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Abstract. We consider ordinary least squares parameter estimation problems
where the unknown parameters to be estimated are probability distributions.
A computational framework for quantification of uncertainty (e.g., standard
errors) associated with the estimated parameters is given and sample numerical
findings are presented.

1. Introduction and motivation. The importance of estimating time and spa-
tially dependent function parameters as coefficients in distributed parameter models
has been recognized for some time [16]. This is especially true when one is trying
to determine mechanistic-based terms in a model. General theoretical and com-
putational ideas (called function space estimation convergence or FSPEC in [16])
for approximation schemes for such problems were developed some years ago and
now are used somewhat routinely by practitioners. A diverse range of examples
involving systems of the form

∂u

∂t
+ V · ∇u = ∇ · (D∇u) − µu (1)

for the state variables u = u(t, x) is discussed in Chapter 7 of [16], where parameters
to be estimated are generally vector functions of the form q = (D, V, µ) and are to
be chosen from some set Q of admissible parameter functions. As summarized in
[16], spatially dependent coefficients D = D(x) are used in [18] to study the effects
of bioturbation on volcanic ash records in core samples from deep sea sediments.
Functional coefficients are also needed in the insect dispersal studies of [13, 14]
where vegetation effects on dispersal lead to spatially dependent advection V =
V (x) and time-dependent emigration/immigration µ = µ(t) terms are important in
capture-mark-release flea beetle experiments (these are used to characterize “initial
disturbance” effects due to the trauma from capture, handling, etc.). Similar studies
involving time-dependent anemotaxis (V = V (t)) and emigration/immigration (µ =
µ(t)) in cabbage root fly dispersal [25] are described in [15].

In these problems one uses data {yk} for the parameter dependent model val-
ues u(τk; q) (where typically τk = (ti, xj) are time/spatial covariates) to estimate
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functions q ∈ Q. The data {yk} can be regarded as a realization of the observation
process

Yk = u(τk; q0) + ǫk, k = 1, . . . , n, (2)

where the ǫk are measurement or observation errors and q0 are underlying “true”
parameters (assumed to exist in theoretical formulations). This leads to estimates
q̂ defined by

q̂ = argmin
q∈Q

n
∑

k=1

[u(τk; q) − yk]2 (3)

and corresponding ordinary least squares (OLS) estimator

qOLS(Y ) = argmin
q∈Q

n
∑

k=1

[u(τk; q) − Yk]2, (4)

which is a Q-space valued random variable. The distribution of this infinite di-
mensional random variable (called the “sampling distribution”) is a probability
distribution on Q and is of great interest since knowledge of this will lead to infor-
mation about the uncertainty associated with the estimates q̂. In finite dimensional
problems, there is a rather complete asymptotic theory to provide such results (see
Chapter 12 of [30]). The major focus of our interest here is the development of an
infinite dimensional analogue.

Another class of problems to which such an infinite dimensional theory would
be immediately applicable is that involving estimation of parameters in the Fokker-
Planck or forward Kolmogorov equation [1, 24] for transition probabilities p(s, y; t, x)
for the stochastic diffusion process X(t) for a growth process

∂p

∂t
+

∂[a(t, x)p]

∂x
=

1

2

∂2[b(t, x)p]

∂x2
. (5)

Here a(t, x), the “drift” or mean growth rate, and b(t, x), the “diffusion” or second
moment of the rate of increase, are the functional parameters q = (a, b) to be
estimated. Because the population density u(t, x), where growth is assumed to be a
stochastic diffusion process, also satisfies such an equation (see [28]), this model can
be used as a stochastic alternative (e.g., see [19]) to the Sinko-Streifer deterministic
growth model [5, 27]

∂v

∂t
+

∂

∂x
(g(t, x)v) = −µ(t, x)v. (6)

The estimation of time-dependent mortalities in these equations is important in
recent problems for sublethal effects of pesticides [2, 3] in insect populations where
constant parameters µ prove inadequate in describing population life data.

In this note we consider another class of estimation problems where the functions
to be estimated are actually probability distributions or densities. As explained in
detail below, this class of problems arises when one assumes that a probability
distribution describes the distribution of growth rates g in the model (6). Such for-
mulations are called Growth Rate Distribution (GRD) models [7, 8, 11, 12]. Before
introducing these models, we give a summary of the finite dimensional asymptotic
distribution theory for which we seek a function space analogue.

2. Overview of asymptotic standard error theory for finite dimensional

parameters. We briefly outline the standard statistical framework for asymptotic
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distributions of finite dimensional ordinary least squares (OLS) estimators [22, 23,
26, 30]. We begin by considering the following nonlinear statistical model

Yj = Y (x̄j) = f(x̄j , θ0) + ǫj, j = 1, . . . , n, (7)

where x̄j is a vector in R
n, f(x̄j , θ0) represents the mathematical model, and θ0

is a vector in the constraint set Θ ⊂ R
M+1 that represents the “true” parameter

value. We also note the assumption that the ǫj are i.i.d. with mean 0 and constant
variance σ2

0 , where σ2
0 > 0 represents the “true” variance. Generally, θ0 and σ2

0 are
not known but are estimated by the parameters θ and σ2, respectively. Since ǫj is
a random variable, Yj is also a random variable with

E[Yj ] = f(x̄j , θ0) and Var[Yj ] = σ2
0 .

The following OLS estimator (which is also a random variable denoted here by
θOLS = θOLS(Y )) is used in the inverse problem for the estimation of θ :

θOLS ≡ arg min
θ∈Θ

n
∑

j=1

(Yj − f(x̄j , θ))
2
. (8)

As n → ∞, the sampling distribution for a random variable θOLS(Y ) is given by
the multivariate normal distribution; i.e.,

θOLS(Y ) ∼ NM+1(θ0, σ
2
0 [X

T (θ0)X (θ0)]
−1) ≈ NM+1(θ0, Σ

n
0 ),

where X (θ) = Xn(θ) =
∂F

∂θ
(θ) = Fθ(θ) is the n × (M + 1) sensitivity matrix with

elements

Xjk(θ) =
∂f(x̄j , θ)

∂θk
,

and Σn
0 is a covariance matrix approximated below in (9). As we noted, θ0 is

generally unknown; however, we can determine an estimate θ̂ for θ0 using the OLS

estimator. For a particular realization (data set) {yj} the estimates θ̂ minimize
n

∑

j=1

(yj − f(x̄j , θ))
2
.

We can also compute an estimate for σ2
0 (which is also usually unknown) using the

following estimate σ̂2 :

σ2
0 ≈ σ̂2 =

1

n − (M + 1)

n
∑

j=1

(

yj − f(x̄j , θ̂)
)2

.

The estimates θ̂ and σ̂2 are used in computing an estimate of the covariance matrix
Σn

0 :

Σn
0 ≈ Σ̂ = σ̂2[X T (θ̂)X (θ̂)]−1. (9)

We then determine the standard errors for the estimates θ̂ by computing

SE(θ̂k) =

√

Σ̂kk, k = 0, . . . , M.

Confidence intervals for the finite dimensional parameter θ̂ are constructed using
the standard errors. The endpoints of the confidence intervals are given by

θ̂k ± t1−α/2SE(θ̂k), k = 0, . . . , M,

where t1−α/2 is a distribution value that depends on the level of significance that is
chosen [21]. After the level of significance is chosen, we determine the corresponding
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t1−α/2 value from a statistical table for the Student’s t-distribution. The confidence
intervals constructed in this manner provide us with a means of quantifying the
uncertainty in the estimates obtained from the estimation procedure constructed
from a realization of Y. In the following section, we will present some computational
results in which we have used this asymptotic standard error theory to compute
nodal confidence intervals for finite dimensional parameters.

3. Computational example: Size-structured mosquitofish population. We
next present some computational results demonstrating the construction of confi-
dence intervals for finite dimensional parameters based on the asymptotic theory for
OLS estimators discussed briefly in the previous section. These computations were
carried out in MATLAB and are based on simulated data that will be described
shortly. Additional results for this example along with a more detailed discussion
can be found in [8].

3.1. Mathematical model. The computational results presented in this section
and the next section involve the estimation of growth-rate distributions for size-
structured mosquitofish populations. We use the Growth Rate Distribution (GRD)
model, a modification of the Sinko-Streifer (SS) model, to describe this popula-
tion [7, 11]. The Sinko-Streifer model [31], which is used to model both age and
size-structured populations, for the mosquitofish population is given by

∂v

∂t
+

∂

∂x
(gv) = −µv, x0 < x < x1, t > 0

v(0, x) = Φ(x)

g(t, x0)v(t, x0) =

∫ x1

x0

K(t, ξ)v(t, ξ)dξ

g(t, x1) = 0.

(10)

We note here that v(t, x) represents the size or population density (with units of
number per size class), t represents time, and x represents the size, or length, of the
mosquitofish. The number of mosquitofish in the population at time t with sizes
between x0 and x1 is

N(t) =

∫ x1

x0

v(t, x)dx.

The growth rate of the individual mosquitofish is given by g(t, x), where

dx

dt
= g(t, x)

for each individual, and the mortality rate of the mosquitofish is given by µ(t, x).
The initial condition at t = 0 is given by the initial size density function Φ(x). The
boundary condition at x = x0 represents the recruitment, or birth, rate and is in
terms of the fecundity kernel K(t, x). At x = x1 the boundary condition ensures
the maximum size of the mosquitofish is x1.

All individual mosquitofish of the same size are assumed to have the same growth
rate in the SS model. However, with this assumption, solutions to (10) do not exhibit
the dispersion and bifurcation of the population density observed in data collected
from rice fields where mosquitofish have been used in the place of chemicals to
control mosquito populations. To capture the features of dispersion and bifurcation
typical of the mosquitofish population, the SS model was modified so that the
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individual growth rates of the mosquitofish vary across the population [7, 11, 12].
The GRD model [7, 11] is given by

u(t, x; P ) =

∫

G

v(t, x; g)dP (g), (11)

where v(t, x, ; g) is the solution to (10) with growth rate g, G is the collection of
admissible growth rates, and P is a probability measure on G. Based on work in [7],
the admissible growth rates are assumed of the form

g(x; b, γ) =

{

b(γ − x), x0 ≤ x ≤ γ,

0, otherwise,

where the intrinsic growth rate and maximum size of the mosquitofish is represented
by b and γ = x1, respectively. To satisfy the assumption of varying growth rates,
we assume that b and γ are random variables that belong to compact sets B and
Γ, respectively. The collection of admissible growth rates is then characterized as

G = {g(x; b, γ)|b ∈ B, γ ∈ Γ} ,

where both B and Γ are bounded closed intervals (i.e., compact sets in R
2). In the

following computational results we set γ = 1 and assume that the family of growth
rates is parameterized only by the intrinsic growth rates b.

3.2. Approximation methods. We are interested in determining the growth-rate
distribution P ∗ that gives the best fit of the underlying model to the data. However,
this parameter estimation problem involves both an infinite dimensional state space
(u) and an infinite dimensional parameter space (the space P of probability mea-
sures). Therefore computationally efficient approximation methods are important
for this purpose. We will now briefly discuss the different approximation meth-
ods that we have previously considered in the inverse problem for the estimation
of the growth-rate distributions of the mosquitofish population. A more thorough
discussion of these methods can be found in [8].

In the first approach that we considered for this problem, we used the standard
parametric approach based on the assumption that we have a priori knowledge
about the exact form of the probability distribution on the growth rates of the
mosquitofish. We will discuss later the simulated data used in our computations,
which was generated with a bi-Gaussian distribution. The bimodality typically
seen in the mosquitofish data has been attributed to the fact that male and female
mosquitofish grow to different maximum sizes. Thus, male and female mosquitofish
must grow at different rates. Previous simulations [7] demonstrated that an as-
sumption of a bi-Gaussian distribution on the growth rates leads to both dispersion
and bifurcation, qualitative features characteristic of mosquitofish data. Therefore,
we choose to use the following bi-Gaussian probability density function p

p(b; b̄1, σ
2
b1 , b̄2, σ

2
b2) =

exp

{

− (b−b̄1)
2

2σ2
b1

}

2
√

2πσ2
b1

+

exp

{

− (b−b̄2)
2

2σ2
b2

}

2
√

2πσ2
b2

, (12)

where the parameters (b̄1, b̄2) and (σ2
b1 , σ

2
b2) represent the means and variances,

respectively, of the bi-Gaussian distribution on the intrinsic growth rates b. (A
more general formulation along with an additional Gaussian example can be found
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in [9].) Since P is continuous, we note that the GRD model (11) becomes

u(t, x; θ) =

∫

B

v(t, x; g(x; b))p(b; θ)db, (13)

where θ = (b̄1, σ
2
b1 , b̄2, σ

2
b2) are the parameters that are associated with the a priori

probability density and distribution. We will denote this approach by PAR(M,N),
where M is one less than the number of parameters in θ and N is the number
of quadrature nodes used in approximating the integral above with the composite
trapezoidal rule [29]. Although we will find estimates for all four parameters, we
will set M= 3 so when using the asymptotic standard error theory as outlined in the
previous section the correct factor will be used in our computations. The ordinary

least squares problem that we wish to solve for θ̂ is given by

θ̂ = arg min
θ∈R

M+1

+

J(θ) =
∑

i,j

|u(ti, xj ; θ) − ûij |
2, (14)

where {ûij} is the data. After determining an optimal value for θ, we can then
use this value in the bi-Gaussian probability density function (12) to determine the
estimated probability density and distribution.

The other two methods that we consider are nonparametric approaches that do
not require any assumptions with respect to the form of the probability distribution.
Based on work in [4] and [17], we are guaranteed convergence (in the Prohorov
metric [6, 20]) of distributions with the families of approximating functions that we
will now discuss. The first method, involving delta functions and which we denote
by DEL(M), has also been discussed and used in [11] and [12]. We use M+1 delta
functions in this approximation method. The form of the approximating probability
distributions PM placed on the growth rates is assumed to be piecewise constant

on the collection of admissible growth rates GM , where GM =
{

gM
k

}M

k=0
. We note

that gM
k (x; bM

k ) = bM
k (1−x) for k = 0, 1, . . . , M. This method leads to the following

approximation for u(t, x; P ) in (11):

u(t, x;
{

pM
k

}

) =

M
∑

k=0

v(t, x; gM
k )pM

k , (15)

where v(t, x; gM
k ) is the subpopulation density from (10) with growth rate gM

k and
pM

k is the probability that an individual is in subpopulation k with growth rate gM
k .

The second nonparametric approximation scheme involves the use of piecewise

linear spline functions to approximate the density P ′ =
dP

db
= p(b). Using piecewise

linear splines in the place of delta functions we provide a much smoother approx-
imation of (11) when the “true” probability distribution on the growth rates of
the mosquitofish is continuous. Denoting this method as SPL(M,N), where M+1
is the number of basis elements (splines) used to approximate the distribution on
the growth rates and N is the number of quadrature nodes used to approximate the
integral found below in (16), u(t, x; P ) from (11) is approximated by

u(t, x;
{

aM
k

}

) =

M
∑

k=0

aM
k

∫

B

v(t, x; g(x; b))lMk (b)db, (16)

where g(x; b) = b(1 − x) and pM
k (b) = aM

k lMk (b) is the probability density for in-
dividuals in subpopulation k. The piecewise linear spline functions are represented
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by lMk . The composite trapezoidal rule was also used to approximate the integral in
(16).

When using the two nonparametric approaches, we observe that the estimates for
the growth-rate distribution are determined by solving the following least squares
problem

min
P∈PM (G)

J(P ) =
∑

i,j

|u(ti, xj ; P ) − ûij |
2

=
∑

i,j

(

u(ti, xj ; P )2 − 2u(ti, xj ; P )ûij + (ûij)
2
)

,
(17)

where {ûij} is again the data and PM (G) is the finite dimensional approximation to

P(G). The finite dimensional approximation PM (G) when using DEL(M) is given
by

PM (G) =

{

P ∈ PM (G)|P ′ =
∑

k

pM
k δbM

k

,
∑

k

pM
k = 1

}

, (18)

where δbM

k

is the delta function with an atom at bM
k . When using SPL(M,N), the

finite dimensional approximation PM (G) to the probability measure space P(G) is
given by

PM (G) =

{

P ∈ P(G)|P ′ =
∑

k

aM
k lMk (b),

∑

k

aM
k

∫

B

lMk (b)db = 1

}

. (19)

We note that the least squares problem in (17) reduces to the constrained quadratic
programming problem [11, 12]

F (p) ≡ pTAp + 2pTb + c, (20)

which is minimized over PM (G), where p is the vector containing pM
k , 0 ≤ k ≤ M,

or aM
k , 0 ≤ k ≤ M when using DEL(M) or SPL(M,N), respectively. Additional

details on this formulation can be found in [8, 11, 12]. We remark that we had to
include non-negativity constraints on the coefficients {pM

k } and {aM
k }, as well as

the last constraint in (18) and (19) in the programming of the inverse problem.
Before presenting the results from our simulations, we define the functions and

variables used in the asymptotic standard error theory outlined in the previous
section. We begin by noting that {x̄j}

n
j=1 corresponds to (tl, xm), l = 1, . . . , nt,

m = 1, . . . , nx pairs, where nt and nx represent the number of time and size val-
ues, respectively, used in generating the data (n = nt · nx). The parameter θ,

which will be estimated with each method, is finite dimensional and is given by
θ = (b̄1, σ

2
b1 , b̄2, σ

2
b2) for PAR(M,N), θ = {pM

k }M
k=0 for DEL(M), and θ = {aM

k }M
k=0

for SPL(M,N). The mathematical model f(x̄j , θ0) in the statistical model is also
approximated differently for each method considered here. When using PAR(M,N),
we have that

f(x̄j , θ0) ≈ u(x̄j ; θ) =

∫

B

v(x̄j ; g)p(b; θ)db.

However, when using DEL(M), we note that

f(x̄j , θ0) ≈ u(x̄j ; {p
M
k }) =

M
∑

k=0

v(x̄j ; g
M
k )pM

k ,
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where gM
k (x; bM

k ) = bM
k (1 − x). When using SPL(M,N), we find that

f(x̄j , θ0) ≈ u(x̄j ; {a
M
k }) =

M
∑

k=0

aM
k

∫

B

v(x̄j ; g)lMk (b)db.

Lastly, we remark that the entries in the sensitivity matrix X (θ) are also different
for the different methods that we consider here. Recall that the elements of the
n × (M + 1) sensitivity matrix X (θ) are given by

Xjk(θ) =
∂f(x̄j , θ)

∂θk
.

When using the parameterized OLS method PAR(M,N), we find that the sensitivity
elements in X (θ) are given by

Xjk(θ) =
∂f(x̄j , θ)

∂θk
=

∫

B

v(x̄j ; g)
∂p(b; θ)

∂θk
db.

The entries in X (θ) for DEL(M) are given by

Xjk(θ) =
∂f(x̄j , θ)

∂θk
= v(x̄j ; g

M
k ),

where the growth rate gM
k (x; bM

k ) = bM
k (1−x). We see that the sensitivity elements

for SPL(M,N) are given by

Xjk(θ) =
∂f(x̄j , θ)

∂θk
=

∫

B

v(x̄j ; g)lMk (b)db.

Using these expressions for the corresponding methods, we are able to compute
estimates of the covariance matrix Σn

0 and then compute standard errors for the

estimates θ̂k. We are then able to compute nodal confidence intervals for the esti-

mated parameter θ̂. As noted earlier, the endpoints of the nodal confidence intervals
are given by

θ̂k ± t1−α/2SE(θ̂k), k = 0, . . . , M, (21)

where t1−α/2 is a distribution value that is determined from a statistical table for
Student’s t-distribution based on the level of significance that is chosen [21]. For
the following simulations, we chose to use α = 0.05 for a significance level of 95%,

which corresponds to t1−α/2 = 1.96 when the number of degrees of freedom is large,
i.e., n ≥ 30.

3.3. Simulated data and computational results. We now describe the sim-
ulated population density data used in the inverse problem for the estimation of
growth-rate distributions for the mosquitofish model. We began by first choosing a
true distribution P ∗ on the growth rates g(x; b), where again g(x; b) = b(1− x) and
b represents the intrinsic growth rate of the mosquitofish. Recalling the assump-
tion of the GRD model (11), we note that the growth rates of the mosquitofish
vary among the population. Therefore, we assumed that b is a random variable
with distribution P ∗. Using this assumption, we generated a collection of admissi-
ble growth rates GI = {g0, g1, . . . , gI} with a corresponding distribution P ∗

I , where
we took I = 128. For the simulations shown here, we used an “approximate” trun-
cated bi-Gaussian distribution on the intrinsic growth rates b. The bi-Gaussian
distribution was an average of two Gaussian distributions with means b̄1 = 3.3 and
b̄2 = 5.7 and equal variances σ2

b1 = σ2
b2 = 0.492. The values for b were sampled from
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B = [b̄1−3σ2
b1 , b̄2 +3σ2

b2 ]. We were interested only in the growth-rate distribution of
the mosquitofish, so we let µ = K = 0 in the SS model (10) with initial size density

Φ(x) =

{

sin2(10πx), 0 ≤ x ≤ 0.1,

0, 0.1 < x ≤ 1.

We then created simulated data exhibiting both dispersion and bifurcation by first
solving the SS model (10) for each individual gi ∈ GI using the method of charac-
teristics and then computing

ud(t, x; P ∗
I ) =

∫

GI

v(t, x; g)dP ∗
I (g) =

∫

B

v(t, x; g)p∗I(b; b̄1, σ
2
b1 , b̄2, σ

2
b2)db,

where p∗I(b; b̄1, σ
2
b1 , b̄2, σ

2
b2) is the bi-Gaussian probability density function corre-

sponding to the true bi-Gaussian probability distribution P ∗
I . The integral above is

approximated via the composite trapezoidal method with 128 quadrature nodes [29].
We took 50 uniformly spaced time values in the interval [0,0.5] and 50 uniformly
spaced size values from the normalized range [0,1). We then added random absolute
noise to the simulated data

û(t, x; P ∗
I ) = ud(t, x; P ∗

I ) + η · ǫ,

where η represents the noise level constant and ǫ represents normally distributed
random values with mean 0 and variance 1. Therefore, the simulated data used in
this estimation problem was of the form discussed in the previous section.

Table 1. Estimated b̄1, b̄2, σ2
b1 , and σ2

b2 and confidence intervals
for bi-Gaussian example with 10% absolute error when using
PAR(3,128)

Theoretical CI Computed CI
b̄∗1 ± 1.96SE(b̄∗1) 3.2756± 0.0367

(σ2
b1 )

∗ ± 1.96SE((σ2
b1)

∗) 0.5342± 0.1042
b̄∗2 ± 1.96SE(b̄∗2) 5.7057± 0.0252

(σ2
b2 )

∗ ± 1.96SE((σ2
b2)

∗) 0.5793± 0.1358
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Figure 1. Estimated probability density with confidence region
and probability distribution given a true bi-Gaussian distribution
using PAR(3,128) to estimate the subpopulation means and vari-
ances with 10% absolute error
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The first set of results shown were obtained using PAR(3,128) for the estimation
of θ = (b̄1, σ

2
b1 , b̄2, σ

2
b2 ) using simulated data with 10% absolute noise. Table 1 con-

tains the optimal estimated values for θ along with the corresponding confidence

intervals for each component of θ. Using this approach, the optimal cost value J(θ̂)
is 4.1238, and the estimated variance of the system σ̂2 is 0.0017. In Figure 1, we
see the known probability density and distribution used to generate the simulated
data as well as the estimated probability density and distribution using the opti-
mal estimates obtained from the inverse problem. Also shown in Figure 1 are the
probability densities using the lower and upper endpoints of the confidence intervals
for each of the components of θ. Based on the statistical theory outlined above, we
are 95% confident that intervals constructed using PAR(3,128) would “cover” θ0.

We note that the confidence intervals are relatively small for the means in compar-
ison to those corresponding to the variances. Based on the size of these confidence
intervals in relation to the estimated parameter values, we would infer that the
variances of the growth-rate distribution are more sensitive to noisy data. We feel
more certain about the estimates obtained for the means from this procedure due
to the smaller confidence intervals for these parameters. The confidence intervals
constructed here give us an idea of the uncertainty associated with the estimated
parameter θ but do not give us any indication of the uncertainty associated with the
estimated probability distribution, which is the parameter of interest in our original
problem.

Table 2. Estimated parameter values and confidence intervals for
bi-Gaussian example with 10% absolute error when using DEL(8)
and SPL(8,128)

pM
k DEL(8) aM

k SPL(8,128)

p8
0 0.1733 ± 0.0197 a8

0 0.0818 ± 0.0302
p8
1 0.1465 ± 0.0174 a8

1 0.0389 ± 0.0189
p8
2 0.1615 ± 0.0155 a8

2 0.2378 ± 0.0161
p8
3 0.1501 ± 0.0137 a8

3 0.2517 ± 0.0144
p8
4 0.1044 ± 0.0119 a8

4 0.1132 ± 0.0128
p8
5 0.1022 ± 0.0105 a8

5 0.2608 ± 0.0114
p8
6 0.1022 ± 0.0100 a8

6 0.2434 ± 0.0101
p8
7 0.0479 ± 0.0084 a8

7 0.0432 ± 0.0095
p8
8 0.0120 ± 0.0050 a8

8 0.0045 ± 0.0115

We also used the delta function approximation method and the spline based
approximation method in the inverse problem with the same data set used above
with PAR(3,128). The optimal estimates along with the corresponding confidence
intervals are given in Table 2 for DEL(8) and SPL(8,128). We note that the optimal
cost using DEL(8) is 31.3867, while the optimal cost when using SPL(8,128) is
4.1282. The estimates of σ2

0 for DEL(8) and SPL(8,128) are 0.0126 and 0.0017,
respectively. Figure 2 shows the plots of the estimated probability densities and
nodal confidence intervals for both DEL(8) and SPL(8,128). Also shown in Figure
2 are the estimated probability distributions that were constructed by using the
estimates of {pM

k } and {aM
k } for DEL(8) and SPL(8,128), respectively. We point out

again that these confidence intervals correspond to the finite dimensional parameters
that we have estimated by solving the OLS problem. However, we are interested
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Figure 2. Estimated probability densities with confidence inter-
vals and probability distributions given a true bi-Gaussian distri-
bution using DEL(8)(top) and SPL(8,128)(bottom) with 10% ab-
solute error

in making remarks about the uncertainty associated with the estimated probability
distributions. In the following section, we will outline how to construct confidence
bands for the estimated probability distributions based on the confidence intervals
computed using the standard error theory for the finite dimensional parameters.

4. Extension of asymptotic standard error theory to functional parame-

ters: Computational results. In the previous section, we demonstrated how to
construct nodal confidence intervals for finite dimensional parameters (i.e., {pM

k }M
k=0,

{aM
k }M

k=0, and θ) using the standard asymptotic theory for OLS estimators. The
finite dimensional parameters that we determined by solving the inverse problem
were at the level of the probability density. As shown in the previous section, we
constructed estimates of the parameter of interest in our original problem (the prob-
ability distribution) by using the estimates of the probability density obtained from
the inverse problem. While we can use the standard error theory that has already
been established to quantify the uncertainty associated with the estimates of the
finite dimensional parameters, we cannot apply this same theory to the estimated
probability distributions, which are in an infinite dimensional setting. Since stan-
dard error theory does not exist for problems with functional parameters, we would
like to develop the mathematical and asymptotic statistical theory for OLS prob-
lems where the parameter of interest is a probability distribution. In this section
we again focus on a bi-Gaussian example, referring the reader to [9] for similar dis-
cussions for a Gaussian example. We will provide computational results displaying
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the concept of confidence bands that will aid in quantifying the uncertainty in the
estimated probability distributions.

To construct confidence bands for the estimated probability distributions, we use
the confidence intervals obtained for the finite dimensional parameters. We will first
discuss and present the results obtained using the standard parametric approach
PAR(M,N). When using PAR(M,N), we use an a priori probability density in the
GRD model (11), which we assume is continuous. After using the standard error
theory to compute a confidence interval for θ, we construct a confidence band for the
estimated probability distribution by using the endpoints of the confidence interval
in the known probability density function (pdf). We note that the confidence region
for the estimated probability density is formed by plotting

p− = p(b; θ̂ − 1.96SE(θ̂)) and p+ = p(b; θ̂ + 1.96SE(θ̂)),

where θ̂ represents the estimates of θ that solve the OLS problem. Then, using
the fact that the probability density function p also represents the derivative of the
probability distribution function P, we construct the upper confidence band for the
estimated probability distribution by using the portions of p− and p+ that lie above
the estimated probability density when this function is increasing (i.e., the slope
is positive). When the estimated probability density is decreasing and the slope is
negative, the portions of p− and p+ that lie below the estimated probability density
are used to construct the upper confidence band. We use this same technique to
create the lower confidence band by using the portions of p− and p+ that lie below
(above) the estimated probability density when the slope is positive (negative). We
integrate over these values and then normalize by an appropriate factor so that the
confidence bands are “true” distributions (integrate to 1). Using this method, we
obtained the following results with PAR(3,128) from the inverse problem using the
simulated data described earlier with 20% absolute noise. A larger percentage of
absolute noise was added to the simulated data for the results in this section so the
reader could differentiate visually between the estimated probability distribution
and the confidence bands with PAR(3,128). Results were also obtained with 10%
absolute noise; however, the confidence bands were much tighter around the esti-
mated probability distribution. The optimal cost for this set of results is 14.6131,
while the estimate of σ̂2 is 0.0059. We also computed the condition number of

X T (θ̂)X (θ̂), which is used in computing the standard errors for the finite dimen-
sional parameter θ, and obtained a value of 35.0084. Table 3 contains the optimal
estimate of θ as well as the corresponding confidence intervals. In Figure 3 the plots
of the known and estimated probability densities along with p− and p+ are shown
on the left as well as the plots of the known and estimated probability distributions
and corresponding confidence bands on the right. We note that the estimated prob-
ability distribution lies within the confidence bands constructed using the technique
that we have just outlined.

When using the nonparametric approaches, DEL(M) and SPL(M,N), the confi-
dence intervals computed using the standard error theory correspond to the weights,
{pM

k }M
k=0 and {aM

k }M
k=0, used in the approximations. In some cases, the lower con-

fidence endpoints for these estimated weights may be negative, which violates the
non-negativity condition required of probability densities (see results for SPL(8,128)
in Figure 2). Thus, before constructing the confidence band for the estimated prob-
ability distribution, we first truncate any negative values to zero in order to have
a “true” density. We then note if the estimated probability density is monotone
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Table 3. Estimated b̄1, b̄2, σ2
b1 , and σ2

b2 and confidence intervals
for bi-Gaussian example with 20% absolute error when using
PAR(3,128)

Theoretical CI Computed CI
b̄∗1 ± 1.96SE(b̄∗1) 3.0979± 0.0711

(σ2
b1 )

∗ ± 1.96SE((σ2
b1)

∗) 0.5464± 0.1935
b̄∗2 ± 1.96SE(b̄∗2) 5.6611± 0.0480

(σ2
b2 )

∗ ± 1.96SE((σ2
b2)

∗) 0.5926± 0.2575
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Figure 3. Estimated probability density and probability distri-
bution with confidence region and confidence bands given a true
bi-Gaussian distribution using PAR(3,128) to estimate the sub-
population means and variances with 20% absolute error

and increasing, the upper (lower) confidence band for the estimated distribution
is constructed by integrating over the upper (lower) confidence interval endpoints
and normalizing by an appropriate factor so that the confidence band is a “true”
probability distribution. In the case that the estimated probability density is not
monotone (which is the case in the examples shown here), the construction of the
confidence bands using DEL(M) and SPL(M,N) again depends on the slope of the
estimated probability density. The technique employed in these cases mimics that
described when using PAR(M,N). The upper (lower) confidence band is created by
integrating over the upper (lower) confidence interval endpoints when the slope of
the estimated probability density is positive and the lower (upper) confidence in-
terval endpoints when the slope is negative. We again normalize by an appropriate
factor so that the confidence bands for the estimated probability distribution are
also “true” distributions.

We first present some of the results obtained using DEL(M) for various values of
M in the estimation problem using the same data set with 20% absolute noise. The

optimal cost values, estimates of σ̂2, and condition numbers κ of X T (θ̂)X (θ̂) can
be found in Table 4 for M= 8, 12, 16, 24, 32, 48, and 64. Figures 4 through 10 show
the estimated probability densities and confidence intervals as well as the estimated
probability distributions and confidence bands. As the value of M is increased, we
observe the optimal cost and estimate of σ2

0 decrease, which we expect because
we are allowing more degrees of freedom. The estimated probability distribution
converges to the known distribution as M is increased. However, we also note
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Table 4. Optimal cost values, σ̂2, and condition number of

X T (θ̂)X (θ̂) for bi-Gaussian example with 20% absolute error when
using DEL(M)

M J∗ σ̂2 κ(X T (θ̂)X (θ̂))
8 40.6264 0.0163 15.6702
12 31.9494 0.0128 16.2206
16 25.8704 0.0104 16.9203
24 20.0946 0.0081 19.0560
32 15.9340 0.0065 22.1191
48 14.3649 0.0059 53.5280
64 14.2212 0.0058 105.5634

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Known and Estimated Probability Densities with Truncated Confidence Intervals (M=8)

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
en

si
ty

 C
oe

ffi
ci

en
ts

 

 
Known
Estimated

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Known and Estimated Probability Distributions with Confidence Bands (M=8)

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
V

al
ue

s

 

 

Known
Estimated

PM
−

PM
+

Figure 4. Estimated probability density and probability distribu-
tion with confidence intervals and bands given a true bi-Gaussian
distribution using DEL(8) with 20% absolute error
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Figure 5. Estimated probability density and probability distribu-
tion with confidence intervals and bands given a true bi-Gaussian
distribution using DEL(12) with 20% absolute error

from Table 4 that as M is increased, κ(X T (θ̂)X (θ̂)) increases. Once M becomes
too large, the problem becomes over-parametrized and ill-conditioned (exhibited by

the larger condition numbers of X T (θ̂)X (θ̂)), and we observe the confidence bands
become larger. As M is increased from 8 to 32, the confidence bands appear to
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Figure 6. Estimated probability density and probability distribu-
tion with confidence intervals and bands given a true bi-Gaussian
distribution using DEL(16) with 20% absolute error
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Figure 7. Estimated probability density and probability distribu-
tion with confidence intervals and bands given a true bi-Gaussian
distribution using DEL(24) with 20% absolute error

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Known and Estimated Probability Densities with Truncated Confidence Intervals (M=32)

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
en

si
ty

 C
oe

ffi
ci

en
ts

 

 
Known
Estimated

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Known and Estimated Probability Distributions with Confidence Bands (M=32)

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
V

al
ue

s

 

 

Known
Estimated

PM
−

PM
+

Figure 8. Estimated probability density and probability distribu-
tion with confidence intervals and bands given a true bi-Gaussian
distribution using DEL(32) with 20% absolute error

be converging nicely; however, when M is increased from 32 to 48 and from 48
to 64, we no longer observe nice convergence of the confidence bands. However,
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Figure 9. Estimated probability density and probability distribu-
tion with confidence intervals and bands given a true bi-Gaussian
distribution using DEL(48) with 20% absolute error
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Figure 10. Estimated probability density and probability distri-
bution with confidence intervals and bands given a true bi-Gaussian
distribution using DEL(64) with 20% absolute error

by examining the condition number of X T (θ̂)X (θ̂), we can better understand the
behavior of the confidence bands, which appear to converge nicely until the problem
becomes over-parametrized (beyond M = 32).

We also obtained computational results for the inverse problem using SPL(M,128)
using the data set with 20% absolute noise for various values of M. For M= 8, 12, 16, 24,

and 32, we report the optimal cost values, the estimates σ̂2, and the conditions

numbers of X T (θ̂)X (θ̂) in Table 5. The figures displaying the estimated probability
densities with the nodal confidence intervals as well as the estimated probability
distributions with the functional confidence bands for these values of M are shown
in Figures 11 through 15. Since we added absolute noise instead of relative noise to
the simulated data used in the inverse problem calculations shown here, the tails of
the estimated probability density functions (pdfs) are very poor. We observe the
same type of behavior in the confidence bands here as noted when using DEL(M).

As M is increased, there is a small decrease in the optimal cost. The decrease
in the estimate of the variance of the system σ̂2 is so small that it is not notice-
able when reported to only four significant digits. We also note the increase in

κ(X T (θ̂)X (θ̂)) as M is increased, and again, we can use this to explain the behavior
we observe in the confidence bands constructed for these values of M. The confidence
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Table 5. Optimal cost values, σ̂2, and condition number of

X T (θ̂)X (θ̂) for bi-Gaussian example with 20% absolute error when
using SPL(M,128)

M J∗ σ̂2 κ(X T (θ̂)X (θ̂))
8 14.5734 0.0059 22.4873
12 14.5058 0.0058 31.3596
16 14.4767 0.0058 40.2284
24 14.4577 0.0058 63.5889
32 14.3953 0.0058 91.0741
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Figure 11. Estimated probability density and probability distri-
bution with confidence intervals and bands given a true bi-Gaussian
distribution using SPL(8,128) with 20% absolute error
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Figure 12. Estimated probability density and probability distri-
bution with confidence intervals and bands given a true bi-Gaussian
distribution using SPL(12,128) with 20% absolute error

bands appear to be converging nicely as M is increased from 8 to 16. However, the
confidence bands begin to grow larger as M is increased beyond 16, which is also

accompanied by a much larger increase in the condition number of X T (θ̂)X (θ̂) for
the values of M above 16. Over-parametrization of the inverse problem does not
only affect the estimates obtained but the confidence bands as well. However, for
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Figure 13. Estimated probability density and probability distri-
bution with confidence intervals and bands given a true bi-Gaussian
distribution using SPL(16,128) with 20% absolute error
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Figure 14. Estimated probability density and probability distri-
bution with confidence intervals and bands given a true bi-Gaussian
distribution using SPL(24,128) with 20% absolute error
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Figure 15. Estimated probability density and probability distri-
bution with confidence intervals and bands given a true bi-Gaussian
distribution using SPL(32,128) with 20% absolute error

appropriately chosen values of M, we observe very nice convergence of the confi-
dence bands constructed using the technique outlined above for the approximation
methods DEL(M) and SPL(M,N).
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Other examples illustrating this behavior can be found in [9]. Moreover, the
ideas outlined here can also be adopted to treat many other (non probability den-
sity) functional parameter estimation problems including those described in the
Introduction.

5. Summary and concluding remarks. In this note we presented computa-
tional and statistical results for both parametric and nonparametric versions of the
inverse problem for the estimation of growth-rate distributions in size-structured
mosquitofish populations. The results discussed here demonstrate some of the
strengths and weaknesses associated with each method. When the form of the
probability distribution is known a priori, the parametric approach PAR(M,N) is
the better method to use because the number of parameters to be estimated is
typically small so computations are usually not very expensive. We also observed
much tighter confidence bands around the estimated probability distributions in
this example; hence, we are fairly confident about the reliability of estimates ob-
tained with this method. However, the accuracy of the parameter estimates relies
heavily on one’s ability to correctly specify the form of the probability distribution
a priori.

In contrast, the nonparametric approaches are a better choice when one cannot
(correctly) identify the form of the probability distribution. The delta function
approximation method DEL(M) is very easy to implement and computationally in-
expensive; however, a large number of elements is usually necessary for convergence
of the estimated probability distributions. The underlying theory [4] guarantees
convergence of distributions, not densities, in the Prohorov metric. Therefore, es-
timates of the probability densities are very misleading in terms of accuracy of
corresponding estimated probability distributions. While the spline-based method
SPL(M,N) provides a much smoother approximation of probability distributions in
comparison to DEL(M), it is more computationally expensive. With appropriate
choices for the weights {aM

k }, convergence of distributions in the Prohorov metric
(with significantly fewer elements than DEL(M)) is guaranteed as well as conver-
gence of the approximating densities in L2 [17]. Lastly, over-parametrization of the
inverse problem with the nonparametric approaches can not only result in oscilla-
tions in the estimated densities but larger confidence bands as well. As a result,
we feel less certain about the reliability of the estimated probability distributions
obtained with these nonparametric methods.

The computational results shown here demonstrate how to construct “func-
tional” confidence bands for estimated probability distributions in size-structured
mosquitofish populations in both parametric and nonparametric settings. However,
one would like to fully develop the mathematical and asymptotic statistical theory
for OLS problems with functional parameters, such as the probability distributions
studied here and the time- and spatial-dependent functional parameters discussed
in the Introduction. One would also like to determine if the confidence bands con-
structed from the approximation methods DEL(M) and SPL(M,N) are converging
to some “true” smooth confidence bands. Following the work of [30], we note that
this will require the sensitivity of the system being studied with respect to the prob-
ability distribution, which is actually a directional derivative [10]. We are currently
working on the development of this fundamental theory in an alternate weak L2

setting for densities.
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