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Abstract. Species augmentation is a method of reducing species loss via aug-
menting declining or threatened populations with individuals from captive-bred

or stable, wild populations. In this paper, we develop a differential equations

model and optimal control formulation for a continuous time augmentation of
a general declining population. We find a characterization for the optimal con-

trol and show numerical results for scenarios of different illustrative parameter

sets. The numerical results provide considerably more detail about the exact
dynamics of optimal augmentation than can be readily intuited. The work and

results presented in this paper are a first step toward building a general theory

of population augmentation, which accounts for the complexities inherent in
many conservation biology applications.

1. Introduction. Over the past three decades, a great deal of ecological research
has focused on biodiversity. Despite the efforts of many to protect and sustain
certain species and ecosystems, thousands of species are considered threatened or
endangered [1]. One method of reducing species loss is to augment declining or
threatened populations with individuals from captive-bred or stable, wild popula-
tions. This method is known as “species augmentation.” Though the number of
researchers calling for augmentation of threatened or endangered species has been
increasing, and a handful of augmentation projects have been or are currently being
carried out, there has been little effort to utilize mathematical theory to develop
models for the dynamics of augmented populations and communities.

Recently, researchers working to conserve various species have begun to recom-
mend species augmentation as a means to bring declining wild populations up to
sustainable levels and to introduce greater genetic diversity to threatened and en-
dangered populations. For example, a 2004 study of relative density and population
size of a threatened grizzly bear population in Washington and British Columbia
recommended augmentation after finding that natural recovery was highly unlikely
[22]. A 1998 study of huemul deer species in South America recommended aug-
mentation along with other conservation efforts to increase the range and total
number of huemul, which had been reduced to a single population in Central Chile
[21]. A 2006 population viability analysis (PVA) of ocelots (Leopardus pardalis)
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found that a combination of different recovery strategies, including augmentation,
is needed to reduce ocelot extinction probability [8]. Other studies recommend-
ing augmentation as a means to promote species recovery and prevent extinction
include [25, 17, 13, 10, 18, 9].

In addition to such recommendations for augmentation to conserve various threat-
ened and endangered species, a handful of species augmentation projects have been
executed and their level of success documented. Between July 1990 and October
1993, four female grizzly bears (Ursus arctos horribilis) of cub bearing age were
captured in British Columbia and translocated to the Cabinet Mountains, Montana
as an augmentation effort [24]. As of 2004, three of the four females were still within
their target release area, but none of the three had produced any cubs. In 1995,
eight female panthers (Puma concolor) were brought from Texas to augment the
endangered Florida panther population in an effort to increase the low genetic diver-
sity of the Florida panther population [14]. As of 2006, the panther population has
increased from roughly 30 individuals to almost 100, and there is no evidence that
individuals with Texas panther ancestry have inbreeding related defects [14, 5, 19].

Despite the growing need and use of species augmentation as a conservation tool,
very few mathematical models or practical tools have been developed to study and
predict the impact of species augmentation. The models developed for augmentation
have mostly focused on a single particular species, though a more general approach
could be broadly applicable. Models which employ the use of optimal control theory
to predict the impact of species augmentation have been limited to a related problem
of biocontrol to control agricultural pests.

Optimal control theory has been applied to systems of ordinary differential equa-
tions, modeling a variety of population scenarios. See for example, [6] a predator-
prey system, [23] for a harvesting problem for bears in a park-forest scenario, and
[26] for control of pests. See the books by Eisen [2] and Lenhart and Workman [27]
for other examples. We present here the first application of optimal control to model
augmentation. We call attention to the recent paper on optimization for a linear
augmentation model with discrete time and stage structure (Hodgson et al [12]). We
also call attention to the Hearne and Swart’s model for the optimal translocation
of an age-structured black rhino population [9] where the strategies of maximizing
the translocation rate and maximizing the growth of a newly established population
are compared.

In the next section, we develop a model and an optimal control formulation,
and a characterization for the optimal control is found. In section 3, scenarios for
different illustrative parameter sets are considered and the results discussed. The
final sections present conclusions about control models for augmentation and discuss
future extensions of this model.

2. Optimal Control Model. Consider two populations of the same species: N ,
a target/endangered population, and R, a reserve population. We assume that, at
the initial time, the endangered population is declining due to small population size,
i.e. there is some critical population size below which the population declines to
extinction. For the reserve population to be a viable source for harvesting individ-
uals with which to augment the target population, it must be growing at the initial
time, but it is also assumed to have a lower threshold for population growth that
could be crossed due to over-harvesting. Therefore, each of these populations are
assumed to grow according to a normalized Allee effect model, in which aKN and
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bKR are the critical population sizes for growth for the target and reserve popula-
tions, respectively. The control u is the rate at which individuals are moved from
the reserve population to the target population. Thus, the populations are modeled
by the equations

dN

dt
= rN

(
1− N

KN

) (
N

KN
− a

)
+ uR

dR

dt
= sR

(
1− R

KR

) (
R

KR
− b

)
− uR

where r and s are the intrinsic growth rates of N and R, respectively, KN and KR

are the carrying capacities of N and R, respectively, and aKN and bKR are the
thresholds for population growth for N and R, respectively. Here we assume there
is no net loss of population due to augmentation efforts.

Rescaling the two populations with respect to their carrying capacities (x ≡ N
KN

and y ≡ R
KR

) gives

dx

dt
= rx(1− x)(x− a) + puy

dy

dt
= sy(1− y)(y − b)− uy

where p = KR/KN , i.e. the ratio of the reserve carrying capacity to the target
carrying capacity.

We assume the objective of augmentation is to maximize the target population at
a given final time while minimizing the cost. This assumes there is cost associated
with translocating an individual from the reserve population, and that it would be
ideal to minimize this cost. We assume this cost to be a quadratic function of the
fraction of translocated. We assume that the total population (N + R) is to be
maximized at the final time, with different relative weights applied to the reserve
and target populations. We assume it is not as important to maximize the reserve
population as it is the target population by the final time. Additionally, we assume
that the target population x has an initial density x0 below its minimum threshold
for growth a, and that the reserve population y has an initial density y0 above its
minimum threshold for growth b. Thus, x0 < a and y0 > b.

Thus, the optimal control formulation is

max
u∈U

[
x(t1) + By(t1)−A

∫ t1

t0

u2(t)dt

]
where

U = {u : [t0, t1] → [0, 1] | u Lebesgue measurable}
and

x′(t) = rx(1− x)(x− a) + puy, x(t0) = x0 < a (1)
y′(t) = sy(1− y)(y − b)− uy, y(t0) = y0 > b (2)

and a, b, t0, t1, x0, y0, r, s, A, and B are all non-negative constants and 0 ≤
B ≤ 1. The objective functional seeks to maximize the two populations at the
final time while minimizing the cost associated with translocating an individual
from the reserve population to the target population. The weight factors, B and A,
balance out the relative importance of the three terms. We assume the cost term
is a nonlinear function of the control, and we use a quadratic cost to account for
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nonlinear increases in costs of translocation as the fraction translocated per unit
time increase. We assume x0, y0, and A are positive.

Given u ∈ U , there exists a unique solution to the state system [16]. One can
easily show that y(t) ≥ 0 since y is a factor in each term of the right hand side of
the differential equation (2). Then x(t) ≥ 0 and the structure of the differential
equations give upper bounds for the states. The convexity of the objective func-
tional, the linearity of the differential equation in the control, and the compactness
of the range values of the state variables combine to give the existence of an optimal
control [4].

Suppose u∗ is an optimal control with corresponding states x∗, y∗. To character-
ize the optimal control using Pontryagin’s Maximum Principle [20], the Hamiltonian
and adjoint equations are constructed.

H = −Au2 + λx(rx(1− x)(x− a) + puy) + λy(sy(1− y)(y − b)− uy) (3)

λ′
x = −∂H

∂x
= λxr

(
3(x∗)2 − 2x∗(1 + a) + a

)
(4)

λ′
y = −∂H

∂y
= λys

(
3(y∗)2 − 2y∗(b + 1) + b

)
− λxpu∗ + λyu∗. (5)

The transversality condition gives λx(t1) = 1 and λy(t1) = B.
Next, the characterization of the optimal control is found. On the set {t | 0 <

u∗(t) < 1}, we have
∂H

∂u
= −2Au + pλxy − λyy = 0 at u∗(t) (6)

⇒ u∗(t) =
pλx(t)− λy(t)

2A
y∗(t) (7)

When ∂H
∂u < 0 at t, then u∗(t) = 0 and

[pλx(t)− λy(t)] y∗(t) < 0 ⇒ pλx(t)− λy(t)
2A

y∗(t) < 0.

When ∂H
∂u > 0 at t, then u∗(t) = 1 and

[pλx(t)− λy(t)] y∗(t) > 2A ⇒ pλx(t)− λy(t)
2A

y∗(t) > 1.

So, the characterization of the optimal control is

u∗(t) = min
{

1,max
{

pλx(t)− λy(t)
2A

y∗(t), 0
}}

. (8)

The optimal control can be numerically calculated under various parameter sets
using a forward-backward sweep method [15] using 4th order Runge-Kutta to solve
the state equations (1) - (2) and their corresponding adjoint equations (4) - (5).
The forward-backward sweep method makes an initial guess for u and then solves
the state equations (1) - (2) forward in time using the Runge-Kutta method with
the initial conditions (x0 and y0). Then, using the state values, the adjoint equa-
tions (4) - (5) are solved backwards in time using the Runge-Kutta method with
the transversality conditions. At this point, the optimal control is updated using
the characterization for the optimal control (8) and the values for the state and
adjoint variables. This updated control replaces the initial control and the process
is repeated until the successive iterates of control values are sufficiently close. The
convergence of such an iterative method is based on the work of Hackbush [7]. Other
examples using this method can be found in [23, 11, 3].
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3. Numerical Results. In considering various parameter scenarios, the parameter
constraints on x0 and y0, x0 < a and y0 > b, must be included. For the examples
here we take the minimum threshold for growth for both the target and reserve
populations to be 0.3 (that is 30% of each populations’ carrying capacity), and
x0 = 0.25 and y0 = 0.75. Thus, the target population is starting just below its
minimum threshold for growth and the reserve population is starting well above
its minimum threshold for growth. Additionally, each scenario assumes that the
intrinsic growth rate of the reserve population s is greater than the intrinsic growth
rate of the target population r and in each scenario r = 0.25.

We first consider the impact of varying the cost of translocation, A. For the
parameters listed in Figure 1 we vary the cost coefficient A and show the resulting
optimal control and states. Notice that for high cost A = 100 (dashed line), the

Figure 1. The solid line corresponds to A = 1, the dash-dot line to A = 20,

and the dashed line to A = 100.

target population does not reach its minimum threshold for growth by the final
time (i.e. x(t1) < a). Thus, once augmentation has ceased (after the final time),
the population will again start to decline. This illustrates the possibility of the
cost of translocation being so high that, by the final time, the target population
has not reached a density where it can sustain growth on its own. At the other
extreme, with low cost coefficient A = 1 (solid line), the target population exceeds
its carrying capacity by the final time (i.e. x(t1) > 1). Thus, the target population
has been over-augmented, and once augmentation has ceased, the population will
decline to its carrying capacity. In this case, resources would have been wasted
in over-augmenting the target population. This “over-augmenting” arises from a
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limitation of the model; there is no constraint in the model that limits augmentation
once the target population reaches carrying capacity. This may arise however in
cases for which carrying capacity is not easily estimated and there are benefits to
having larger target populations.

For the second scenario, the time horizon is varied, with t1 being 5, 10, or 20. In

Figure 2. The solid line corresponds to t1 = 5, the dash-dot line to t1 = 10,
and the dashed line to t1 = 20.

Figure 2, notice that for each final time, the target population is above the minimum
threshold for growth by the final time, though only by a small amount in the case
of t1 = 5. Additionally, for t1 = 20, over the last five years of the augmentation
(15 < t < 20) the control increases again, and thus we see a slight decline in the
density of the reserve population over those last five years.

In the third scenario, the ratio of the intrinsic growth rates of the target and
reserve populations is varied by allowing the value of s to vary in {0.3, 0.9, 1.5}.
For each value of s, Figure 3 shows that the target population is well above its
minimum threshold for growth by the final time. When the value of s is higher,
the reserve population is able to grow more quickly at the beginning of the time
interval and achieve a higher population density by the end of the time interval. For
s = 0.3, there is very little increase in the reserve population size over the entire time
period. This is due to the fact that most of the growth in the reserve population is
counter-balanced by the translocation of individuals to the target population.

In the fourth scenario all parameters are the same as in the third scenario with
a lower cost of augmentation (A = 1 ). Note in Figure 4, that by the final time, for
s = 0.9 and s = 1.5, x > 1. Thus, the target population has been over-augmented.
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Figure 3. The solid line corresponds to s = 0.3, the dash-dot line to s = 0.9,
and the dashed line to s = 1.5.

Also, notice that for s = 0.3 the reserve population is very close to its minimum
threshold for growth by the final time. If the same scenario is run, except with
b = 0.4, the results are quantitatively very similar, however the reserve population
is below its minimum threshold for growth of b = 0.4. In this latter case, after
the augmentation has taken place, the reserve population will decline to extinction.
Thus, if the cost of augmentation is very low, it is possible that by the final time
the reserve population has been “over-harvested,” in that it will not naturally be
able to increase its population density. This effect on the reserve population can be
counteracted by increasing the value of B.

In prior scenarios the value of B has been set to zero, which means the objective
function is not affected by the size of the reserve population at the final time. It may
be necessary to increase B in order to prevent the reserve population from falling
below its minimum threshold for growth by the final time. In the fifth scenario,
B = 0.75 (all other parameter values are the same as in the fourth scenario). Thus,
it is 75% as important to maximize the reserve population at the final time as it
is to maximize the target population by the final time. In Figure 5 notice that the
reserve population, for each value of s, is now well above the minimum threshold for
growth, as is expected when increasing the value of B. Also notice that the target
population, for s = 0.9 and s = 1.5, is still above a density of 1 by the final time,
so there is still over-augmenting.

Figure 6 shows the effect of changing the ratio of the carrying capacities, p.
Notice for p = 0.1 virtually no augmentation takes place, and that x(t1) < a,
so the target population will decline again after augmentation is completed. This
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Figure 4. The solid line corresponds to s = 0.3, the dash-dot line to s = 0.9,
and the dashed line to s = 1.5.

means that when the carrying capacity of the reserve population is only 10% of the
carrying capacity of the target population there are not enough individuals in the
reserve population to effectively augment the target population (i.e., have x(t1) >
a). However, further numerical simulations show that for all other parameter values
remaining the same, a value of p > 1.2 was sufficient to guarantee that x(t1) > a.
Thus, it is possible to have a reserve population with a much smaller carrying
capacity and still have effective augmentation of the target population. Notice also
that when p = 0.7 the target population is over-augmented. In this scenario the
cost of augmentation A was set to a low value of 1. If the cost of augmentation is
raised, larger and larger values of p are needed to ensure x(t1) > a. For example,
with all other values remaining the same, if A = 20, a value of p > 0.48 is needed to
guarantee that x(t1) > a, and if A = 100, a value of p > 1.05 is needed to guarantee
that x(t1) > a.

The sets of results described above by no means exhausts the possible sets of
scenarios that could be shown. However, numerous scenarios covering the breath
of the biologically feasible parameter space were conducted, and the results shown
above display the gamut of dynamical results collected from all the scenarios tested.

4. Conclusions. Several important conclusions about the continuous control of
species augmentation can be drawn from this model. First, high cost of augmenta-
tion can prevent moving sufficient numbers of individuals to the target population
in order for the target population to be above its minimum threshold for growth by
the final time. Additionally, a low p value can exacerbate this effect; having a lower
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Figure 5. The solid line corresponds to s = 0.3, the dash-dot line to s = 0.9,
and the dashed line to s = 1.5.

Figure 6. The solid line corresponds to p = 0.1, the dash-dot line to p = 0.5,

and the dashed line to p = 0.7.

ratio of the carrying capacity of the reserve to the target population necessitates
having a lower cost in order to optimally augment the target population such that
it is above its minimum threshold for growth by the final time. If, in fact, the target
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population does not reach its minimum threshold for growth by the final time, then
additional future augmentations may be required to prevent the population from
going extinct. Additionally, the combination of a low cost of translocation and a low
intrinsic growth rate of the reserve population could cause the reserve population
to fall below its threshold for population growth by the final time. However, this
can be counteracted in the optimal control solution by increasing the importance
of having a large reserve population by the final time (i.e., increase the value of
B). All of the above conclusions conform to intuition. However, our results provide
considerably more detail about the exact dynamics of optimal augmentation than
can be readily intuited.

One of the drawbacks of this model is that it does not provide a constraint to
prevent over-augmenting the target population. In Figures 4, 5, and 6, we see
that it is possible for the optimal augmentation strategy to continue augmenting
the target population even after its density has increased past 1, i.e., above its
carrying capacity. Once the augmentation is complete the target population will
fall back down to its carrying capacity and remain there. Thus, over-augmenting
is not cost effective as it requires the translocation of “extra” individuals from
the reserve population. Possible modifications to prevent excess cost due to over-
augmenting include stopping augmentation once the target population has been
over augmented (i.e. u(t) = 0 when x(t) ≥ 1), or placing a final time condition on
the target population (i.e. x(t1) = 1− δ where 0 ≤ δ << 1).

Our model places no restriction on what proportion of the reserve population can
be translocated to the target population. However, it may be unreasonable to allow
all the individuals in the reserve population to be moved. Thus, another reasonable
modification is to consider a constraint that ensures the reserve population will
be above its minimum threshold for growth by the final time, i.e. y(t1) ≤ b, or
will be maintained above this throughout the entire period. Our model was for
control in continuous time of species augmentation. However, in practice, species
augmentation often happens in a discrete manner, moving individuals to the target
population at discrete times. A discrete-time formulation of optimal augmentation
presents somewhat different mathematical challenges, in part due to the fact that
there are constraints associated with the time scale of allowed augmentation that
may not match with the time scales of population growth (typically annual for
many mammal species). We are unaware of any comparisons of continuous versus
discrete time optimal control applied in a population management context, and the
introduction of discrete-time may well lead to complex underlying model behavior
as occurs for example in the discrete logistic model.

Associated with optimal augmentation strategies are the numerous issues which
arise from introduction of more detailed assumptions about the underlying popula-
tions. Conclusions about population behavior may be quite different when complica-
tions such as population demographic structure and genetics are incorporated. We
expect that expansion to include these aspects of population structure, though lead-
ing to quantitative population analyses that may be more readily applicable, would
no doubt lead to more complex optimal strategies that may not be readily feasible
(there would be controls associated with each population age class for example).
So additional feasibility constraints might have to be placed on the control space.
A quite different set of models would be necessary if the community-level aspects
of augmentation strategies were to be considered. Optimal augmentation following
our above results may be singularly unsuccessful if the augmented population were
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prey for a predator population with density-dependent impacts on the prey. This
could arise for example if, once augmented, the prey population was in sufficiently
high density as to lead to predator switching, perhaps due to an enhanced search
image of the predator for this prey species now occurring at higher density. Similar
problems may arise if the augmented population was the predator in the system,
or if competitive interactions were involved. Thus, the work presented here is sim-
ply a first-step toward building a general theory of population augmentation which
accounts for the complexities inherent in many conservation biology applications.
One challenge in developing this theory is to account for the practical constraints
faced by natural system managers in carrying out augmentation.
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