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Abstract. We develop a numerical method for estimating parameters in a
structured erythropoiesis model consisting of a nonlinear system of partial dif-
ferential equations. Convergence theory for the computed parameters is pro-
vided. Numerical results for estimating the growth rate of precursor cells as a
function of the erythropoietin concentration and the decay rate of erythropoi-
etin as a function of the total number of precursor cells from computationally
generated data are provided. Standard errors for such parameters are also
given.

1. Introduction. Erythropoiesis is the process in which the body produces red
blood cells. This production is regulated by the hormone erythropoietin (EPO).
This hormone, which is released from the kidneys when the body is unable to
deliver oxygen adequately [24], recruits stems cells from the bone marrow into the
erythrocyte progenitor population. Erythropoietin may also have the effect of accel-
erating the maturation process of precursor cells [14]. Once stem cells are recruited
into the precursor population, they begin a maturation process. The primary mea-
sure of cell maturity is relative to its hemoglobin content, which enables mature
erythrocytes to effectively carry oxygen throughout the blood stream.

To our knowledge there are no studies that provide information on the functional
forms of the maturation rate of precursor cells as a function of the EPO or the decay
rate of EPO as a function of the total precursor cells. Thus, one must rely on an
inverse problem approach to identify possible function forms for these rates from
observed data, which is the main goal of this paper.

There have been many studies (see, [1]–[3], [7]–[12], [16], [18]–[22], [26]–[27]) that
focused on the development of inverse problem techniques for identifying parameters
in continuous age/size structured population models. The basic idea in several of
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these papers is the set up of a least-squares cost functional that compares model
output to data and the development of a numerical approximation that solves this
least-squares problem and provides an approximation to the optimal parameter
choice. Convergence theory for the computed minimizers of the approximate least-
squares cost functional to a minimizer of the true least-squares functional has been
developed in these papers. To our knowledge, there has been only one study [25]
involving parameter estimation for a structured model of erythropoiesis and no
convergence results were provided.

The focus in this paper is two-fold: First, we develop an explicit finite difference
scheme, which is a modification of the implicit one developed in [4] and is in the
spirit of the one developed in [28]. The reason for adopting an explicit scheme is
that for an inverse problem as the one considered here, the model must be solved
numerous times (iterating over the parameter space) until the optimal parameter is
found. Thus, a more practical and computationally faster method becomes crucial
to solving the problem in a reasonable amount of time. And second, utilizing the
previously mentioned finite difference scheme, we develop a least-squares approach
for estimating parameters in the structured erythropoiesis model studied in [4] and
we provide a convergence theory of the computed parameter estimates.

As the use of numerical methods for estimating parameters becomes more ac-
cepted in the biological sciences, it is becoming increasingly important for re-
searchers to support the efficacy of proposed numerical algorithms with not only
numerical simulation results but also with estimates of uncertainty in forms of stan-
dard errors and confidence intervals for the resulting parameter estimates. In this
paper we will present a statistical technique for computing standard errors for such
parameter estimates (e.g., [3, 17]). While in our efforts we emphasize ordinary
least square estimators, the ideas and methods presented in this paper can readily
be used with maximum-likelihood estimators as well as other standard estimators
found in the statistical literature.

This paper is organized as follows: in Section 2 we present the structured model,
in Section 3 we present the explicit finite difference method and discuss its con-
vergence to the unique weak solution of the model, and in Section 4 we present
the least-squares cost functional and provide convergence theory for the computed
minimizers to a minimizer of the least-squares cost functional. Following the de-
velopment of the convergence theory, in Section 5 we demonstrate the feasibility
of this approach by utilizing computationally generated data to obtain estimates
of the maturation velocity of the precursor population as a function of the EPO
concentration and the decay rate of EPO as a function of the precursor population.

2. The structured erythropoiesis model. Our model consists of three main
components. The first is the density of the precursor population, denoted by p(t, µ).
Here µ is the maturity level of the precursor cells. We assume that precursor cells
must reach the maturity level µF before joining the mature population, m(t, ν),
which is the second main component of our model. Mature cells are structured by
their age ν. The third component is the EPO concentration, which we denote by
E(t). The maturation rate of the precursor cells is assumed to be a function of the
EPO concentration and is denoted by g(E) in our model. The function σ(t, µ, E)
represents the net change in the birth and death rate of precursor cells. Note
that this function depends on E(t) since it is known that EPO prevents apoptosis
in erythroid progenitors [15]. We use γ(t, ν, M(t)) to represent the death rate of
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Figure 1. Schematic of the erythropoiesis model.

mature red blood cells and f(t, M) is the negative feedback that represents the
kidney’s response to low levels of mature erythrocytes. Further, aE(P ) is the decay
rate of EPO as a function of the total precursor population. It is assumed that the
rate at which stem cells are recruited into the precursor population is proportional
to the EPO concentration and we use φ(t) to denote the function of proportionality.
With these parameters defined as such the model can be represented graphically as
in Figure 1. Mathematically, the model takes the form

∂p(t,µ)
∂t

+ g(E(t))∂p(t,µ)
∂µ

= σ(t, µ, E(t))p(t, µ), 0 < t < T, 0 < µ < µF ,

∂m(t,ν)
∂t

+ ∂m(t,ν)
∂ν

= −γ(t, ν, M(t))m(t, ν), 0 < t < T, 0 < ν < νF ,

dE(t)
dt

+ aE(P (t))E(t) = f(t, M(t)), 0 < t < T,

g(E(t))p(t, 0) = φ(t)E(t), 0 < t < T,

m(t, 0) = g(E(t))p(t, µF ), 0 < t < T,

p(0, µ) = p0(µ), 0 ≤ µ ≤ µF ,

m(0, ν) = m0(ν), 0 ≤ ν ≤ νF ,

E(0) = E0.

(1)

In the following section, we make regularity assumptions on the parameters men-
tioned above, introduce an explicit finite difference scheme, and prove the conver-
gence of this scheme to the unique weak solution of the model.

3. Convergence of finite difference approximation. Throughout the discus-
sion BV (Ω) (Ω ⊂ R

n an open set) denotes the space of functions in L1(Ω) with
bounded variation (e.g. [23]), and we assume that the parameters in (1) satisfy the
following properties: There exist positive constants c and L such that
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(A1) The function g(E) is continuous, 0 < g(E) ≤ c, and |g(E1)− g(E2)| ≤ L|E1−
E2| for all E1, E2 ∈ [0,∞).

(A2) The function σ(t, µ, E) is continuous with respect to t, continuously differ-
entiable with respect to E, and for any (t, µ, E) ∈ [0, T ] × [0, µF ] × [0,∞),
|σ(t, µ, E)| ≤ c. Furthermore, for any partition {µi}n1

i=1 of [0, µF ]

n1
∑

i=1

|σ(t, µi, E) − σ(t, µi−1, E)| ≤ c,

uniformly in t ∈ [0, T ] and E ∈ [0,∞).
(A3) The function γ(t, ν, M) is continuous with respect to t, continuously differ-

entiable with respect to M , and for any (t, ν, M) ∈ [0, T ] × [0, νF ] × [0,∞),
0 ≤ γ(t, ν, M) ≤ c. Furthermore, for any partition {νi}n2

i=1 of [0, νF ]

n2
∑

i=1

|γ(t, νi, M) − γ(t, νi−1, M)| ≤ c,

uniformly in t ∈ [0, T ] and M ∈ [0,∞).
(A4) The function aE(P ) is continuous, 0 ≤ aE(P ) ≤ c, and |aE(P1) − aE(P2)| ≤

L|P1 − P2| for all P1, P2 ∈ [0,∞).
(A5) The function f is continuous and satisfies |f(t, M1)− f(t, M2)| ≤ L|M1−M2|

for all M1, M2 ∈ [0,∞) and t ∈ [0, T ].
(A6) The function φ(t) is continuously differentiable and 0 ≤ φ(t) ≤ c for t ∈ [0, T ].
(A7) The functions p0 and m0 are nonnegative with ‖p0‖BV (0,µF ), ‖m0‖BV (0,νF ) ≤

c. Furthermore, E0 is a positive constant.

As in [4], we define a weak solution of (1) to be a triple (p, m, E) ∈ BV ((0, T )×
(0, µF )) × BV ((0, T )× (0, νF )) × C[0, T ] satisfying
∫ µF

0 p(t, µ)ξ(t, µ)dµ

=
∫ µF

0 p0(µ)ξ(0, µ)dµ −
∫ t

0 g(E(τ))p(τ, µ−
F )ξ(τ, µF )dτ +

∫ t

0 φ(τ)E(τ)ξ(τ, 0)dτ

+
∫ t

0

∫ µF

0
[ξτ (τ, µ) + g(E(τ))ξµ(τ, µ)]p(τ, µ)dµdτ

+
∫ t

0

∫ µF

0
σ(τ, µ, E(τ))p(τ, µ)ξ(τ, µ)dµdτ

(2)
∫ νF

0
m(t, ν)ζ(t, ν)dν

=
∫ νF

0
m0(ν)ζ(0, ν)dν −

∫ t

0
m(τ, ν−

F )ζ(τ, νF )dτ +
∫ t

0
g(E(τ)p(τ, µ−

F )ζ(τ, 0)dτ

+
∫ t

0

∫ νF

0 [ζτ (τ, ν) + ζν(τ, ν)]m(τ, ν)dνdτ

−
∫ t

0

∫ νF

0 γ(τ, ν, M(τ))m(τ, ν)ζ(τ, ν)dνdτ

E(t) = E0 +
∫ t

0 {f(s, M(s)) − aE(P (s))E(s)} ds

for each t ∈ (0, T ), every ξ ∈ C1([0, T ]× [0, µF ]), and every ζ ∈ C1([0, T ]× [0, νF ]),
where p(t, µ−

F ) = limµ→µ
−

F
p(t, µ) and m(t, ν−

F ) = limν→ν
−

F
m(t, ν).

We divide the intervals [0, µF ], [0, νF ], and [0, T ] into n1, n2, and K subintervals,
respectively, and use the following notation throughout the paper: ∆µ = µF /n1,
∆ν = νF /n2, and ∆t = T/K denote the spatial and time mesh sizes, respec-
tively. The mesh points are given by: µi = i∆µ, i = 0, 1, · · · , n1, νj = j∆ν,
j = 0, 1, · · · , n2, and tk = k∆t, k = 0, 1, · · · , K. We denote by pk

i , mk
j , Mk, and Ek
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the finite difference approximations of p(tk, µi), m(tk, νj), M(tk), and E(tk), respec-
tively. We let gk = g(Ek), σk

i = σ(tk, µi, E
k), γk

j = γ(tk, νj, M
k), ak

E = aE(P (tk))

and fk = f(tk, Mk). Also we define the ℓ1 and ℓ∞ norms of pk and mk to be

‖pk‖1 =

n1
∑

i=1

|pk
i |∆µ, ‖mk‖1 =

n2
∑

j=1

|mk
j |∆ν,

‖pk‖∞ = max
0≤i≤n1

|pk
i |, and ‖mk‖∞ = max

0≤j≤n2

|mk
j |,

respectively. We then discretize the differential equation system (1) using the fol-
lowing explicit finite difference approximation

pk+1
i − pk

i

∆t
+ gk

pk
i − pk

i−1

∆µ
− σk

i pk
i = 0, 1 ≤ i ≤ n1, 0 ≤ k ≤ K − 1

mk+1
j − mk

j

∆t
+

mk
j − mk

j−1

∆ν
+ γk

j mk
j = 0, 1 ≤ j ≤ n2, 0 ≤ k ≤ K − 1

Ek+1 − Ek

∆t
+ ak

EEk = fk, 0 ≤ k ≤ K − 1

gk+1pk+1
0 = φk+1Ek+1 0 ≤ k ≤ K − 1

mk+1
0 = gk+1pk+1

n1
0 ≤ k ≤ K − 1

P k+1 =
∑n1

i=1 pk+1
i ∆µ 0 ≤ k ≤ K − 1

Mk+1 =

n2
∑

j=1

mk+1
j ∆ν 0 ≤ k ≤ K − 1

(3)

with the initial conditions

p0
0 = limµ→0+ p0(µ), p0

i =
∫ i∆µ

(i−1)∆µ
p0(µ) dµ, i = 1, 2, · · · , n1,

m0
0 = limν→0+ m0(ν), m0

j =
∫ j∆ν

(j−1)∆ν
m0(ν) dν, j = 1, 2, · · · , n2,

E(0) = E0.

It is sometimes more convenient to express the first three equations in (3) as

pk+1
i = pk

i (1 − gk ∆t

∆µ
+ σk

i ∆t) +
∆t

∆µ
gkpk

i−1 1 ≤ i ≤ n1, 0 ≤ k ≤ K − 1

mk+1
j = mk

j (1 − ∆t

∆ν
− γk

j ∆t) +
∆t

∆ν
mk

j−1, 1 ≤ j ≤ n2, 0 ≤ k ≤ K − 1

Ek+1 = Ek(1 − ak
E∆t) + ∆tfk, 0 ≤ k ≤ K − 1

(4)

The following results were established in [5].

Lemma 3.1. Let ω = max{1, c} and E0 ≥ 0, p0
i ≥ 0, m0

j ≥ 0 for i = 0, 1, · · · , n1

and j = 0, 1, · · · , n2. If ∆t, ∆µ,and ∆ν are chosen such that

∆t < 1
2ω

, ∆t
∆µ

< 1
2ω

, ∆t
∆ν

< 1
2ω

,

then the unique solution of (3) satisfies: Ek ≥ 0, pk
i ≥ 0, mk

j ≥ 0 for i = 0, 1, · · · , n1,
j = 0, 1, · · · , n2 and k = 1, 2, · · · , K.

Lemma 3.2. Assume that the hypothesis of Lemma 3.1 holds. Then there exists a
positive constant B1 such that ‖pk‖1 + ‖mk‖1 + |Ek| ≤ B1.
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Lemma 3.3. Assume that the hypothesis of Lemma 3.1 holds. Then there exists a
constant B2 such that ‖pk‖∞ + ‖mk‖∞ ≤ B2.

With the help of Lemmas 3.2 and 3.3 we will establish the following result.

Lemma 3.4. Assume that the hypothesis of Lemma 3.1 holds. Then there exists a
positive constant B3 such that TV (pk)+TV (mk) ≤ B3, where TV (pk) =

∑n1

i=1 |pk
i −

pk
i−1| and TV (mk) =

∑n2

i=1 |mk
i − mk

i−1|.
Proof. From (4) we have

pk
i − pk

i−1 = (pk
i − pk

i−1)(1 − λ1g
k + σk

i ∆t) + pk
i−1(σ

k
i−1 − σk

i )∆t
+λ1g

k(pk
i−1 − pk

i−2),
(5)

where λ1 = ∆t
∆µ

. Summing over i = 2, . . . , n1, and then adding |pk+1
1 −pk+1

0 | to both

sides gives

TV (pk+1) ≤ ∑n1

i=2 |pk
i − pk

i−1|(1 + c∆t) − λ1g
k
∑n1

i=2 |pk
i − pk

i−1|
+

∑n1

i=2 pk
i−1|σk

i−1 − σk
i |∆t + λ1g

k
∑n1

i=2 |pk
i−1 − pk

i−2| + |pk+1
1 − pk+1

0 |
≤ ∑n1

i=2 |pk
i − pk

i−1|(1 + c∆t) − λ1g
k
∑n1

i=2 |pk
i − pk

i−1|
+∆t‖pk‖∞ sup(t,E)∈[0,T ]×[0,B1]

∑n1

i=1 |σ(t, µi, E) − σ(t, µi−1, E)|
+|pk+1

1 − pk+1
0 |

≤ ∑n1

i=2 |pk
i − pk

i−1|(1 + c∆t) − λ1g
k|pk

n1
− pk

n1−1| + λ1g
k|pk

1 − pk
0 |

+∆t‖pk‖∞ sup(t,E)∈[0,T ]×[0,B1]

∑n1

i=1 |σ(t, µi, E) − σ(t, µi−1, E)|
+|pk+1

1 − pk+1
0 |.

(6)

After a few calculations, we obtain

|pk+1
1 − pk+1

0 | ≤ (1 − λ1g
k)|pk

1 − pk
0 | + c‖pk‖∞∆t + |pk+1

0 − pk
0 |. (7)

Using estimate (7) in (6) we arrive at

TV (pk+1) ≤ (1 + c∆t)TV (pk) + c1∆t + |pk+1
0 − pk

0 | − λ1g
k|pk

n1
− pk

n1−1|, (8)

for some constant c1.
By adding and subtracting terms and using (A1) and (A6), we get the following:

|pk+1
0 − pk

0 | =
∣

∣

∣

φk+1Ek+1

gk+1 − φkEk

gk

∣

∣

∣
≤ c2∆t, (9)

for some c2. Thus, we have

TV (pk+1) ≤ (1 + c∆t)TV (pk) + c3∆t − λ1g
k|pk

n1
− pk

n1−1|, (10)

for some constant c3.
Similar calculations give

TV (mk+1) ≤ TV (mk) + c4∆t + |mk+1
0 − mk

0 |. (11)

By using the boundary condition for m in (3) we can easily see that

|mk+1
0 − mk

0 | ≤ c5∆t + λ1g
k+1gk|pk

n1
− pk

n1−1|. (12)

Hence, (11) becomes

TV (mk+1) ≤ TV (mk) + c6∆t + λ1g
k+1gk|pk

n1
− pk

n1−1| (13)

for a constant c6.
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Multiplying (10) by gk+1 and adding the result to (13) yields

TV (mk+1) + gk+1TV (pk+1) ≤ (1 + c∆t)TV (mk)

+(1 + c∆t)gk+1TV (pk) + c7∆t.
(14)

Adding and subtracting terms, using (A1), and observing that |Ek+1 −Ek| ≤ ∆tc8

we get

(1 + c∆t)gk+1TV (pk) ≤ (1 + c9∆t)gkTV (pk). (15)

Now, let Qk = TV (mk) + gkTV (pk) to get

Qk+1 ≤ (1 + c10∆t)Qk + c11∆t. (16)

Clearly, (16) implies the result.

Using the above lemmas the following results easily follows (see [5]).

Lemma 3.5. Assume that the hypothesis of Lemma 3.1 holds. Then there exists a
constant B4 > 0 such that for any r > q

n1
∑

i=1

∣

∣

∣

∣

pr
i − pq

i

∆t

∣

∣

∣

∣

∆µ ≤ B4(r − q)

n2
∑

j=1

∣

∣

∣

∣

∣

mr
j − mq

j

∆t

∣

∣

∣

∣

∣

∆ν ≤ B4(r − q)

∣

∣

∣

∣

Er − Eq

∆t

∣

∣

∣

∣

≤ B4(r − q).

Following [29] we define a family of functions {P∆t,∆µ}, {M∆t,∆ν}, and {E∆t}
by

P∆t,∆µ(t, µ) = pk
i , M∆t,∆ν(t, ν) = mk

j , E∆t(t) = Ek−1 +
Ek − Ek−1

∆t
(t− tk−1)

for µ ∈ [µi−1, µi), ν ∈ [νj−1, νj), t ∈ [tk−1, tk), i = 1, . . . , n1, j = 1, . . . , n2, k =
1, . . . , l. Then the sets of functions {P∆t,∆µ}, {M∆t,∆ν} and {E∆t} are compact
in the topologies of L1((0, T ) × (0, µF )), L1((0, T ) × (0, νF )) and C[0, T ], respec-
tively. Recalling that the uniqueness of the weak solution was established in [4],
and applying techniques as in [4, 29] we have the following result.

Theorem 3.6. The sequence of functions ({P∆t,∆µ}, {M∆t,∆ν}, {E∆t}) converges
to the unique weak solution (p, m, E) of (1) in the sense that for all t > 0

∫ µF

0

|P∆t,∆µ(t, µ) − p(t, µ)|dµ → 0,

∫ νF

0

|M∆t,∆ν(t, ν) − m(t, ν)|dν → 0,

∫ T

0

∫ µF

0

|P∆t,∆µ(t, µ)−p(t, µ)|dµdt → 0,

∫ T

0

∫ νF

0

|M∆t,∆ν(t, ν)−m(t, ν)|dνdt → 0,

and

‖E∆t − E‖C[0,T ] → 0,

as ∆t, ∆µ and ∆ν → 0.
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4. The inverse problem and convergence results. The main focus of this
paper is estimating parameters contained in (1). Our goal, given observations
Xr,s1

, Yr,s2
, Zr which correspond to the total number of precursor cells with matu-

ration level in the interval [αs1
, αs1+1), s1 = 1, . . . , S1, the total number of mature

cells in the age interval [βs2
, βs2+1) s2 = 1, . . . , S2 and the total concentration of ery-

thropoietin at time tr, respectively, is to find a parameter q = (g, σ, γ, aE , f, φ) ∈ Q
such that the functional

J(q) =
∑R

r=1

∑S1

s1=1

∣

∣

∣

∫ αs1+1

αs1

p(tr, µ, q)dµ − Xr,s1

∣

∣

∣

2

+
∑R

r=1

∑S2

s2=1

∣

∣

∣

∫ βs2+1

βs2

m(tr, ν, q)dν − Yr,s2

∣

∣

∣

2

+
∑R

r=1 |E(tr, q) − Zr|2

(17)

is minimized. Define the space D = Cb[0,∞)×Cb(Ω; L1(0, µF ))×Cb(Ω; L1(0, νF ))×
Cb[0,∞) × Cb(Ω) × Cb[0, T ], where Ω = [0, T ] × [0,∞) and Cb(Ω) is the space of
continuous uniformly bounded functions on Ω. Throughtout, this section we assume
that our admissible parameter space, Q, is a compact subset of D such that each
q = (g, σ, γ, aE , f, φ) ∈ Q satisfies (A1)-(A6).

Since our parameter set is infinite dimensional, a finite-dimensional approxima-
tion of the parameter space is also necessary for computing minimizers. To this
end, we consider the following finite-dimensional approximations of (17)

J∆t,∆µ,∆ν(q) =
∑R

r=1

∑S1

s1=1

∣

∣

∣

∫ αs1+1

αs1

P∆t,∆µ(tr, µ, q)dµ − Xr,s1

∣

∣

∣

2

+
∑R

r=1

∑S2

s2=1

∣

∣

∣

∫ βs2+1

βs2

M∆t,∆ν(tr, ν, q)dν − Yr,s2

∣

∣

∣

2

+
∑R

r=1 |E∆t(tr, q) − Zr|2

(18)

each of which is minimized over QN , a compact finite-dimensional approximation
of the parameter space Q. To establish the convergence results for the parameter-
estimation technique, we use an approach in the spirit of that used in [1, 2, 3], which
is based on the abstract theory in [13].

Theorem 4.1. Suppose that ql → q in Q and that ∆tl, ∆µl and ∆νl → 0 as
l → ∞. Let P∆tl,∆µl

(ql), M∆tl,∆νl
(ql) and E∆tl

(ql) denote the family of func-
tions obtained from the solution of the finite difference equations (3) with param-
eter ql and let p(q), m(q) and E(q) be the unique weak solution of (1) with ini-
tial conditions p0, m0 and E0 and parameter q. Then, the sequence of functions
({P∆tl,∆µl

(ql)}, {M∆tl,∆νl
(ql)}, {E∆tl

(ql)}) converges to (p(q), m(q), E(q)) as l →
∞, in the sense defined in Theorem 3.6.

Proof. We begin by defining pk,l
i = pk

i (ql), mk,l
j = mk

j (ql), and Ek,l = Ek(ql), where

(pk
i (ql), mk

j (ql), Ek(ql)) is the solution of (3) with parameter ql. Since q ∈ Q, we

have from the previous section that there exists functions p̂, m̂, and Ê such that
P∆tl,∆µl

(ql) → p̂, M∆tl,∆νl
(ql) → m̂, and E∆tl

(ql) → Ê in the sense described in
Theorem 3.6 as l → ∞. So by the uniqueness of the weak solution established in
[4], we only need to show that (p̂, m̂, Ê) is a weak solution of (1) (with parameter
q).
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To this end, multiply the first equation in (3) by ξk
i = ξ(tk, µi), where ξ ∈

C1([0, T ]× [0, µF ]). Then by adding and subtracting terms we get

p
k+1,l

i
ξ

k+1

i
−p

k,l

i
ξk

i

∆tl
− pk,l

i

ξ
k+1

i
−ξk

i

∆tl
+ gk,l pk

i ξ
k+1

i
−pk

i−1ξ
k+1

i−1

∆µl

−gk,lpk,l
i−1

ξ
k+1

i
−ξ

k+1

i−1

∆µl
− ξk+1

i σk,l
i pk,l

i = 0.

Multiply by ∆tl∆µl and sum over i = 1, . . . , n1 and k = 0, . . . , K̂ − 1 to obtain for
each 0 ≤ K̂ ≤ K

∑n1

i=1(p
K̂,l
i ξK̂

i − p0,l
i ξ0

i )∆µl −
∑K̂−1

k=0

∑n1

i=1 pk,l
i

ξk+1

i
−ξk

i

∆tl
∆µl∆tl

+
∑K̂−1

k=0 gk,lpk,l
n1

ξk,l
n1

∆tl −
∑K̂−1

k=0 φk,lEk,lξk+1
0 ∆tl

+
∑K̂−1

k=0

∑n1

i=1 ξk+1
i σk,l

i pk,l
i = 0.

(19)

Similarly, multiply the second equation in (3) by ζk
j = ζ(tk, νj) where ζ ∈ C1([0, T ]×

[0, νF ]), and sum over j = 1, . . . , n2 and k = 0, . . . , K̂ − 1 to obtain for each 0 ≤
K̂ ≤ K

∑n2

j=1(m
K̂,l
j ζK̂

j − m0,l
j ζ0

j )∆νl −
∑K̂−1

k=0

∑n2

j=1 mk,l
j

ζ
k+1

j
−ζk

j

∆tl
∆νl∆tl

+
∑K̂−1

k=0 mk,l
n2

ζk,l
n2

∆tl −
∑K̂−1

k=0 gk,lpk,l
n1

ζk+1
0 ∆tl

+
∑K̂−1

k=0

∑n2

j=1 ζk+1
j γk,l

j mk,l
j = 0.

(20)

Also, by multiplying the last equation in (3) by ∆tl and summing over k = 0, . . . , K̂−
1 we have

EK̂,l = E0 +

K̂−1
∑

k=0

{

fk,l − ak,l
E Ek,l

}

∆tl (21)

Since q → ql in Q, using similar techniques as in [29] we can show that (11)-(13)
converge to
∫ µF

0 p̂(t, µ)ξ(t, µ)dµ

=
∫ µF

0
p0(µ)ξ(0, µ)dµ −

∫ t

0
g(Ê(τ))p̂(τ, µ−

F )ξ(τ, µF )dτ +
∫ t

0
φ(τ)Ê(τ)ξ(τ, 0)dτ

+
∫ t

0

∫ µF

0
[ξτ (τ, µ) + g(Ê(τ))ξµ(τ, µ)]p̂(τ, µ)dµdτ

+
∫ t

0

∫ µF

0 σ(τ, µ, Ê(τ))p̂(τ, µ)ξ(τ, µ)dµdτ
∫ νF

0
m̂(t, ν)ζ(t, ν)dν

=
∫ νF

0
m0(ν)ζ(0, ν)dν −

∫ t

0
m̂(τ, ν−

F )ζ(τ, νF )dτ +
∫ t

0
g(Ê(τ)p̂(τ, µ−

F )ζ(τ, 0)dτ

+
∫ t

0

∫ νF

0
[ζτ (τ, ν) + ζν(τ, ν)]m̂(τ, ν)dνdτ

−
∫ t

0

∫ νF

0 γ(τ, ν, M̂(τ))m̂(τ, ν)ζ(τ, ν)dνdτ

Ê(t) = E0 +
∫ t

0

{

f(s, M̂(s)) − aE(P̂ (s))Ê(s)
}

ds.

Hence, (p̂, m̂, Ê) is a weak solution of (1) (with parameter q) and the result is
established.

The next result follows immediately from Theorem 4.1.
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Corollary 1. Let P∆tl,∆µl
, M∆tl,∆νl

and E∆tl
denote the numerical solution from

(3), with parameter ql → q in Q and let ∆tl, ∆µl, ∆νl → 0 as l → ∞. Then

J∆tl,∆µl,∆νl
(ql) → J(q) as l → ∞.

In the next theorem, we establish the continuity of the finite difference approx-
imation with respect to the parameter. From this it immediately follows that the
approximate cost functional is continuous with respect to the parameter. Hence,
the computational problem of finding the approximate minimizer is well posed.

Theorem 4.2. Let ∆t, ∆µ, ∆ν be fixed. For each q ∈ Q let P∆t,∆µ(q), M∆t,∆ν(q)
and E∆t(q) denote the numerical solution of (3) and let qh → q in Q, as h → ∞.
Then

P∆t,∆µ(qh) → P∆t,∆µ(q), M∆t,∆ν(qh) → M∆t,∆ν(q), E∆t(q
h) → E∆t(q)

as h → ∞, in the sense defined in Theorem 3.6.

Proof. Let ph,k
i , mh,k

j , Eh,k and pk
i , mk

j , Ek denote the solutions of (3) with param-

eter qh and q, respectively. Further, let uh,k
i = ph,k

i − pk
i , vh,k

j = mh,k
j − mk

j , and

wh,k = Eh,k − Ek. Then from the first equation in (4), we have
∣

∣

∣
uh,k+1

i

∣

∣

∣
=

∣

∣

∣
uh,k

i

∣

∣

∣
(1 − λ1g

h(Eh,k) + ∆tσh(tk, µi, E
h,k)) + λ1g

h(Eh,k)
∣

∣

∣
uh,k

i−1

∣

∣

∣

+λ1

∣

∣

∣

pk
i −pk

i−1

∆µ

∣

∣

∣

∣

∣g(Ek) − gh(Eh,k)
∣

∣ ∆µ

+pk
i

∣

∣σh(tk, µi, E
h,k) − σ(tk, µi, E

k)
∣

∣ ∆t.
(22)

Multiplying (22) by ∆µ and summing over i = 1, . . . , n1 gives

‖uh,k+1
i ‖1 ≤ ‖uh,k

i ‖1(1 + c∆t) + λ1(g
h(Eh,k)|uh,k

0 | − gh(Eh,k)|uh,k
n1

|)∆µ

+λ1|g(Ek) − gh(Eh,k)|TV (pk)∆µ

+‖pk‖1 supi |σh(tk, µi, E
h,k) − σ(tk, µi, E

k)|∆t

≤ ‖uh,k
i ‖1(1 + c∆t) + λ1(g

h(Eh,k)|uh,k
0 | − gh(Eh,k)|uh,k

n1
|)∆µ

+c12∆t|wh,k| + c13∆t(|gh(Ek) − g(Ek)|
+ supi |σh(tk, µi, E

k) − σ(tk, µi, E
k)|).

(23)

For constants c12 and c13. Using the first boundary condition in (3) yields

∆tgh(Eh,k)|uh,k
0 | ≤ ∆tpk

0 |gh(Eh,k) − g(Ek)| + ∆tφh,k|wh,k| + ∆tEk|φh,k − φk|.
Hence, there exist constants c14 and c15 such that

‖uh,k+1
i ‖1 ≤ ‖uh,k

i ‖1(1 + c∆t) + c14∆t|wh,k| + c15∆t{|gh(Ek) − g(Ek)|
+ supi |σh(tk, µi, E

k) − σ(tk, µi, E
k)| + |φh,k − φk|}

−gh(Eh,k)|uh,k
n1

|∆t.

(24)

Using similar techniques, we arrive at

‖vh,k+1
i ‖1 ≤ ‖vh,k

i ‖1(1 + c∆t) + c16|wh,k|∆t + c17∆t(|gh(Ek) − g(Ek)|
+ supj |γh(tk, νj , M

k) − γ(tk, νj , M
k)|) + gh(Eh,k)|uh,k

n1
|∆t

+c18∆t

(25)
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and
∣

∣wh,k+1
∣

∣ ≤
∣

∣wh,k
∣

∣ + c19∆t(
∣

∣ah
E(P k) − aE(P k)

∣

∣

+
∣

∣fh(tk, Mk) − f(tk, Mk)
∣

∣) + c20∆t
(26)

for some constants ci, i = 16, · · · , 20. Now if we let Sh,k = ‖uh,k
i ‖1+‖vh,k

j ‖1+
∣

∣wh,k
∣

∣,

we can add (24)-(26) to get

Sh,k+1 ≤ Sh,k(1 + c21∆t) + c22∆t{|gh(Ek) − g(Ek)|
+ supi |σh(tk, µi, E

k) − σ(tk, µi, E
k)| + |φh,k − φk|

+ supj |γh(tk, νj , M
k) − γ(tk, νj , M

k)|
+

∣

∣ah
E(P k) − aE(P k)

∣

∣ +
∣

∣fh(tk, Mk) − f(tk, Mk)
∣

∣} + c23∆t,

(27)

for positive constants c21, c22 and c23. Since qh → q in Q, the result is established.

Using the above results, the following convergence result follows from a direct
application of the abstract theory in [13].

Theorem 4.3. Suppose that QN is a sequence of compact subsets of Q. Moreover,
assume that for each q ∈ Q, there exists a sequence of qN ∈ QN such that qN → q as
N → ∞. Then the functional J∆t,∆µ,∆ν has a minimizer over QN . Furthermore, if
qi
N denotes a minimizer of J∆ti,∆µi,∆νi

over QN and ∆ti, ∆µi, ∆νi → 0, then any
subsequence of qi

N has a further subsequence which converges to a minimizer of J .

5. Numerical results. In this section, we test the parameter estimation numerical
method from the previous section. Since there are no current estimates of the
decay rate of erythropoietin as a function of the total precursor population and the
maturation velocity of the precursor cells as a function of the Epo concentration,
we focus on implementing the parameter estimation scheme to provide estimates
for these two functions.

To generate a data set we fix the model parameters to these given in Table 1
and let µF = 5.9, νF = 50 and T = 5. These parameters are similar to the ones
used in [4, 14, 25]. We then solve (3) with these parameters and ∆t = 0.01, ∆µ =
∆ν = 0.02. From the resulting numerical solution we obtain the computational
data for: 1) the total population of the precursor cells (S1 = 1) denoted by Xr,
2) the total population for the mature cells (S2 = 1) denoted by Yr, and 3) the
erythropoietin level denoted by Zr where r = 1, . . . , R. These values were collected
at tr = 0.5r, r = 1, . . . , 10. Thus, R = 10. To test how noisy data would affect the
minimization results we generated a second data set with noise as follows: X̃r =
Xr(1+0.05ǫ1,r), Ỹr = Yr(1+0.05ǫ2,r), and Z̃r = Zr(1+0.05ǫ3,r), where each ǫi is a
normally distributed random number with mean zero and standard deviation equal
to one.

In our first parameter estimation experiment we assume that

g(E) =
α0E + α1

α2 + E
and aE(P ) =

α3P + α4

α5 + P
,

where the vector α = (α0, . . . , α5) is unknown. We minimize (18) over the vector
α = (α0, . . . , α5) ∈ Q which is assumed to be a compact subset of R

6
+. In this ex-

periment we set ∆t = 0.02, ∆µ = ∆ν = 0.04 which are different from those chosen
above to generate the data. Because of this difference in the mesh sizes, the data
(even without adding noise) is not exactly attained by the model output as there is
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a numerical error. The parameter estimates resulting from this experiment, which
are quite satisfactory, are presented in Figure 2.

Table 1. The parameters used to generate computational data set

Parameter Value

φ(t) 4.45 ×10−7

γ(t, ν, M) 0.01

g(E) (3.02E+.31)
(30.61+E)

aE(P ) (13.8P+.04)
(1+P )

σ(t, µ, E) (3.02E+.31)
(30.61+E)

{

2.773 − 0.5/(1 + E) 0 ≤ µ ≤ 3
−0.5/(1 + E) µ > 3

f(t, M) 15600
(1+.0382M6.96)

p0(µ)

{

0.0025 0 ≤ µ ≤ 3
0.0075 µ > 3

m0(ν) 0.07

E0 15

Estimates of model parameters from data can also be accompanied by an estimate
of uncertainty using standard regression formulations theory from statistics [17].
The first step in performing this analysis is to compute the sensitivity matrix:

X (α) =



































Pα0
(t1, α) Pα1

(t1, α) · · · Pα5
(t1, α)

...
...

...
...

Pα0
(tR, α) Pα1

(tR, α) · · · Pα5
(tR, α)

Mα0
(t1, α) Mα1

(t1, α) · · · Mα0
(t1, α)

...
...

...
...

Mα0
(tR, α) Mα1

(tR, α) · · · Mα5
(tR, α)

Eα0
(t1, α) Eα1

(t1, α) · · · Eα5
(t1, α)

...
...

...
...

Eα0
(tR, α) Eα1

(tR, α) · · · Eα5
(tR, α)



































. (28)

Since we cannot compute Pα0
(t, α), we use the finite difference scheme (3) to

obtain the approximation P̂ (t, α) =
∫ µF

0 P∆t,∆µ(t, µ, α)dµ. We then use the forward
difference approximation

P̂α0
(t, α) =

1

∆α0
(P̂ (t, (α0 + ∆α0, α1, . . . , α5)) − P̂ (t, (α0, α1, . . . , α5)))

for the derivative Pα0
(t, α). A similar calculation is done for each αi and for M(t)

and E(t) to get a forward difference approximation of X (α) denoted by X̂ (α).
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Figure 2. Estimates of aE(P ) and g(E)

Under common assumptions of nonlinear regression theory, we have that if ǫ̂i ∼
N (0, σ2), where ǫ̂i is the difference between the observation and the model at time
ti, then the least squares estimate α∗ is expected to be asymptotically normally dis-
tributed. That is, for large samples, we may assume α∗ ∼ N (q0, σ

2{X T (ᾱ)X (ᾱ)}−1),
where ᾱ is the true vector of parameters and σ2{X T (ᾱ)X (ᾱ)}−1 is the true covari-
ance matrix [17]. Since we do not know ᾱ and σ2, we follow the standard statistical
practice [3, 6] of substituting the computed value α∗ for ᾱ and approximate σ2 with

σ̂2 =
J∆t,∆µ,∆ν(α∗)

3R − 6
. (29)

So if

V = σ̂2{X T (α∗)X (α∗)}−1 =











V11 V12 · · · V16

V21 V22 · · · V26

...
...

...
...

V61 V62 · · · V66











, (30)

then we take the values
√

V11,
√

V22, . . . ,
√

V66 to be the standard errors for the
parameters α0, α1, . . . , α5, respectively. The results are give in Table 2.

Table 2. The parameter estimates resulting from the first numerical experiment with

their standard errors.

α0 α1 α2 α3 α4 α5

Estimated Value (no noise) 3.218 0.000 34.999 12.343 0.000 0.836
Standard Error (no noise) 2.733 29.543 75.026 0.927 0.118 0.221

Estimated Value (with noise) 3.215 0.000 34.999 12.973 0.000 0.920
Standard Error (with noise) 7.272 80.442 202.170 2.759 0.323 0.639

One can see from these results that the model lacks sensitivity to the parameters
α1, α2 for this particular choice of g and range of E.
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For our second numerical experiment, we test an infinite dimensional estimation
problem. In particular, we assume that aE(P ) is the only unknown parameter and
instead of choosing the form of aE given in the table, we let φN

i (P ), i = 0, . . . , N
denote the ith linear spline and approximate aE(P ) by the function aN

E (P ) =
∑N

i=0 αiφ
N
i (P ) for P ∈ [0, 2] (which contains the normal range for humans) and

extend it by a constant function for P > 2, i.e., aN
E (P ) = αN for P ∈ (2,∞).

Thus, our estimation problem reduces to minimizing (18) over the vector α =
(α0, . . . , αN ) ∈ QN a compact subset of R

N
+ . We choose N = 5 and present the

parameter estimates in Figure 3.
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Figure 3. Estimates of aE(P )

Using the procedure described previously, we calculate the standard errors for
this case. The results are given in Table 3.

Table 3. The parameter estimates resulting from the second numerical experiment with

their standard errors.

α0 α1 α2 α3 α4 α5

Estimated Value (no noise) 0.171 4.434 6.191 7.356 7.978 8.709
Standard Error (no noise) 0.037 0.078 0.160 0.217 0.198 0.501

Estimated Value (with noise) 0.000 4.544 6.103 7.704 7.703 9.419
Standard Error (with noise) 0.062 0.131 0.283 0.414 0.348 0.893
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1984.

[24] J. Keener and J. Sneyd, Mathematical Physiology, Springer, New York, 1998.
[25] J. M. Mahaffy, S. W. Polk, and R. K. W. Roeder, An age-structured model for ery-

thropoiesis following a phlebotomy, Technical Report, Centre Recherches Mathématiques,
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