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Abstract. In this study, we expand on the susceptible-infected-susceptible
(SIS) heterosexual mixing setting by including the movement of individuals of
both genders in a spatial domain in order to more comprehensively address the
transmission dynamics of competing strains of sexually-transmitted pathogens.
In prior models, these transmission dynamics have only been studied in the
context of nonexplicitly mobile heterosexually active populations at the demo-
graphic steady state, or, explicitly in the simplest context of SIS frameworks
whose limiting systems are order preserving. We introduce reaction-diffusion
equations to study the dynamics of sexually-transmitted diseases (STDs) in
spatially mobile heterosexually active populations. To accomplish this, we
study a single-strain STD model, and discuss in what forms and at what speed
the disease spreads to noninfected regions as it expands its spatial range. The
dynamics of two competing distinct strains of the same pathogen on this pop-
ulation are then considered. The focus is on the investigation of the spatial
transition dynamics between the two endemic equilibria supported by the non-
spatial corresponding model. We establish conditions for the successful inva-
sion of a population living in endemic conditions by introducing a strain with
higher fitness. It is shown that there exists a unique spreading speed (where
the spreading speed is characterized as the slowest speed of a class of traveling
waves connecting two endemic equilibria) at which the infectious population
carrying the invading stronger strain spreads into the space where an equi-
librium distribution has been established by the population with the weaker
strain. Finally, we give sufficient conditions under which an explicit formula
for the spreading speed can be found.

1. Introduction. From the time that Sir Ronald Ross [15] identified the simi-
larities (mathematical equivalence) of models for sexually- and vector-transmitted
diseases in 1911, efforts to model and understand the transmission dynamics of
STDs in heterosexually active populations have been carried out, especially, after
the start of the HIV epidemic (see Kasseem et al [8], Kirschner [9], and references
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therein). The first model used for the explicit study of a sexually-transmitted dis-
ease, namely gonorrhea, was a simplified two-sex model (Cooke and Yorke [6]).
Later, a multi-group (single-sex) model for STD dynamics was formulated and ana-
lyzed by Lajmanovich and Yorke [10]. The study of the transmission dynamics and
control of STDs has been a direct beneficiary of theoretical work carried out in the
context of the transmission dynamics of gonorrhea and the work of Hethcote and
Yorke [7] continues to impact current public health policies. These researchers’ con-
cept of a core group still drives some control recommendations being implemented
today. Hethcote and Yorke’s conclusions were derived from the simulations and
analysis of a simple system of nonlinear differential equations used to model the
transmission dynamics of gonorrhea in a heterosexually-active population with two
distinct levels of sexual activity. Their SIS two-sex model, where they introduced
the concept of core group, provides the historical foundation of this paper. Exten-
sions have been carried out, for example in, Brauer et al. [1], Castillo-Chavez et al.
[4, 2, 3] and references therein. The recent work on heterosexually-transmitted HIV
found in Kasseem et al. [8] focuses on the role of the core group and mobile (tran-
sient) populations on its dynamics. The work in Kirschner [9] focuses on mobility
in risk space in the context of sexually-transmitted HIV in heterosexually-active
populations. Nevertheless, limited research has been carried out on the study of
the transmission dynamics of STDs in heterosexual mobile populations. The work
in this manuscript, we hope, suggests additional worthwhile expansions.

Most of the research on heterosexually-transmitted STDs has been driven by
an interest on their impact on human populations. In contrast, the work here is
motivated by the study of the dynamics of STDs in populations, such as mammal
populations, where spatially dependent interactions may be critical. The compli-
cations associated with the study of STD dynamics in, for example, populations
of mammals in the wild, is rather complex. A realistic model would include the
possibility of high fluctuation densities (that is, it would not be based on an as-
sumption of populations at a demographic steady state), mating preferences and
possibly, specific social structure (hierarchies). Hence, this paper is just an initial
attempt to start a discussion on the study of the dynamics of STDs in populations
of mammals in the wild. The modeling approach and results in this manuscript
provide a starting point used to identify potential dynamics (two strain results).
We also hope that the framework used here can be used to build realistic model
extensions in the future [1].

Following the vision already communicated in Ross [15] that recognizes that
vector- and sexually-transmitted diseases have intersecting mathematical formula-
tions, we proceed to use his modeling philosophy to formulate models for the study
of the spatial dynamics of vector-transmitted diseases. Clearly, there are critical
differences between STDs and VTDs (Vector Transmitted Diseases). For example,
VTDs involve coexisting highly distinct time scales, and vectors do not recover
from infection. Specifically, implementing the framework and methods of analysis
introduced here, we plan to extend our study of dengue dynamics in Peru (see [5].)

The spatial spread of a disease can be seen as a process in which infectious
individuals move while multiplying their numbers. Models in which mobility is
formulated as a random diffusion process take the form of reaction-diffusion equa-
tions, which have proven successful in modeling the spatial spread of diseases such
as the Black Death, red fox, and rabies in human populations (see, for example,
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Murray [14], and Shigesada and Kawasaki [16]). Here we incorporate the stan-
dard reaction-diffusion formulation to study the spatial spread of STDs. First, a
reaction-diffusion model that accounts for the impact of local individuals’ mobility
on single-strain STD dynamics is introduced. The focus of the analysis is primarily
that of capturing the forms and speed of disease propagation to non-infected regions
as the pathogen expands its spatial range. It is shown that the spread of the STD
is determined by the speed of propagation computed from the model’s linearization
about the leading edge of the epidemic invasion wave. It is shown that the speed of
propagation can be characterized as the smallest speed of traveling wave solutions.
We follow up this analysis by introducing a model that puts two distinct strains of
the same pathogen in competition and focus on the study of spatial transition dy-
namics between the endemic equilibria supported by the corresponding non-spatial
version of our model. Particularly, we study the spatial invasion of an established
infected population by a stronger strain. It is shown that there exists a unique
spreading speed at which the infectious population with the stronger strain spreads
and at which the infectious population with the weaker strain retreats in space. We
prove that the spreading speed can be characterized as the slowest speed of a class
of traveling waves connecting two endemic equilibria. It is shown that under certain
conditions, an explicit formula for the spreading speed can be found. The math-
ematical analysis presented in this paper relies on theory about spreading speed
and traveling waves for cooperative systems developed by Weinberger, Lewis, and
Li [12, 17, 18].

This paper is organized as follows: Section 2 introduces the single-strain STD
model and examines the dynamics of spatial spread in this context; in Section 3,
we discuss the two-strain STD model and study the spreading speed and traveling
waves in the presence of interference pathogen competition; in Section 4, we provide
some concluding remarks and discuss possibilities for expansions and applications.

2. Spread of a single-strain STD model. We let Sk(x, t), k = m, f and Ik(x, t),
k = m, f represent the local densities of susceptible and infected males and females,
respectively, as we proceed to introduce and study the simplest spatially-explicit SIS
STD model. The spatial dynamics are modeled in this simple setting, just through
the addition of diffusion terms. Hence, dk ( k = m, f) are used to denote the
diffusion coefficients of males and females, respectively. The model includes some
simple demographics; that is, sexually-mature individuals are regularly recruited.
In fact, Λk ( k = m, f) denote the recruitment rates of males and females, while µk

( k = m, f) are natural death rates for males and females, respectively. In other
words, males and females exit the reproductive (sexually-active) life-stage at the
rates µk ( k = m, f). In addition, γk are the per-capita rates of recovery for males
and females; βk denote transmission rates of infection; and rk, ( k = m, f), as
functions of T m and T f , give the average rates of partner acquisition per male and
per female (respectively). These last rates satisfy the constraint rm(T m, T f)T m =
rf (T m, T f)T f ; that is, the total average contact rate of females equals the total
average contact rate of males. These assumptions and definitions lead us to the
following model:
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∂Sm

∂t
= dm ∂2Sm

∂x2 + Λm − Bm − µmSm + γmIm

∂Im

∂t
= dm ∂2Im

∂x2 + Bm − (µm + γm)Im

∂Sf

∂t
= df ∂2Sf

∂x2 + Λf − Bf − µfSf + γfIf

∂If

∂t
= df ∂2If

∂x2 + Bf − (µf + γf )If

(1)

where

Bm = rm(T m, T f)βfSmIf/T f , Bf = rf (T m, T f)βmSfIm/T m, T m = Sm + Im, T f

= Sf + If .
By adding the first two equations and the last two equations in (1) respectively,

one obtains
∂T m

∂t
= dm ∂2T m

∂x2
+ Λm − µmT m (2)

and
∂T f

∂t
= df ∂2T f

∂x2
+ Λf − µfT f . (3)

The linear reaction-diffusion equations (2) and (3) describe the distributions of
males and females as functions of the space variable x and time variable t, respec-
tively. It may be worth noticing that relaxing our assumptions immediately leads
to potential novel and challenging systems of coupled nonlinear partial differential
equations. For example, one could assume that Λk ( k = m, f) are functions of
the local (or global) densities of males and females. If this were the case, then the
system (3 and 2 ) would become not only quite challenging but also the kind of
extension that may be relevant for the study of the transmission dynamics of STDs
in mammal populations in the wild.

Here, it is assumed that the initial distributions of males and females T m(x, 0)
and T f(x, 0) are bounded continuous functions. Solving (2) with the initial value
function T m(x, 0), and (3) with the initial value function T f (x, 0), one finds that
T m(x, t) and T f(x, t) satisfy

|Λm/µm − T m(x, t)| ≤ ||T m(x, 0)||e−µmt

and

|Λf/µf − T f(x, t)| ≤ ||T f(x, 0)||e−µf t

where || · || denote the superimum norm. This shows that T m(x, t) and T f(x, t)
approach equilibrium values uniformly and exponentially. We have the following
limiting system

∂Im

∂t
= dm ∂2Im

∂x2 − σmIm + am(pm − Im)If

∂If

∂t
= df ∂2If

∂x2 − σf If + af (pf − If )Im
(4)

where am = µf cmβf

Λf , af = µmcf βm

Λm , and ck = rk(λm/µm, Λf/µf), σk = µk+γk, pk =
Λk

µk , k = m, f .
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System (4) is cooperative in the biologically realistic range 0 ≤ Im ≤ pm, 0 ≤
If ≤ pf . The reproductive number of system (4) is

R =
ampmafpf

σmσf
,

which represents a threshold value. If R < 1, system (4) has a unique stable
constant equilibrium E0 = (0, 0). If R > 1, E0 is unstable and there is a globally

asymptotically stable constant positive equilibrium E∗ = (Im
∗ , If

∗ ) where

Im
∗ =

σmσf (R − 1)

af (pfam + σm)
, If

∗ =
σmσf (R − 1)

am(pmaf + σf )
.

In what follows we assume that R > 1. Since there are only two equilibria E0 and
E∗, the results from [12, 17, 18] show that system (4) has a unique spreading speed
at which the disease spreads to non-infected regions as it expands its spatial range.
To find a formula for the spreading speed of (4), we use the following linearization
of (4) about E0

∂Im

∂t
= dm ∂2Im

∂x2 − σmIm + ampmIf

∂If

∂t
= df ∂2If

∂x2 − σf If + afpfIm.
(5)

System (4) is always bounded above by its linearization system (5). Theorem 4.2
in [17] shows that system (4) is linear-determinant; that is, the spreading speed of
(4) is that of a truncation of (5). The conditions of this theorem involve a matrix
Cµ, defined to be the coefficient matrix for the vector of linear combinations of α1

and α2 obtained by substituting Im = α1e
−µx, If = α2e

−µx into the right-hand
side of (5) and setting x = 0:

Cµ =

(

dmµ2 − σm ampm

afpf dfµ2 − σf

)

.

This is an irreducible matrix for µ ≥ 0 with the principle eigenvalue given by

λ(µ) =
1

2
{(dm + df )µ2 − (σm + σf ) +

√

[(dm − df )µ2 − σm + σf ]2 + 4amafpmpf}.

(6)
It follows from Theorem 4.2 in [17] that the spreading speed of (4) is given by

c∗ = inf
µ>0

λ(µ)/µ. (7)

Since

2λ(0) = −(σm+σf )+
√

(σm − σf )2 + 4amafpmpf =
√

(σm + σf )2 + 4σmσf (R − 1)

−(σm + σf ) > 0, limµ→0+ λ(µ)/µ = +∞. On the other hand, it is also obvious
that limµ→+∞ λ(µ)/µ = +∞. Therefore the infinimum in (7) is attained at a finite
number and c∗ is a positive number.

In general, it is difficult to find an explicit formula for c∗ in terms of model
parameters. However, one can easily find that

if dm = df = d, c∗ = λ(µ̄)/µ̄ =

√

2d[
√

(σm + σf )2 + 4σmσf (R − 1) − (σm + σf )],

(8)
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with

µ̄ =

√

[
√

(σm + σf )2 + 4σmσf (R − 1) − (σm + σf )]/(2d).

Thus, we have obtained the following proposition that is a paraphrase of Theo-
rems 4.1 and 4.4 of [17].

Proposition 1. The spreading speed of the limit system (4) is c∗ given by (7)in

the following sense: If 0 ≤ Im(x, 0) < Im
∗ , 0 < If (x, 0) < If

∗ , Im(x, 0) and If (x, 0)
are zero outside a bounded set, and If (x, 0) 6≡ 0 and Im(x, 0) 6≡ 0, then for every
positive number ǫ

lim
t→∞

sup
|x|≥(c∗+ǫ)t

{(Im(x, t))2 + (If (x, t))2)} = 0,

and

lim
t→∞

sup
|x|≤(c∗−ǫ)t

{(Im
∗ − Im(x, t))2 + (If

∗ − If (x, t))2)} = 0.

Since the limit system (4) has only two equilibria, Theorem 3 in [12] shows that
c∗ can be characterized as the slowest speed of a class of traveling wave solutions
connecting E0 to E∗, as described by the following proposition.

Proposition 2. For c ≥ c∗, the limiting system (4) has a nonincreasing traveling

wave solution (Im(x − ct), If (x − ct)) with (Im(−∞), If (−∞)) = (Im
∗ , If

∗ ) and
(Im(+∞), If (+∞)) = (0, 0). A traveling wave solution (Im(x−ct), If(x−ct)) with

(Im(−∞), If (−∞)) = (Im
∗ , If

∗ ) and (Im(+∞), If (+∞)) = (0, 0) does not exist if
c < c∗.

Remark 1. The traveling wave solution described in Proposition 2 propagates
to the right with a speed c ≥ c∗. Similarly one can establish a traveling wave that
propagates to the left. In fact, for c ≤ −c∗, the limiting system (4) has a nondecreas-
ing traveling wave solution (Im(x−ct), If (x−ct)) with (Im(−∞), If (−∞)) = (0, 0)

and (Im(+∞), If (+∞)) = (Im
∗ , If

∗ ), and such a traveling wave solution does not
exist if c > −c∗.

If the males and females have initial equilibrium distributions

T m(x, 0) ≡ λm/µm, T f(x, 0) ≡ λf/µf , (9)

then equations (2) and (3) show that T m(x, t) ≡ λm/µm and T f(x, t) ≡ λf/µf for
all x and t ≥ 0. In this case in the full system (1), Im(x, t) and If (x, t) satisfy
(4), and Sm = λm/µm − Im(x, t) and Sf = λf/µf − If (x, t) satisfy the Sm and
Sf equations in (1), respectively. Therefore if (9) holds, c∗ is the spreading speed
for the full system (1). On the other hand, clearly, if (Im(x − ct), If (x − ct)) is a
traveling wave solution of (4) then (λm/µm−Im(x−ct), Im(x−ct), λf /µf −If (x−
ct), If (x − ct)) is a traveling wave solution of (1). We therefore have the following
theorem based on Proposition 1 and Proposition 2.

Theorem 2.1. Assume R > 1.
(i) The spreading speed of system (1) is c∗ given by (7) in the following sense: If

0 ≤ Im(x, 0) < Im
∗ , 0 < If (x, 0) < If

∗ , Im(x, 0) and If (x, 0) are zero outside a
bounded set, If (x, 0) 6≡ 0 and Im(x, 0) 6≡ 0, and Sm(x, 0) = Λm/µm − Im(x, 0) and
Sf(x, 0) = Λf/µf − If (x, 0), then for every positive number ǫ

lim
t→∞

sup
|x|≥(c∗+ǫ)t

{(Λm/µm − Sm(x, t))2 + (Im(x, t))2 + (Λf/µf − Sf (x, t))2 + (If (x, t)



SPATIAL SPREAD OF SEXUALLY-TRANSMITTED DISEASES 719

)2)} = 0,
and
limt→∞ sup|x|≤(c∗−ǫ)t{(Λ

m/µm − Im
∗ − Sm(x, t))2 + (Im

∗ − Im(x, t))2 + (Λf/µf− If
∗−

Sf(x, t))2 +(If
∗ − If (x, t))2)} = 0.

(ii) For c ≥ c∗, the system (1) has a monotone traveling wave solution (Sm(x −
ct), Im(x−ct), Sf(x−ct), If (x−ct)) with (Sm(+∞), Im(+∞), Sf(+∞), If (+∞)) =
(Λm/µm, 0, Λf/µf , 0) and (Sm(−∞), Im(−∞), Sf (−∞), If (−∞)) = (Λm/µm−Im

∗ ,

Im
∗ , Λf/µf − If

∗ , If
∗ ). A traveling wave solution with (Λm/µm, 0, Λf/µf , 0) at +∞

and (Λm/µm − Im
∗ , Im

∗ , Λf/µf − If
∗ , If

∗ ) at −∞, and speed c does not exist in (1) if
c < c∗.

We provide a graphical description of Theorem 2.1 in Figure 1.

(a)

I 

S S

C*C*

(b)

C

I

S

Figure 1. Spread of a single strain of a sexually-transmitted
pathogen in case of R > 1. (a) Spread of infectious individuals
in a region pre-occupied by susceptible individuals with an equilib-
rium distribution. The infectious individuals succeeds in invasion
and establish a wave that proceeds at a speed c∗. At the rear
of the wave both susceptible individuals and infectious individuals
coexist. (b) Traveling wave propagation of susceptible individu-
als and infectious individuals. At the front of the traveling wave
there are very small number of infectious individuals, and a large
number of susceptible individuals. At the rear of the traveling wave
both susceptible individuals and infectious individuals coexist. The
traveling wave solution has speed c with c ≥ c∗.
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3. Spread of a two-strain STD model. In this section, we study the following
model that puts two distinct strains of the same pathogen in competition:

∂Sm

∂t
= dm ∂2Sm

∂x2 + Λm − Bm − µmSm + γm
1 Im

1 + γm
2 Im

2

∂Im
i

∂t
= dm ∂2Im

i

∂x2 + Bm
i − (µm + γm

i )Im
i , i = 1, 2

∂Sf

∂t
= df ∂2Sf

∂x2 + Λf − Bf − µfSf + γf
1 If

1 + γf
2 If

2

∂I
f
i

∂t
= df ∂2I

f
i

∂x2 + Bf
i − (µf + γf

i )If , i = 1, 2

(10)

where for k = m, f , Bk = Bk
1 + Bk

2 with Bm
i = rm(T m, T f)Smβf

i

I
f
i

T f , Bf
i =

rf (T m, T f)Sfβm
i

Im
i

T m , and T k = Sk + Ik
1 + Ik

2 . Here variables and parameters with-
out subscripts are the same as those in (1); variables and parameters labeled with
subscript i correspond to those without subscripts in (1) and are associated with
strain i.

The distributions of males and females T m(x, t) and T f(x, t) still satisfy (2) and
(3). As in the previous section, we assume that the initial distributions T m(x, 0)
and T f(x, 0) are continuous and bounded. T k(x, t) converges exponentially and
uniformly to Λk/µk for k = m, f . We have the following limiting system with four
equations

∂Im
i

∂t
= dm ∂2Im

i

∂x2 − σm
i Im

i + am
i (pm − Im

1 − Im
2 )If

i , i = 1, 2,

∂I
f
i

∂t
= df ∂2I

f
i

∂x2 − σf
i If

i + af
i (pf − If

1 − If
2 )Im

i , i = 1, 2,

(11)

where am
i =

µf cmβ
f
i

Λf , af
i =

µmcf βm
i

Λm , and ck = rk(λm/µm, Λf/µf), σk
i = µk+γk

i , pk =
Λk

µk , k = m, f .

The reproductive number for strain i is

Ri =
am

i af
i pmpf

σm
i σf

i

, i = 1, 2.

We shall assume that Ri > 1 for i = 1, 2, so that each strain can persist in the
absence of its competitor. There are three equilibria in the limiting system (11):

E0 = (0, 0, 0, 0), E∗
1 = (Im

1∗, I
f
1∗, 0, 0), and E∗

2 = (0, 0, Im
2∗, I

f
2∗) where

Im
i∗ =

σm
i σf

i (Ri − 1)

af
i (pfam

i + σm
i )

, If
i∗ =

σm
i σf

i (Ri − 1)

am
i (pmaf

i + σf
i )

, i = 1, 2.

System (11) is a monotone system. The monotone dynamical system theory can
be used to determine the global stability of the ODE system corresponding to (11).
It is shown in Castillo-Chavez et al. [3] that if Ri > Rj > 1 then E∗

j is unstable and
E∗

i is the global attractor in the corresponding ODE system. This indicates that
the system exhibits Competitive Exclusion, that is, the strain with the stronger
competitive ability survives and the strain with weaker competitive ability dies out.

For convenience, we shall assume

R1 > R2 > 1
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so that strain 1 is a stronger competitor. We assume that the strain 2 has established
an equilibrium distribution before the invasion of strain 1. We investigate in what
forms and at what speeds strain 1 invades and strain 2 retreats in space.

We use the change of variables Im
1 := Im

1 , If
1 := If

1 , and Lm
2 := Im

∗2 − Im
2 , Lf

2 :=

If
∗2 − If

2 to convert the model (11) into the system

∂Im
1

∂t
= dm ∂2Im

1

∂x2 − σm
1 Im

1 + am
1 (pm − Im

2∗ − Im
1 + Lm

2 )If
1

∂I
f
1

∂t
= df ∂2I

f
1

∂x2 − σf
1 If

1 + af
1 (pf − If

2∗ − If
1 + Lf

2)Im
1

∂Lm
2

∂t
= dm ∂2Lm

2

∂x2 − σm
2 Lm

2 + am
2 [If

2∗(I
m
1 − Lm

2 ) + Lf
2 (pm − Im

2∗ − Im
1 + Lm

2 )]

∂L
f
2

∂t
= df ∂2L

f
2

∂x2 − σf
2 Lf

2 + af
2 [Im

2∗(I
f
1 − Lf

2) + Lm
2 (pf − If

2∗ − If
1 + Lf

2)].
(12)

System (12) has three equilibria: the origin 0 = (0, 0, 0, 0), the positive equilib-

rium β = (Im
1∗, I

f
1∗, I

m
2∗, I

f
2∗), and the equilibrium ν = (0, 0, Im

2∗, I
f
2∗) that lies on the

boundary of the rectangular box region with vertices 0 and β. It is a cooperative

system in the rectangular box region G = {(Im
1 , If

1 , Lm
2 , Lf

2 ) : 0 ≤ If
1 ≤ If

1∗, 0 ≤

If
1 ≤ If

1∗, 0 ≤ Lm
2 ≤ Im

2∗, 0 ≤ Lf
2 ≤ If

2∗}. We study the spatial transition from the

origin 0 to the positive equilibrium β in set G. Let f(Im
1 , If

1 , Lm
2 , Lf

2 ) denote the
vector representing the reaction terms on the right hand side of (12). We define the
matrix

Cµ = µ2diag[dm, dm, df , df ] + f ′(0) =

[

Cµ11 0
Cµ21 Cµ22

]

where

Cµ11 =

[

dmµ2 − σm
1 am

1 (pm − Im
2∗)

af
1(pf − If

2∗) dfµ2 − σf
1

]

,

Cµ21 =

[

am
2 If

2∗ 0

0 af
2Im

2∗

]

,

and

Cµ22 =

[

dmµ2 − (σm
2 + am

2 If
2∗) am

2 (pm − Im
2∗)

af
2 (pf − If

2∗) dmµ2 − (σf
2 + af

2Im
2∗)

]

.

Cµ is a matrix associated with the linearization of (12) about 0. Here Cµ is in
Frobenius form. Let λ1(µ) and λ2(µ) denote the principle eigenvalues of Cµ11 and
Cµ22, respectively. Then

λ1(µ) = 1
2{(d

m + df )µ2 − (σm
1 + σf

1 )

+

√

[(dm − df )µ2 − σm
1 + σf

1 ]2 + 4am
1 af

1(pm − Im
2∗)(p

f − If
2∗)}

and
λ2(µ) = 1

2{(d
m + df )µ2 − (σm

2 + σf
2 + am

2 If
2∗ + af

2Im
2∗))

+

√

[(dm − df )µ2 − (σm
2 + am

2 If
2∗) + σf

2 + af
2Im

2∗]
2 + 4am

2 af
2 (pm − Im

2∗)(p
f − If

2∗)}.

One can verify that R1 > R2 shows that 4am
1 af

1 (pm − Im
2∗)(p

f − If
2∗) > 4σm

1 σf
1 ,

which implies λ1(0) > 0. One can also find that R1 > 1 and R2 > 1 imply that

4am
2 af

2 (pm − Im
2∗)(p

f − If
2∗) < 4(σm

2 + amIf
2∗)(σ

f
2 + af

2Im
2∗) so that λ2(0) < 0. Note

that Cµ21 has positive diagonal entries. We therefore have that Hypotheses 4.1 in
[17] are valid, and the theory developed in [17] can be applied to (12).
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System (11) has an additional equilibrium ν besides 0 and β. It is shown in
[12, 17] that for a cooperative system that has an equilibrium other than the origin
and the positive equilibrium, components of the system may spread at different
speeds. The following proposition shows that this is not the case for (12), and all
the components in (12) spread at the same speed.

Proposition 3. System (12) has a single spreading speed c∗ in the following sense:

If 0 ≤ Im
1 (x, 0) < Im

1∗, 0 < If
1 (x, 0) < If

1∗, 0 ≤ Lm
2 (x, 0) < Im

2∗, 0 ≤ Lf
2(x, 0) < If

2∗,

Im
1 (x, 0), If

1 (x, 0), Lm
2 (x, 0), Lf

2 (x, 0) are zero outside a bounded set, and If (x, 0) 6≡

0 and Im(x, 0) 6≡ 0, Lm
2 (x, 0) 6≡ 0 and Lf

2(x, 0) 6≡ 0, then for every positive number
ǫ

lim
t→∞

[ sup
|x|≥(c∗+ǫ)t

{(Im
1 (x, t))2 + (If

1 (x, t))2) + (Lm
2 (x, t))2 + (Lf

2 (x, t))2)}] = 0,

and

lim
t→∞

[ sup
|x|≤(c∗−ǫ)t

{(Im
1∗−Im

1 (x, t))2+(If
1∗−If

1 (x, t))2)+(Im
2∗−Lm

2 (x, t))2+(If
2∗−Lf

2 (x, t))2)}

] = 0.

The proof of this proposition will be given in the Appendix.
The results in the previous section show that

c̄ = inf
µ>0

λ1(µ)/µ > 0 (13)

represents the spreading speed of Im
1 and If

1 in the absence of Lm
2 and Lf

2 . Since
system (11) is cooperative, we have the following result.

Proposition 4.

c∗ ≥ c̄. (14)

The following proposition shows that c∗ can be characterized as the slowest speed
of a class of traveling wave solutions connecting 0 with β.

Proposition 5. For c ≥ c∗, the system (12) has a nonincreasing traveling wave so-

lution (Im
1 (x−ct), If

1 (x−ct), Lm
2 (x−ct), Lf

2(x−ct)) with (Im
1 (+∞), If

1 (+∞), Lm
2 (+∞),

Lf
2(+∞)) = 0 and (Im

1 (−∞), If
1 (−∞), Lm

2 (−∞), Lf
2 (−∞)) = β. A traveling wave

solution with 0 at +∞, β at −∞ and speed c does not exist in (12) if c < c∗.

The proof of this proposition will be presented in the Appendix.
If

T m(x, 0) ≡ Λm/µm, T f(x, 0) ≡ Λf/µf (15)

for all x, then T m(x, t) ≡ Λm/µm, T f(x, t) ≡ Λf/µf for all x and t > 0. In this case,

(Sm(x, t), Im
1 (x, t), If

1 (x, t), Sf (x, t), Im
2 (x, t), If

2 (x, t)) = (Λm/µm−Im
1 (x, t)−(Im

2∗−

Lm
2 (x, t)), Im

1 (x, t), If
1 (x, t), Λf/µf − If

1 (x, t)− (If
2∗ −Lf

2(x, t)), Im
2∗ −Lm

2 (x, t), If
2∗ −

Lf
2(x, t)) is a solution of (10) if (Im

1 (x, t), If
1 (x, t), Lm

2 (x, t), Lf
2 (x, t)) is a solution of

(12).
We have the following theorem about the spreading speed and traveling waves

in (10) based on Proposition 3 and Proposition 5.

Theorem 3.1. Assume that R1 > R2 > 1.
(i) System (10) has a single spreading speed c∗ in the following sense: If 0 ≤

Im
1 (x, 0) < Im

1∗, 0 ≤ If
1 (x, 0) < If

1∗, 0 < Im
2 (x, 0) ≤ Im

2∗, 0 < If
2 (x, t) ≤ If

2∗, both

Im
1 (x, 0) and If

1 (x, 0) are zero, and Im
2 (x, 0) is I∗2∗ and If

2 (x, 0) is If
2∗ outside a
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bounded set, and Im
1 (x, 0) 6≡ 0 and If

1 (x, 0) 6≡ 0, Im
2 (x, 0) 6≡ Im

2∗ and If
2 (x, 0) 6≡ If

2∗,

and Sm(x, 0) = Λm/µm − Im
1 (x, 0) − Im

2 (x, 0) and Sf(x, 0) = Λf/µf − If
1 (x, 0) −

If
2 (x, 0), then for every positive number ǫ

lim
t→∞

[ sup
|x|≥(c∗+ǫ)t

{(Sm−Λm/µm−Im
2∗)

2+(Im
1 (x, t))2+(If

1 (x, t))2)+(Sf−Λf/µf−If
2∗)

2+

(Im
2∗ − Im

2 (x, t))2 +(If
2∗ − If

2 (x, t))2)}] = 0,
and
limt→∞[sup|x|≤(c∗−ǫ)t{(S

m − Λm/µm − Im
1∗)

2 + (Im
1∗ − Im

1 (x, t))2 + (Sf − Λf/µf −

If
1∗)

2 + (If
1∗ − If

1 (x, t))2) +(Im
2 (x, t))2 + (If

2 (x, t))2)}] = 0.
(ii) For c ≥ c∗, the system (10) has a monotone traveling wave solution (Sm(x −

ct), Im
1 (x−ct), If

1 (x−ct), Sf (x−ct), Im
2 (x−ct), If

2 (x−ct)) with (Sm(+∞), Im
1 (+∞),

If
1 (+∞), Sf(+∞), Im

2 (+∞), If
2 (+∞)) = (Λm/µm − Im

2∗, 0, 0, Λf/µf − If
2∗, I

m
2∗, I

f
2∗)

and (Sm(−∞), Im
1 (−∞), If

1 (−∞), Sf(−∞), Im
2 (−∞), If

2 (−∞)) = (Λm/µm−Im
1∗, I

m
1∗,

If
1∗, Λ

f/µf − If
1∗, 0, 0). A traveling wave solution with (Λm/µm − Im

2∗, 0, 0, Λf/µf −

If
2∗, I

m
2∗, I

f
2∗) at +∞, (Λm/µm − Im

1∗, I
m
1∗, I

f
1∗, Λ

f/µf − If
1∗, 0, 0) at −∞ and speed c

does not exist in (10) if c < c∗.

This theorem describes the spread of infectious individuals with strain 1 and the
retreat of infectious individuals with strain 2 in space. We depict the results of this
theorem in Figure 2.

(a)

C*C*

12I I I 2

(b)

C

I
I

1
2

C

Figure 2. Spread of strain 1 and retreat of strain 2 in space in
case of R1 > R2. (a) Spread of infectious males and females with
strain 1 in a region initially occupied by infectious males or females
with strain 2. The infectious individuals with strain 1 establish a
wave that proceeds by completely displacing infectious individuals
with strain 2. The wave propagates at a speed c∗. (b) Traveling
wave propagation of infectious individuals with strain 1 and strain
2. At the front of the traveling wave there are very small num-
ber of infectious individuals with strain 1, and a large number of
infectious individuals with strain 2. At the rear of the traveling
wave infectious individuals with strain 1 occupy the region and
infectious individuals with strain 2 retreat from the region. The
traveling wave solution has a speed c with c ≥ c∗.
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According to [17, 18], c̄ given in (13) represents the spreading speed of a trun-
cation of the linear system obtained by linearizing (12) at E0. Proposition 4 shows
that c̄ is a lower bound for the spreading speed c∗. We show that under certain

conditions c∗ = c̄. Let ξ = (Īm
1 (µ), Īf

1 (µ̄), Īm
2 (µ), Īf

2 (µ)) be an eigenvector of Cµ

corresponding to λ1(µ). If λ1(µ) > λ2(µ) then every component of ξ is positive.
We have the following result that gives a formula for the spreading speed c∗.

Theorem 3.2. Assume that R1 > R2 > 1 and λ1(µ̄) > λ2(µ̄) where µ̄ denotes the
value at which infµ>0 λ1(µ)/µ is attained. If

Īm
1 (µ̄) < L̄m

2 (µ̄), Īf
1 (µ̄) < L̄f

2(µ̄), (16)

then c∗ = c̄.

The proof of this theorem will be given in the Appendix.

4. Discussion. In this paper, we use reaction-diffusion equations to model the
spatial transmission dynamics of STDs in heterosexually active populations. This
work has been motivated by our effort to analyze a model that may become the
initial stepping stone in the development of a theoretical mathematical framework
for the study of the transmission dynamics and control of STDs in heterosexual-
active populations in spatial domains. Since, studying the dynamics of STDs in
the context of mobile populations in the wild requires the incorporation of complex
demographics and mating systems, the emphasis here is on the mathematics in
a rather simplified biological context. We analyze a model for STD dynamics in
a crude setting which already offers considerable mathematical challenges. First,
we analyze a one-strain SIS STD model that describes the spread of infectious
males and females. We show that when the reproductive number is greater than
1, infectious males and females spread at the same spreading speed, and that the
spreading speed can be characterized as the slowest speed of a class of traveling
waves. We proceed to examine a two-strain SIS STD model with emphasis on the
study of the ability of the stronger strain to invade a domain where the weaker
strain has established an equilibrium spatial distribution. It is shown that there is
a unique spreading speed at which the stronger strain spreads and the weaker strain
retreats, and that the spreading speed can be characterized as the slowest speed of
a class of traveling waves connecting two endemic equilibria.

In studying the spatial spread of a disease, it is crucial to find the spreading speed
of the disease. To determine the spreading speed of an STD, we use the concept
of linear determinacy, which states that the spreading speed of a nonlinear model
equals that of a truncate of a linear system obtained by linearizing the nonlinear
model about the leading edge of the wave front. We found that linear determinacy
always holds for the one-strain STD model, and that it holds for the two-strain
model provided that condition (16), is satisfied. In general, if a nonlinear system
is always dominated by its linearization at the leading edge of invasion, then the
a nonlinear system is linear-determinate; otherwise linear determinacy may not be
true (see Lewis, Li and Weinberger [11]). When (16) is not satisfied, the problem
of determining the spreading speed for the two-strain model remains unsolved.

The results of this paper are an initial attempt to study the dynamics of sexually-
transmitted pathogens in heterosexual mammal populations. We have ignored,
among other things, the role of differential mortality in our models. However, we
hope that the models and their analysis will mark the beginning of a series of studies
that examine the impact of disease on mammal mating systems. One could modify
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model (1) and model (10) by allowing the recruitment rates Λk ( k = m, f) to
depend on the size of the infective populations as well as on total population sizes
as a way of incorporating differential mortality. The mathematical analysis for the
resulting models is considerably more complicated and so, we leave it for future
work.

The framework provided in this paper can also be used to study the spatial
dynamics of Vector Transmitted Disease models in the form

∂Sh

∂t
= dh ∂2Sh

∂x2 + Λh − βhShIv/T v − µhSh + γhIh

∂Ih

∂t
= dh ∂2Ih

∂x2 + βhShIv/T v − (µh + γh)Ih

∂Sv

∂t
= dv ∂2Sv

∂x2 + Λv − βvSvIh/T h − µvSv

∂Iv

∂t
= dv ∂2Iv

∂x2 + βvSvIh/T h − µvIv

(17)

where for k = h, v, Sk and Ik are for susceptible and infected humans and vectors,
respectively; and other variables and parameters are analogs of those in (1). In
model (17), it is assumed that vectors do not recover from infection. It can be
shown that the limiting system of (17) is cooperative and linear-determinant. The
spreading speeds and traveling waves can be determined using the methods in this
paper. This model provides a platform to pursue a study of dengue dynamics ([5]).

We have only considered the spread of STD diseases in one-dimensional space.
One can use the results in [12, 13, 17, 18] to determine the spreading speeds and
traveling waves in higher-dimensional habitats by looking at one direction at a time.

5. Appendix. 1. Proof of Proposition 3.

We use Lemma 4.2 in [17] to prove this proposition. We need to find a matrix E(ν)

that satisfies the following conditions:
(i) E(ν) ≥ P1f

′(ν) + (I − P1)f
′(0) componentwise;

(ii) P1E
(ν) = P1f

′(ν); and
(iii) The maximum spreading speed of a truncate of the linear system associated
with E(ν) is determined by the upper left corner 2 by 2 submatrix.

In (i) and (ii), P1 is the projection operator in the sense that P1[v] has the
same first two components as v and last two components zero, and I is the identity
operator. Standard linearization shows that

f ′(0) =









−σm
1 am

1 (pm − Im
∗2) 0 0

af
1 (pf − If

2∗) −σf
1 0 0

am
2 If

2∗ 0 −σm
2 − am

2 If
2∗ am

2 (pm − Im
2∗)

0 af
2If

2∗ af
2 (pf − If

2∗) −σf
2 − af

2Im
2∗









and

f ′(ν) =









−σm
1 am

1 pm 0 0

af
1pf −σf

1 0 0
0 0 −σm

2 am
2 pm

0 0 af
2pf −σf

2









.



726 CARLOS CASTILLO-CHAVEZ AND BINGTUAN LI

We choose

E(ν) =









−σm
1 am

1 pm 0 0

af
1pf −σf

1 0 0

σm
2 If

2∗ 0 −σm
2 − am

2 If
2∗ am

2 (pm − Im
2∗)

0 af
2If

2∗ af
2 (pf − If

2∗) −σf
2 − af

2Im
2∗









.

It is easy to see that conditions (i) and (ii) are satisfied. In E(ν) the principle eigen-
value of the upper left 2 by 2 matrix is positive and the principle eigenvalue of the
lower right 2 by 2 matrix is negative. By Theorem 4.1 in [18], the maximum spread-
ing speed of a truncate of the linear system associated with E(ν) is the spreading
speed of the subsystem associated with the upper left 2 by 2 matrix of E(ν). The
Proposition then follows from Lemma 4.2 in [17].

2. Proof of Proposition 5.

Since system (12) has a single speed c∗, Theorem 4.1 in [12] shows that for c ≥ c∗,

(12) has a nonincreasing traveling wave solution (Im
1 (x − ct), If

1 (x − ct), Lm
2 (x −

ct), Lm
2 (x − ct)) with (Im

1 (+∞), If
1 (+∞), Lm

2 (+∞), Lf
2(+∞)) = 0 = (0, 0, 0, 0) and

(Im
1 (−∞), If

1 (−∞), Lm
2 (−∞), Lf

2(−∞)) an equilibrium other than 0, and that there
is no traveling wave solution with 0 at +∞, an equilibrium other than 0 at −∞, and

a speed less than c∗. We need show (Im
1 (−∞), If

1 (−∞), Lm
2 (−∞), Lm

2 (−∞)) = β.

For the sake of contradiction, we assume (Im
1 (−∞), If

1 (−∞), Lm
2 (−∞), Lf

2 (−∞)) =

ν = (0, 0, Im
2∗, I

f
2∗). It follows that Im

1 (x − ct) ≡ 0 and If
1 (x − ct) ≡ 0 for all x and

t ≥ 0 and consequently (Lm
2 (x − ct), Lf

2(x − ct)) is a nonincreasing traveling wave
solution of the system

∂Lm
2

∂t
= dm ∂2Lm

2

∂x2 − σm
2 Lm

2 + am
2 [−If

2∗L
m
2 + Lf

2 (pm − Im
2∗ + Lm

2 )]

∂L
f
2

∂t
= df ∂2L

f
2

∂x2 − σf
2 Lf

2 + af
2 [−Im

2∗L
f
2 + Lm

2 (pf − If
2∗ + Lf

2 )]

(18)

with (Lm
2 (−∞), Lm

2 (−∞)) = (Im
∗2, I

f
∗2) and (Lm

2 (+∞), Lm
2 (+∞)) = (0, 0). We

therefore have that (Im
2 (x − ct), If

2 (x − ct)) = (Im
2∗ − Lm

2 (x − ct), If
2∗ − Lf

2(x − ct))
is a nondecreasing traveling wave solution of

∂Im
2

∂t
= dm ∂2Im

2

∂x2 − σm
2 Im

2 + am
2 (pm

2 − Im
2 )If

2

∂I
f
2

∂t
= df ∂2I

f
2

∂x2 − σf
2 If

2 + af
2 (pf

2 − If
2 )Im

2

(19)

with (Im
2 (−∞), Im

2 (−∞)) = (0, 0) and (Im(+∞), Im
2 (+∞)) = (Im

2∗, I
m
2∗). System

(19) has the same form as (4). According to Remark 1, c < 0. This contradicts
that c ≥ c∗ > 0. The proof is complete.

3. Proof of Theorem 3.2.

We use Theorem 4.2 in [17] to prove this Theorem. We only need to verify the condi-
tion f(ρξ(µ̄)) ≤ ρf ′(0)ξ(µ̄) for all positive ρ. One can easily find that this condition

is equivalent to Īm
1 (µ̄) < L̄m

2 (µ̄) and Īf
1 (µ̄) < L̄f

2(µ̄). The proof is complete.

This manuscript is our contribution to honor of our dear friend and teacher
Thomas G Hallam.
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