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Abstract. We establish the final size equation for a general age-of-infection
epidemic model in a new simpler form if there are no disease deaths (total
population size remains constant). If there are disease deaths, the final size
relation is an inequality but we obtain an estimate for the final epidemic size.

1. Introduction. The final size relation in an epidemic model is a transcendental
equation relating the final size of the epidemic to the reproduction number. It was
derived originally for a general age-of-infection model by Kermack and McKendrick
[7], although it was not expressed in terms of the reproduction number. The age-
of-infection model is a very general epidemic model, including models with multiple
infective stages and treatment stages, and the final size relation is a very useful tool
for analyzing the behavior of epidemic models [3, 8]. However, the derivation of
the final size relation assumes mass action incidence. It is more realistic to assume
density dependence in the contact rate and therefore if there are disease deaths the
incidence is not mass action. In this case the final size relation is an inequality [1].

Our goal in this paper is to develop a final size relation for an age-of-infection
epidemic model similar to the model of [2] with density dependence but in a form
different from previous forms by avoiding the neglect of an initial term. We also show
how to estimate the final size of an epidemic in which there are disease deaths in
terms of the final size of an epidemic with no disease deaths but a larger reproduction
number. If the disease death rate is small, the final size of the epidemic is very close
to the final size of an epidemic with the same reproduction number and no disease
deaths.

2. The age-of-infection epidemic model. The general epidemic model described
by Kermack and McKendrick [7] included a dependence of infectivity on the time
since becoming infected (age-of-infection). We let S(t) denote the number of sus-
ceptibles at time t and let ϕ(t) be the total infectivity at time t, defined as the
sum of products of the number of infected members with each infection age and
the mean infectivity for that infection age. We assume that on average members of
the population make a constant number a of contacts in unit time. We let B(τ) be
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the fraction of infected members remaining infected at infection age τ and let π(τ)
with 0 ≤ π(τ) ≤ 1 be the mean infectivity at infection age τ . Then we let

A(τ) = π(τ)B(τ),

the mean infectivity of members of the population with infection age τ . For the
moment, we assume that there are no disease deaths, so that the total population
size is a constant N0.

The age-of-infection epidemic model is

S′ = −
a

N0
Sϕ

ϕ(t) = ϕ0(t) +

∫ t

0

a

N0
S(t − τ)ϕ(t − τ)A(τ)dτ (1)

= ϕ0(t) +

∫ t

0

[−S′(t − τ)]A(τ)dτ.

The basic reproduction number is

R0 = a

∫

∞

0

A(τ)dτ.

We write

−
S′(t)

S(t)
=

a

N0
ϕ0(t) +

a

N0

∫ t

0

[−S′(t − τ)]A(τ)dτ.

Integration with respect to t from 0 to ∞ gives

ln
S0

S∞

=
a

N0

∫ ∞

0

ϕ0(t)dt +
a

N0

∫ ∞

0

∫ t

0

[−S′(t − τ)]A(τ)dτdt

=
a

N0

∫ ∞

0

ϕ0(t)dt +
a

N0

∫ ∞

0

A(τ)

∫ ∞

τ

[−S′(t − τ)]dtdτ

=
a

N0

∫

∞

0

ϕ0(t)dt + a

[

S0 − S∞

N0

]
∫

∞

0

A(τ)dτ (2)

=
a

N0
[N0 − S∞]

∫ ∞

0

A(τ)dτ +
a

N0

∫ ∞

0

[ϕ0(t) − (N0 − S0)A(t)]dt

= R0

[

1 −
S∞

N0

]

−
a

N0

∫

∞

0

[(N0 − S0)A(t) − ϕ0(t)]dt.

Here, ϕ0(t) is the total infectivity of members of the population who were infected
at t = 0 at time t. If all initial infectives have infection-age zero at t = 0, ϕ0(t) =
[N0 − S0]A(t), and

∫ ∞

0

[ϕ0(t) − (N0 − S0)A(t)]dt = 0.

Then (2) takes the form

ln
S0

S∞

= R0

(

1 −
S∞

N0

)

, (3)

and this is the general final size relation. Note that the final size of the epidemic,
the number of members of the population who are infected over the course of the
epidemic, is N0 − S∞. This is often described in terms of the attack ratio 1 −

Sinfty/N0.
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If there are initial infectives with infection age greater than zero, let u0(τ) be the
average infectivity of these individuals. Then, since u0(τ) ≤ B(τ),

ϕ0(t) = (N0 − S0)u0(τ)π(t + τ)
B(t + τ)

B(τ)

≤ (N0 − S0)A(t + τ) ≤ (N0 − S0)A(τ).

Thus, the initial term satisfies
∫

∞

0

[(N0 − S0)A(t) − ϕ0(t)]dt ≥ 0.

The final size relation is sometimes presented in the form

ln
S0

S∞

= R0

(

1 −
S∞

S0

)

, (4)

with an initial term which is assumed small and omitted, see for example [1, 3, 6].

.

Figure 1. The function g(x)

It is not difficult to prove that there is a unique solution of the final size relation
(3). To see this, we define the function

g(x) = ln
S0

x
−R0

[

1 −
x

N0

]

.

Then

g(0+) > 0, g(N0) < 0,

and g′(x) < 0 if and only if

0 < x <
N0

R0
.

If R0 ≤ 1, g(x) is monotone decreasing from a positive value at x = 0+ to a negative
value at x = N0, and thus there is a unique zero S∞ of g(x) with S∞ < N0.

If R0 > 1, g(x) is monotone decreasing from a positive value at x = 0+ to a
minimum and then increases to a negative value at x = N0. Thus there is a unique
zero S∞ of g(x) with

S∞ <
N0

R0
.

In fact, since

g

(

S0

R0

)

< 0,
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we actually have

S∞ <
S0

R0
.

We can improve this estimate if R0 > 1. The function

lnu − u

defined for u > 0 increases to a global maximum at u = 1 and then decreases. Thus
if R0 > 1 there is a unique value c(R0) < 1 such that

ln c(R0) − c(R0) = lnR0 −R0.

Then

g

(

c(R0)
S0

R0

)

= ln
R0

c(R0)
−R0 + c(R0)

S0

N0

< ln
R0

c(R0)
−R0 + c(R0)

= lnR0 −R0 − ln c(R0) + c(R0) < 0,

and thus

S∞ <
c(R0)

R0
S0. (5)

If the final size relation is written in the form (4), it may be solved for S∞ as a
function of R0, and its solution is

S∞ =
c(R0)

R0
S0.

The estimate (5) is no easier to find than the solution of (3) or (4), but it gives
an explicit estimate for the final size of an epidemic in terms of the reproduction
number.

Table 1. N0 = 1000, S0 = 995

R0 S∞ c c S0

R0

1.0 903.2 1.0 995.0
1.2 668.2 0.82356 682.9
1.4 481.4 0.68458 486.5
1.6 353.9 0.57283 356.2
1.8 265.0 0.48163 266.2
2.0 201.5 0.40638 202.2
2.2 155.1 0.34378 155.5
2.4 120.5 0.29137 120.8

To show the accuracy of this estimate, we calculate S∞ directly from (3) and
from (5) for various values of R0 with N0 = 1000, S0 = 995. The results are shown
in Table 1. We see that for values of R0 not too close to 1, (5) gives a very good
approximation to S∞.
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3. An example: The SLIR model. The age-of-infection model includes models
with multiple infective and treatment stages. For example, consider the standard
SLIR epidemic model but with individuals in L having infectivity reduced by a
factor ǫ. We assume that the number a of contacts per individual in unit time is a
nondecreasing function of total population size N and that a/N is a nonincreasing
function of N . The disease survival rate is f, 0 ≤ f ≤ 1. The model can be described
by the system

S′ = −
a

N
S(I + εL)

L′ =
a

N
S(I + εL) − κL (6)

I ′ = κL − αI

N ′ = −(1 − f)I

with initial conditions

S(0) = S0, L(0) = L0, I(0) = I0, N(0) = N0 = S0 + L0 + I0.

The initial condition assumption is that there are no removed members at the start
of the epidemic. We assume that there are no disease deaths. In this case, the total
population size N(t) is a constant N0 and the equation for N can be omitted from
the model (6).

The method of [9] gives the basic reproduction number as

R0 = a

(

1

α
+

ε

κ

)

.

We derive the final size relation directly from the model. For any non–negative
function g defined on 0 ≤ t < ∞ we use the notations

g∞ = lim
t→∞

g(t), ĝ =

∫

∞

0

g(t)dt ≤ ∞.

Integration of the equation for (S + L + I)′ gives

S0 + L0 + I0 − S∞ = αÎ,

and integration of the equation for I ′ gives

αÎ = κL̂ + I0.

Now, using

εL̂ + Î =

(

1

α
+

ε

κ

)

αÎ −
εI0

κ
,

integration of the equation for S′/S gives

ln
S0

S∞

=
a

N0
(εL̂ + Î)

=
a

N0

(

1

α
+

ε

κ

)

αÎ −
εaI0

κN0

=
R0

N0
αÎ −

εaI0

κN0

= R0

(

1 −
S∞

N0

)

−
εaI0

κN0
.

Observe that if I0 = 0, the final size relation takes the neater form (3). If there are
members of the population present at t = 0 who are beyond the first infective stage,
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there is an initial term in the final size relation corresponding to the infections that
these members fail to cause by missing the first infective stage.

This example can be viewed as an age-of-infection model with

ϕ = εL + I.

In order to use the age-of-infection interpretation, we need to determine the
kernel A(τ) in order to calculate its integral. We let u(τ) be the fraction of infected
members with infection age τ who are not yet infective and v(τ) the fraction of
infected members who are infective. Then the rate at which members become
infective at infection age τ is κu(τ), and we have

u′(τ) = −κu(τ), u(0) = 1

v′(τ) = κu(τ) − αv(τ), v(0) = 0

The solution of this system is

u(τ) = e−κτ , v(τ) =
κ

κ − α
[e−ατ

− e−κτ ].

Thus we have

A(τ) = εe−κτ +
κ

κ − α
[e−ατ − e−κτ ],

and it is easy to calculate
∫

∞

0

A(τ)dτ =
1

α
+

ε

κ
.

This gives the same value for R0 as was calculated directly. The calculation depends
on the “memoryless property” of the exponential function.

The age-of-infection model also includes the possibility of disease stages with non-
exponential distributions [4, 5]. For period distributions that are not exponential,
the calculation is considerably more complicated, but it is possible to calculate

∫

∞

0

A(τ)dτ

without having to calculate the function A(τ) explicitly [10]. It should be noted that
while the final size relation determines the final size of an epidemic in terms of the
basic reproduction number, there are other important epidemiological quantities
depending on the period distributions, such as the maximum epidemic size, the
initial growth rate of the epidemic, and the duration of the epidemic [4, 5].

4. Models with disease deaths. We have been assuming that there are no dis-
ease deaths, so that the total population size remains constant. If there are disease
deaths, it is necessary to add an equation for N(t) to the model (1). It is reasonable
to assume that the contact rate a is a density dependent saturating function with
a(N) a non-decreasing function of N and a(N)/N a non-increasing function of N .

The model is now

S′ = −
a(N)

N
Sϕ (7)

ϕ(t) = ϕ0(t) +

∫ t

0

[−S′(t − τ)]A(τ)dτ,

together with an equation for the total population size N . We assume that the
disease survival rate is at least f, 0 ≤ f ≤ 1. Disease deaths do not affect the
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reproduction number, which, for the model (7), is

R0 = a(N0)

∫ ∞

0

A(τ)dτ.

If there are no disease deaths, N is constant and the model is equivalent to (1).
If there are disease deaths, N decreases over the time period of the epidemic, and
it is easy to show that

N0 ≥ N(t) ≥ N∞ ≥ fN0

a(N0)

N0
≤

a(N(t))

N(t)
≤

a(N∞)

N∞

≤
a(fN0)

f
≤

a(N0)

f
.

Since the total population size is not constant, the final size relation is an inequality
and can not be used to calculate the limiting susceptible population size precisely.
To derive the final size relation, we integrate the equation for S′/S in (7),

−
S′(t)

S(t)
=

a(N(t))

N(t)
ϕ0(t) +

a(N(t))

N(t)

∫ t

0

[−S′(t − τ)]A(τ)dτ,

obtaining

ln
S0

S∞

=
a(N∗)N0

N∗
Â

(

1 −
S∞

N0

)

,

where N∗ is an average population size given by
∫

∞

0

a(N(t))

N(t)
ϕ0(t)dt +

∫

∞

0

a(N(t))

N(t)

∫ t

0

[−S′(t − τ)]A(τ)dτdt

=
a(N∗)N0

N∗

∫

∞

0

[

ϕ0(t) +

∫ t

0

[−S′(t − τ)]A(τ)dτ

]

dt

with

N0 ≥ N∗ ≥ fN0.

In particular,

ln
S0

S∞

≤
a

N∞

[N0 − S∞]

∫

∞

0

A(τ)dτ +
a

N∞

∫

∞

0

[ϕ0(t) − (N0 − S0)A(t)]dt,

ln
S0

S∞

≥ R0

[

1 −
S∞

N0

]

+
a

N0

∫ ∞

0

[ϕ0(t) − (N0 − S0)A(t)]dt.

Since the right side of the first inequality is bounded, it follows that S∞ > 0.
We wish to obtain an estimate for the limiting susceptible population size, which

we denote by S∞(f). With no disease deaths, the limiting susceptible population
size is S∞(1), and it is given implicitly by

ln
S0

S∞

= a(N0)Â

(

1 −
S∞

N0

)

.

Much as in Section 2, we define the function

g(x, a) = ln
S0

x
− aÂ

[

1 −
x

N0

]

.

It is easy to verify that

g(0+, a) > 0, g(S0, a) < 0,
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and that g′(x, a) < 0 if and only if

0 < x <
N0

aÂ
.

Since g(x, a) decreases from a positive value at x = 0+ to a minimum and then
increases to a negative value at x = N0, there is a unique zero x(a) of g(x, a) with

x(a) <
N0

aÂ
.

In fact, since

g

(

S0

aÂ
, a

)

< 0,

we actually have

x(a) <
S0

aÂ
.

It is also easy to verify that if a1 ≥ a2, then x(a1) ≤ x(a2). Now,

S∞(1) = x(a(N0)), S∞(f) = x

(

N0

N∗
a(N∗)

)

.

The assumption that the function a(N)/N is non–increasing and the fact that
N∗ ≥ N∞ ≥ fN0 imply that

N0

N∗
a(N∗) ≤

a(fN0)

f
. (8)

Since a(N) is non - decreasing, a(fN0) ≤ a(N0), and

N0

N∗
a(N∗) ≤

a(N0)

f
. (9)

Thus, (9) gives

S∞(f) = x(
N0

N∗
a(N∗) ≥ x

(

a(N0)

f

)

,

and x
(

a(N0)
f

)

is the zero of g(x, a(N0)
f

). This is the limiting susceptible population

size for an epidemic with reproduction number

a(N0)

f
Â =

R0

f

and no disease deaths. We have established the following result.

Theorem 4.1. The limiting susceptible population size for an epidemic with re-

production number R0 and a disease survival rate of at least f is no less than the

limiting susceptible population size for an epidemic with reproduction number R0/f
and no disease deaths.

The final size relation (3) may be viewed as expressing S∞ as a continuous
function of R0. Thus if f is close to 1, the limiting susceptible population size
with disease deaths is close to the limiting susceptible population size with no
disease deaths. To illustrate the use of the estimate, we give final size estimates
calculated for various survival rates f in a population with N0 = 1000, S0 = 995
and R0 = 1.4,R0 = 1.5. We also give the “true” values of S∞ obtained by dynamic
simulation of an SIR model with standard incidence (a constant) and exponential
period distributions. It should be remembered that a lower bound for S∞ gives an
upper bound for the epidemic size, and is thus a safe estimate for prediction.
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Table 2. R0 = 1.4, N0 = 1000, S0 = 995

f S∞(f) true S∞ Epidemic size

1.0 481.4 481.4 518.6
0.99 470.7 478.6 521.4
0.98 460.1 475.8 524.2
0.95 428.8 467.1 532.9
0.92 398.2 458.2 541.8
0.90 378.3 452.0 548.0

Table 3. R0 = 1.5, N0 = 1000, S0 = 995

f S∞(f) true S∞ Epidemic size

1.0 411.7 411.7 588.3
0.99 402.2 408.9 591.1
0.98 392.9 406.1 593.9
0.95 365.2 397.4 602.6
0.92 338.3 388.5 611.5
0.90 320.7 382.4 617.6

With mortality rates of 1% or 2% the approximation is quite good. However,
it is worth noting that even with considerably higher mortality rates the limiting
value obtained assuming no disease mortality is a very good approximation, better
than that given by Theorem 1. With a larger value of R0, such as R0 = 2.5, similar
results are obtained, as is shown by Table 4.

Table 4. R0 = 2.5, N0 = 1000, S0 = 995

f S∞(f) true S∞ Epidemic size

1.0 106.6 106.6 893.4
0.99 103.4 105.2 894.8
0.98 100.2 103.8 896.2
0.95 91.0 99.7 900.3
0.92 82.2 96.0 904.0
0.90 76.5 93.6 906.4

If we use (8) instead of (9), we obtain an improved, but more complicated,
estimate than Theorem 1, namely that the limiting susceptible population size is
no less than the limiting population size for an epidemic with no disease deaths and
reproduction number

a(fN0)

fa(N0)
R0.

For mass action incidence, this estimate is R0 and for standard incidence, it is
the same as the estimate in Theorem 1. For saturating incidence, it is a sharper
estimate than that in Theorem 1.

5. Discussion. The age-of-infection model is useful for unifying models with an ar-
bitrary number of stages, including latent stages with or without infectivity, asymp-
tomatic stages, and stages for treatment, quarantine, or isolation. In addition, it
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includes nonexponential distributions for stay in a stage. Once the reproduction
number is calculated, the size of the epidemic is given by the final size relation. If
there are disease deaths, the size of the epidemic is not given exactly, but an upper
bound for the size of the epidemic is given in terms of the final size of an epidemic
with a larger reproduction number. It should be remembered, however, that there
are important aspects of an epidemic such as the maximum number of infectives,
the initial growth rate, and the duration of the epidemic not determined by the
final size relation.

The age-of-infection model studied here assumes homogeneous mixing. It should
be possible to extend the analysis to an age-of-infection model for a population with
interacting groups. This would be useful for modeling epidemics in a population
in which some members have been vaccinated prior to a disease outbreak and thus
have different model parameters or in a population stratified by activity levels.
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