispersal, and d is the disease-related death rate.

The model with temporary immunity (MTI) is defined by the following system:

dS
dt

= bN + νR − β SI
N

− mS

dI
dt

= pβ SI
N

+ qβ RI
N

− (m + d)I

dR
dt

= (1 − p)β SI
N

− qβ RI
N

− (m + ν)R.

(2)

In the absence of infection, systems (1) and (2) reduce to the single equation
dS
dt

= (b − m)S, justifying the assumption b > m. We assume also that acquired
partial immunity decreases susceptibility, i.e., p > q.

To analyze systems (1) and (2) we reformulate them in terms of the fractions of
the population in each class. Accordingly, let s = S/N , i = I/N , r = R/N denote
the fractions of the host population in each state. Then (1) becomes

ds

dt
= b (1 − s) + (d − β) s i

di

dt
= (p − q)β s i + (d − q β) i2 + (q β − b − d) i

dN

dt
= (b − m − d i)N,

(3)

while (2) becomes

ds

dt
= b (1 − s) + ν (1 − s − i) + (d − β) s i

di

dt
= (p − q)β s i + (d − q β) i2 + (q β − b − d) i

dN

dt
= (b − m − d i)N.

(4)

Note that, in both cases, the first two equations are decoupled from the third.
We analyze the dynamics of the resulting fractional models (3) and (4) in the

region of the si-plane that contains all feasible trajectories:

R = {(s, i) : s ≥ 0, i ≥ 0, s + i ≤ 1}. (5)

For this region the following theorem holds.
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Figure 2. Dynamics of the fractional models with b = 0.01, β =
0.5, d = 0.2, q = 0.1.

Theorem 2.1. The region R is forward invariant under systems (3) and (4).

Proof. We evaluate the vector field defined by systems (3) and (4) on the boundary
of the region R. When s = 0 we have ds

dt
= b > 0 and ds

dt
= b + ν(1 − i) > 0 ,

respectively, while di
dt

= 0 for both systems when i = 0. Therefore, all solutions
starting in the first quadrant remain there. Along the line segment s + i = 1 the

inequality d(s+i)
dt

= −(1− p)βi(1− i) ≤ 0 holds for both systems. Thus all solutions
that start in R remain in R. �

The global behavior of the fractional models in the region R is summarized as
follows.

Theorem 2.2. If R0 = p β
b+d

< 1 systems (3) and (4) both have a unique disease-
free equilibrium, s = 1, i = 0, which is globally stable in R. If R0 > 1 then the
disease-free equilibrium of each system is unstable and an unique stable enzootic
equilibrium appears. The enzootic equilibria (s∗pi, i

∗

pi) and (s∗ti, i
∗

ti) of system (3) and

system (4) for concurrent sets of parameters satisfy the inequality i∗ti > i∗pi.

The proof of Theorem 2.2 is in Appendix A. The dependence on the basic
reproductive number R0 is unsurprising. The relation between enzootic equilibria
of systems (3) and (4) predicts that with waning immunity the enzootic profile of
the host population will stabilize at a relatively larger infectious fraction. As we
will show, this affects the host population’s chance of overcoming the infection. The
simulations in Figure 2 show typical trajectories of the models under the two major
dynamical scenarios.

Theorem 2.2 helps us to analyze the epizootic dynamics of MPI (1) and MTI (2)
and to classify the possible dynamical scenarios that arise from an exposure to a
viral infection. Our major goal is to determine conditions on the models’ parameters
leading to outcomes that are distinguishable using field data. We concentrate our
attention on parameters such as the transmission rate (β) and susceptibilities (p
and q) that are not directly measurable but might be estimated indirectly using
the models. The remaining parameters (b, m and d) are estimable on the basis of
experimental data (see below).

Models (1) and (2) predict three possible dynamical outcomes for a population
exposed to a viral infection (Fig.3). An endangered population (Fig.3a) is driven
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Figure 3. Population dynamics predicted by MPI and MTI.

to extinction by the disease and steadily declines in time. A recovering popu-
lation (Fig.3b) is able to eradicate the disease, i.e., it asymptotically tends to a
“naive” population. A reservoir population (Fig.3c) survives and grows in time.
It continues to carry nonzero fractions of infected and immunized hosts.

The following theorem summarizes the conditions for MPI and MTI that lead to
each of the outcomes above:

Theorem 2.3. If the susceptibility of naive hosts is low (p < b+d
β

), then R0 < 1

and the population overcomes and clears the disease regardless of the properties of
the acquired immunity. Conversely, if the susceptibility (p) is high, then the fate
of the population is decided by i∗, the fraction of hosts infected at equilibrium in
systems (3) or (4). In particular, if i∗ > b−m

d
the disease leads the population to

extinction. Otherwise, the population survives the disease and its epizootic profile
approaches a fractional distribution described by (s∗, i∗).

The results of Theorem 2.3 imply that the persistence of the pathogen in the host
population is assured only when two independent parameter conditions are simul-
taneously satisfied. The “enzootic condition” (R0 > 1) is required for the disease to
persist; the “survival condition” (i∗ < b−m

d
) ensures that the host population will

persist. Limiting the duration of acquired immunity increases the infected fraction,
i∗, of the population and can therefore lead to failure of the survival condition; i.e.,
to extinction of the host population.

3. Application to rabies in bats. The MPI and MTI models are motivated
by the phenomenology of rabies in bats, particularly in Brazilian free-tailed bats
(Tadarida brasiliensis). Separate studies [22, 8] show seroprevalence in 40%–
75% of apparently healthy Brazilian free-tailed bats tested in unbiased surveys.
The same surveys also showed little evidence of active infection, with 0–1% of the
bats tested having virus in brain tissue, or viral RNA in salivary swabs, when
brain could not be tested. Field data [22, 23] supported by laboratory studies
[3, 12] demonstrate that bats exposed to the viruses often develop antibodies and
clear peripheral infections without developing clinical signs of disease, suggesting,
perhaps, that it is animals with suppressed immune response that develop and
succumb to rabies infections. Brazilian free-tailed bats live in huge colonies in caves
and under bridges. Their dense aggregation and constant biting and grooming
suggest potentially high contact rates, but it has proved impossible to measure
contact rates directly. Even if it were possible to measure raw contact rates, it would
be difficult to estimate what proportion of those contacts result in viral transmission
and still harder to quantify the proportion of transmissions that lead to clinical
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rabies. The parameters β, p, and q of the MPI and MTI models regulate these
proportions and are therefore the main subject of our investigation. The remaining
parameters can be estimated on the basis of previous field and experimental studies
[8, 22]. The birth rate, b, range of 0.0009–0.0011 da−1 is based on the assumption
of equal sex ratio and the fact that most female bats (> 80%) give birth to a single
offspring per year. The natural loss rate, m, is estimated to take values in the range
0.0008–0.001 da−1 in correspondence with the life expectancy of T. brasiliensis
[14]. The realistic range for the disease-related mortality, d, (0.02–0.05 da−1) is
determined by the average lifespan of experimentally infected bats (20–50 da) [12].
In the following, we identify combinations of the parameters p, q, and β that support
the observed disease dynamics.

We first investigate how the susceptibilities p and q, independently and in com-
bination, influence bat rabies dynamics. Since the susceptibility of naive bats, p,
enters R0, it mediates the switch from epizootic to enzootic behavior when in-
creased. On the other hand, an increase in either p or q results in a decline of
the equilibrium susceptible fraction, s∗, and an increase in the equilibrium infected
fraction, i∗. Therefore, the survival condition will be violated for sufficiently high
values of p and/or q. Figure 4 presents the regions in the qp-plane corresponding
to the dynamics predicted in Theorem 2.3. Below the enzootic boundary p = b+d

β

the virus dies out. To the right of the survival boundary

p =
(b − m) (d (d + m) + β (b − d − m)

d (b d − (b − d − m) ν)
q +

(d + m) ((d + ν)m + (b − m)β)

β (b d − (b − d − m) ν)
,

the host population dies out. The remaining triangular region contains all combi-
nations of p and q that ensure persistence of the disease in a vital host population.
Figures 4a and 4b show this feasible region for MPI at two levels of the effective
contact rate, β. Note that the feasible region in these two cases impose tight limita-
tions on the susceptibilities p and q; these restrictions grow sharper as background
mortality, m, increases (Fig. 4b). The third diagram (Fig. 4c) compares the feasible
region for MPI to that of MTI with various durations of immune protection. Ex-
perimental infections suggest that bats surviving infection lose their antibody titer
after a period of six to twelve months following inoculation [12]. However, they seem
to have an immune protection for a longer period. The parameter values for ν used
here correspond to protection periods of one year (ν = 0.027 da−1) and two years
(ν = 0.014 da−1). Varying ν does not influence the ability of the rabies infection
to invade the colony; it does strongly affect the host colony’s ability to persist in
the presence of the disease. The influence of a time-limited immunity protection
on the parameter regions is almost identical to that of increased background mor-
tality; i.e, of decreased life expectancy. With rapidly waning immunity, the region
of parameter space corresponding to bat-rabies coexistence becomes very narrow.
Under such circumstances, immunosuppression events due to adverse weather, food
scarcity, or environmental change might easily lead to host-population decline and
extinction. All available evidence suggests, however, that despite the widespread
presence of rabies in bats, massive die-offs are uncommon [20]. Thus, our analysis
provides support for the hypothesis of long-lasting immunity against rabies. Fur-
ther support for this hypothesis is obtained from the fact the most bats that survive
experimental rabies infections do not succumb after consecutive exposures to high
viral concentrations even when the re-exposures are conducted long after the initial
inoculation [12].
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Figure 4. Feasible regions in the plane of susceptibilities q, p with
b = 0.0011, d = 0.02 and various contact rates, background mor-
tality, and durations of immunity.

We next consider completely effective immunity (q = 0) that mirrors the exper-
imental data cited above. We focus our attention on the effective contact rate, β.
Again, experimental measurements are unavailable. Figure 5 shows the regions in
the βp-plane corresponding to each of the three dynamical alternatives described
in Theorem 2.3 at each of two levels of disease-related mortality, d. The enzootic
boundary in those simulations is given by p = b+d

β
; the survival boundary is

p =
(b − m) (d + m)

b d − (b − d − m) ν
+

d (d + m) (m + ν)

b d − (b − d − m) ν

1

β
.

The shape and the size of the feasible region is not affected significantly by the
mortality rate. This allows us to draw some conclusions about the levels of suscep-
tibility and effective contacts in real bat colonies. The range of susceptibility that
supports infection without collapsing the bat population (5%–40%) suggests that
the majority of exposures result in development of immunity rather than disease
and death. This contrasts sharply with the situation in mammalian carnivores, in
which susceptibility rates are estimated at over 90% [2, 4]. Not surprisingly, rabies
epizootics in carnivores often have a major impact on local populations. The effec-
tive contact rate β must be sufficiently large (β > d + b) for the host population
to be able to support a persistent infection (see the proof of Theorem 2.2). Figure
5 suggests that each infected bat should, on average, successfully transfer rabies at
least once per 10 days to keep the virus circulating in the colony. Experimentally
infected bats vary in infectiousness during the period before they succumb to rabies.
In light of this, our results predict that contact rates in natural populations should
be higher.

Loss of immunity restricts the feasible range of p significantly (Fig. 5c). For
example, if the average duration of immunity is one year (ν = 0.0027 da−1), then
p > 20% leads to host population extinction. In other words, our results show that
if immunity wanes, a combination of low susceptibility and high contact rates are
needed for the feasibility of enzootic rabies in bats. This scenario corresponds to
the hypothesis that the high seroprevalence in colonial bats is the result of frequent
exposure of individuals to small viral inocula that give rise to short-lived immunity.

4. Discussion. In this paper we examined epizootic models that allow for alter-
native courses of infection: exposure to pathogen can lead either to infectiousness
accompanied by lethal disease or to longer- or shorter-lived immunity. These mod-
els may be useful descriptions of viral neurological infections such as rabies in wild
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Figure 5. Feasible regions in the βp-parameter plane with differ-
ent levels of disease-related mortality and immunity protection.

mammals because the progress of these infections often depends on the size of the
inoculum. That is, the fate of the exposed individual may usefully be thought of as
being decided at the time of exposure.

The models proposed interface well with existing field data on prevalence and
seroprevalence, interpreted as indicators of infectious and immunized population
fractions, respectively. Analysis of the models reveals three possible dynamical out-
comes: 1) the population is able to clear the virus; 2) the population is driven to
extinction by the disease; and 3) long-term coexistence of virus and host. In the
latter case, the wild population can act as a pathogen reservoir and therefore a
source of risk to humans and domestic animals. Two conditions, epizootic and sur-
vival, on the model parameters must be satisfied for such a reservoir to exist. These
conditions can be used to determine ranges for some unmeasurable parameters that
are consistent with the observation of persistence of rabies in colonies of Brazilian
free-tailed bats. Examination of feasibility regions in the susceptibility and effective
contact rate parameters suggest an explanation for the different phenomenology of
rabies in bats compared to mammalian carnivores.

We are currently working on a modeling approach that incorporates a “carrier”
state of infectious but asymptomatic animals. The existence of such a state in bats
has been tested repeatedly but has not to date been corroborated in experimental
studies using several bat species and different lyssaviruses [3, 7, 6, 5, 11, 15]. Some
support for the carrier-state hypothesis is provided by a recent report of experi-
mentally infected vampire bats shedding virus in saliva without evidence of virus
in brain tissue [1]. These results should be interpreted cautiously because several
aspects of the study are inconsistent [16]. Our goal is to use simple models to
delineate the parameter regimes consistent with existing experimental data. The
generality of the modeling approach exemplified here makes it applicable to differ-
ent viral infections in bats and other wild mammals. Our analysis emphasizes the
importance of considering alternative outcomes to viral exposure. Such effects have
been overlooked in the traditional SEIR framework and are likely to be a fruitful
subject for future investigation.
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Appendix A. Proof of Theorem 2.2. Solving the equilibrium conditions of
systems (3) and (4) leads to the existence of a common disease-free equilibrium
(s = 1, i = 0) and up to two enzootic equilibria for each system. When q 6= d

β
,

each enzootic equilibrium (s∗pi, i
∗

pi) of system (3) satisfies i∗pi = g(s∗pi) where g(s) =

1 + b−(p−q)βs

d−qβ
and s∗pi is a root of

fpi(s) = (d − β)g(s)s + b(1 − s) =

= − (p−q)β(d−β)
d−qβ

s2 +
(

(d − β)(1 + b
d−qβ

) − b
)

s + b
(6)

while an enzootic equilibrium (s∗ti, i
∗

ti) of system (4) satisfies i∗ti = g(s∗ti) where
s∗ti is a root of

fti(s) = − (p−q)β(d−β)
d−qβ

s2 +
(

(d − β)(1 + b
d−qβ

) − ν(d−pβ)
d−qβ

− b
)

s + b − bν
d−qβ

.

The proof of Theorem 2.2 is based on a standard stability analysis of the existing
equilibria. The conclusions for the dynamics of both systems at each analytical
step overlap. Therefore we provide the proof for the MPI system only since the
case of MTI is quite similar though it is computationally more challenging. The
proof consist of three major parts: 1) establishing an uniqueness of the enzootic
equilibrium in R; 2) analysis of the local stability of the existing equilibria; and
3) analysis of the global dynamics of system (3) formulated in the following propo-

sitions. Let A = − (p−q)β(d−β)
d−qβ

, B = (d − β)(1 + b
d−qβ

) − b, and C = b are the

coefficients of fpi(s). Note that C > 0 and thus if A < 0 there is a unique positive
root of fpi(s) = 0.

Proposition 1. If R0 = pβ
b+d

< 1 then system (3) has no enzootic equilibria. If
R0 > 1 a unique interior equilibrium exists in R.

Proof. We consider the following cases:

• If β < d then A < 0 and the function fpi(s) has a unique positive root s∗.
It is less then 1 exactly when f(1) < 0, which is equivalent to g(1) < 0.
However, since q < p ≤ 1, β < d implies R0 < 1 and g(1) = d+b

d−qβ
(1−R0) > 0.

Therefore, there are no enzootic equilibria in R;
• If β = d the only positive root of fpi(s) = 0 is s∗ = 1, which leads us to the

disease free equilibrium;
• If d < β ≤ b+d the nonlinear isocline of System (3) lies below the line i+s = 1

only for values of s between siso = b
β−d

and s = 1 (see Fig.6-a). Since in this

case siso > 1 the nonlinear isocline does not intersect R and therefore there
are no equilibria inside R.

• If β > b + d and q > d
β

then A < 0 and fpi(s) has a unique positive root s∗.

Since fpi(0) = C > 0 the following equivalence holds:

s∗ < 1 ⇐⇒ g(1) > 0 ⇐⇒ R0 > 1.

Then an equilibrium (s∗, g(s∗)) exists in R only if R0 > 1 and also 0 <
g(s∗) + s∗ < 1. The latter inequality leads to s∗ > siso (see Fig.6-b), which is
equivalent to fpi(siso) > 0. After some calculations it can be showed that

fpi(siso) =
(1 − p)b2β

(qβ − d)(β − d)
> 0
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Figure 6. Isoclines configurations for MPI

Therefore (s∗, i∗) belongs to R provided that R0 > 1;

• If β > b+d and q = d
β

a unique nontrivial equilibrium
(

s∗ = b
pβ−d

, i∗ = pβ−d−b

β−d

)

exists and it belongs to R if and only if R0 > 1.
• If β > b + d and q < d

β
then A > 0 and fpi(s) has either zero or two positive

roots. Evaluations fpi(0) > 0 and fpi(siso) < 0 imply that fpi(s) has exactly
two positive roots that satisfy 0 < s∗1 < siso < s∗2 (see Fig.6-c). The nonlinear
isocline of System (3) lies in R only for values of s between s = siso and s = 1
and therefore (s∗1, g(s∗1)) 6∈ R. Moreover, (s∗2, g(s∗2)) ∈ R only if s∗2 < 1. The
latter inequality is satisfied if and only if g(1) < 0, which in turn is equivalent
to R0 > 1. Therefore, the system (3) has a unique equilibrium in R if and
only if R0 > 1 while R0 < 1 implies that there is no equilibrium in R. �

The local stability of each equilibrium depends on the eigenvalues of the Jacobian
matrix of system (3) given by

J(s, i) =

(

−(β − d)i − b −(β − d)s
(p − q)βi (p − q)βs + 2(d − qβ)i − (b + d − qβ)

)

. (7)

Proposition 2. The disease free equilibrium (1, 0) of system (3) is locally asymp-
totically stable node if R0 < 1 and unstable (saddle point) otherwise.

Proof.

J(1, 0) =

(

−b −(β − d)
0 pβ − b − d

)

. (8)

Therefore the equilibrium (1, 0) is locally asymptotically stable node if R0 =
pβ

b+d
< 1 and unstable (saddle point) otherwise. �

Proposition 3. When it exists, the enzootic equilibrium (s∗, i∗) of system (3) is
locally asymptotically stable.

Proof. The Jacobian matrix J(s∗, i∗) can be put into the form:

J(s∗, i∗) =

(

− b
s∗

− b(1−s∗)
i∗

(p − q)βi∗ (d − qβ)i∗

)

. (9)

If q > d
β

then Tr(J(s∗, i∗)) = − b
s∗
−(qβ−d)i∗ < 0 and det(J(s∗, i∗)) = b(qβ−d)i∗

s∗
+

(p − q)bβ(1 − s∗) > 0. Therefore (s∗, i∗) is locally asymptotically stable.
On the other hand, it is easy to see that when q < d

β
then i∗ < b

d−qβ
. In

particular, the proof of Proposition 1 shows that in this case fpi(s) has exactly two
positive roots s∗1 < s∗2 and fpi(s) takes negative values only between those roots
(Fig.6-c). It is shown there also that s∗ coincides with s∗2. Consider the point
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Figure 7. Effects of a time-limited immunity protection on the
enzootic equilibrium.

(

d−qβ

(p−q)β , b
d−qβ

)

, which, like (s∗, i∗), lies on the linear isocline of System (3). Since

fpi

(

d−qβ

(p−q)β

)

< 0 it follows that s∗ > d−qβ

(p−q)β . The linear isocline has a negative

slope, which implies that i∗ < b
d−qβ

.

It follows that when q < d
β
, Tr(J(s∗, i∗)) = −b + (2d− β − qβ)i∗ < 0. Moreover,

det(J(s∗, i∗)) = −
b(d − qβ)i∗

s∗
+ (p − q)bβ(1 − s∗)

>
b

s∗
((qβ − d)i∗ + (p − q)βi∗s∗)

= −
bi∗

s∗
((d − qβ)i∗ − b) > 0.

which complete the proof in this case. �

The global stability of the disease free equilibrium when R0 < 1 is a direct
implication of the Poincare-Bendixson Theorem. To conclude the proof of Theorem
2.2 we have to establish the relationships between the enzootic equilibria of systems
(3) and (4). Variation in ν preserves the linear isocline of system (4). It also
preserves the intersects of the nonlinear isocline with the line x + y = 1. An
increase in ν leads to an increase in i∗ti (see Fig.7). Since system (3) is a special
case of systems (4) with ν = 0 he relationships between the enzootic equilibria of
the systems hold.

Finally, we address the global stability of the enzootic equilibrium.

Proposition 4. System (3) has no periodic solutions in R for q > d
β
.

Proof. Define

L(s, i) =
∂

∂s
(H(s, i)F (s, i)) +

∂

∂i
(H(s, i)G(s, i)) ,

where F (s, i) = b(1− s)+ (d−β)si, G(s, i) = (p− q)βsi+(d− qβ)i2 +(qβ − b− d)i
and H(s, i) = 1

i
. The proposition statement holds by Dulac’s negative criterion

provided that q > d
β
. �
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The existence of periodic solutions for some q < d
β

is not theoretically out-

lawed. However, the system (3) can not undergo a Hopf bifurcation since, when-
ever the enzootic equilibrium (s∗, i∗) exists, we always have Tr(J(s∗, i∗)) > 0 and
det(J(s∗, i∗) > 0. Therefore, if periodic solutions exist, they must arise far from
the equilibrium (s∗, i∗), yet still containing it in their interior. Intensive numerical
search uncovered no such special solutions and strongly suggest the global stability
of the enzootic equilibrium even in this case. We leave this problem for a future
investigation.
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