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Abstract. The mathematical modeling of tumor growth allows us to describe

the most important regularities of these systems. A stochastic model, based

on the most important processes that take place at the level of individual cells,
is proposed to predict the dynamical behavior of the expected radius of the

tumor and its fractal dimension. It was found that the tumor has a charac-
teristic fractal dimension, which contains the necessary information to predict

the tumor growth until it reaches a stationary state. This fractal dimension

is distorted by the effects of external fluctuations. The model predicts a phe-
nomenon which indicates stochastic resonance when the multiplicative and the

additive noise are correlated.

1. Introduction. Cancer is a generic name given to a group of malignant cells
which have lost its specialization and control over its normal growth. These groups
of malignant cells are nonlinear dynamic systems which self-organize in time and
space, far from thermodynamic equilibrium, and exhibit high complexity [9], ro-
bustness [12], [13] and adaptability [19].

Mathematical models represent a manner for formalizing the knowledge of living
systems obtained through theoretical biology. Mathematical modeling of tumor
growth makes possible the description of its most important regularities and is
useful in providing effective guidelines for cancer therapy, drug development, and
clinical decision-making [18], [21].

On the one hand, most of the mathematical models presented in literature assume
by default that they can describe the phenomenological features of the tumor growth
using analogue systems. Such models include the Gompertzinan model [6], [7], the
logistic model [25], the prey-predator model [14], and so on. On the other hand,
such models are focused on some kind of therapy, such as; immunotherapy [20],
radiotherapy [18], and combinatory therapy [16] or drug administrations [8].
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In recent studies [4], experimental evidence has shown been found that the main
mechanism responsible for tumor growth is the competition for space, and not for
nutrients, between the tumor and the host cells, and that the tumor shows a linear
growth in time.

In the previous work [11], a mesoscopic model for tumor growth was has been
presented, considering only the effect of internal fluctuations, in order to improve our
understanding of the origin of tumor cells heterogeneity. In this case, this stochastic
formalism allows us not only to reproduce, but also to obtain a better understanding
of the experimental results presented by Brú [4]. In fact, the internal fluctuations
give an explanation as to the “super-rough” dynamics of tumor growth, where the
change of microscopic entities size is taken into account. Another important feature
of the mesoscopic model [11] is that it allows us to predict a range of values for the
critical exponents and the fractal dimensions corresponding to the experimental
findings presented by Brú [4] for different tumor cell cultures.

Our hypothesis is that the rugosity of the interface between the tumor and the
host is primarily the result of two main effects. One of them is related to the fact
that the reproduction and death of cells at the interface occurs with a particular
probability, and therefore it is the results of internal fluctuations [11]; the other is
associated with the randomness of the environment, in particular the interaction
between the tumor and the immune systems and the host, and for that reason it is
also associated with the external fluctuations.

Our objective is to extend the study of the morphogenetic basis of two-dimensional
tumor patterns. In section 2, formalism is obtained from the master equation (ME)
to obtain the mesoscopic model which describes the tumor growth dynamics in ab-
sence of external fluctuations, taking into account that the tumor grows in a limited
area. The microscopic variable considered to describe the state of the system is the
total number of tumor cells, and the macroscopic variables are the expected value
of the radius and the fractal dimension, which is a result of internal fluctuations.

In section 3, an extension of the formalism presented in section 2 is developed to
obtain the stochastic model to describe the behavior of the expected value of the
radius and the fractal dimension, taking into account the external fluctuations.

In section 4, Results and Discussion, the behavior of different types of tumor cell
colonies, characterized by Brú [4] is predicted by using the formalism developed in
section 2 and 3; and finally, in section 5 the conclusions are presented.

2. Mesoscopic model. To obtain a mathematical model to predict tumor growth,
the following considerations were made: the total number of cells n is the micro-
scopic variable that describes the behavior of the system, and macroscopic variables
considered were the tumor radius r and the fractal dimension of the interface df ,
related by the expressions:

n = πr2

Ω (1)

df = 2− 1
2G (y) (2)

y = liml→1
∆ ln(w)
∆ ln(l) , (3)
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where Ω is the area occupied by the cell or cell colony in the contour, w is an
adimensional magnitude that expresses the height difference between two points in
the contour separated by an adimensional distance l, and G (y) is a linear function
of y.

Geometrically, a tumor has the shape shown in Figure 1, in which the distance
between the center of the tumor and the point at the interface more distant from
the center H, the expected value of the tumor radius R, and the difference between
the maximum heights of two points in the contour W are useful variables.

Figure 1. Geometric representation of the tumor: H [L] is the
distance between the center of the tumor and the point at the
interface most distant from the center, R [L] is the expected value of
the tumor radius, andW [L] is the difference between the maximum
heights of two points on the contour.

As contour rugosity is a property of the tumor, not all the surface of radius H is
covered by tumor cells. If it is considered that internal fluctuations scale with the
area occupied by the microscopic entities that characterize the tumor (tumor cells
or tumor cell colonies), then the percentage of the host area occupied by tumor cells
depends on the relation between the size of the entity and the expected value of the
area occupied by the tumor, expressed by:

R2

H2 = f
(

Ω
R2

)
, (4)

where f is a function of the relation Ω
R2 with the following properties:

lim Ω
R2→0 f

(
Ω
R2

)
= 1 ⇒W = 0; df = 1

(5)
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and
lim Ω

R2→∞ f
(

Ω
R2

)
= 0 ⇒W = ∞; df = 2.

(6)

The main microscopic processes considered were the interface cells’ reproduction,
whose transition probability per unit of time Tr

[
t−1

]
is established a priori and is

described by

Tr = µn0.5

(7)

and by the contour cells’ death, whose transition probability per unit of time Td[
t−1

]
is described by

Td = kdn
0.5,

(8)

where

kd = b (1 + Fa) ;
b = cte; (9)

Fa = r2

D2 = n
N . (10)

In equations (7) and (8) µ
[
t−1

]
is the cell reproduction rate constant, and

kd
[
t−1

]
is the cell death rate constant. The death rate constant kd includes a

correction term Fa, which represents the relation between the tumor radius r and
a characteristic length D of the area (see equations (9) and (10)) and takes into
account the finite area of the host. The term Fa is equivalent to the relation between
the total number of cells and the total sites N which can be occupied.

Considering the transition probabilities (7) and (8), the master equation ME
[24], which describes the probability behavior P (n; t) of having n cells in time t, is
written as:

∂P (n;t)
∂t =

(
E−1
n − 1

)
µn0.5P (n; t) +

(
E+1
n − 1

)
b
(
1 + n

N

)
n0.5P (n; t) ,

P (n0; 0) = 1,
(11)

where Ean is the step operator. There are two different time scales in ME. One is
located in the time derivative on the left side and represents the macroscopically
measured time. The other is located on the right side of the equation and is related
to the duration of the microscopic processes.

Since the reproduction or death of a single cell produces a negligible effect on
the system:

∆n
n
∼= 0, (12)

then the variable n could be considered continuous. If the step operator is expressed
in its differential form,

E+1
n = 1 + ∂

∂n + 1
2
∂2

∂n2 , (13)
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E−1
n = 1− ∂

∂n + 1
2
∂2

∂n2 , (14)

the Fokker-Planck equation (FPE) is obtained [24] [10] from the master equation
(11):

∂P (n;t)
∂t = − ∂

∂n

[(
µn0.5 − b

(
1 + n

N

)
n0.5

)
P (n; t)

]
+ 1

2
∂2

∂n2

[(
µn0.5 + b

(
1 + n

N

)
n0.5

)
P (n; t)

]
. (15)

If we take into account the following relations between the probability related
to the microscopic P (n, t) and the one related to the macroscopic variables P (r, t)
[10],

∂P (n; t) ∂n = ∂P (r; t) ∂r;
(16)

∂P (n;t)
∂t = ∂r

∂nP (r; t) , (17)

then the FPE related to the behavior of the macroscopic variable is

∂P (r;t)
∂t = − ∂

∂r

[(
ψ − η

(
1 + r2

D2

)
− Ω

2r2

(
ψ + η

(
1 + r2

D2

)))
P (r; t)

]
+ 1

2
∂2

∂r2

[
Ω
2r

(
ψ + η

(
1 + r2

D2

))
P (r; t)

]
, (18)

in which the relations among macroscopic and microscopic rate constants are

ψ =
(

Ω
4

)0.5
µ, (19)

η =
(

Ω
4

)0.5
b. (20)

In FPE (18), the first term on the right hand side is a convective term related to
the expected or deterministic value, while the second one is a diffusive term related
to the fluctuation’s value. If it is considered that

ψ − η
(
1 + r2

D2

)
>> Ω

2r2

(
ψ + η

(
1 + r2

D2

))
(21)

then the equation (18) can be written as:

∂P (r;t)
∂t = − ∂

∂r

[(
ψ − η

(
1 + r2

D2

))
P (r; t)

]
+ 1

2
∂2

∂r2

[
Ω
2r

(
ψ + η

(
1 + r2

D2

))
P (r; t)

]
,

P (r0; t0) = 1.

(22)

From the FPE (22) the expected radius of the tumor R is obtained [24]:

dR
dt = ψ − η

(
1 + R2

D2

)
;

dR
dt = V − η R

2

D2 ,
R0 > 0

(23)
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and for variance σ:

dσ
dt = −2 ηRD2σ + Ω

2R

(
ψ + η

(
1 + R2

D2

))
,

σ0 = 0
(24)

where V
[
L.t−1

]
is the tumor growth rate macroscopically observed during the linear

growth stage [4]. The system of ordinary differential equation given by (23) and (24)
represents the mesoscopic model which describes the tumor dynamics in absence
of external fluctuations considering the finite host area. The stability analysis [1]
shows that the radius grows to a stable stationary state, also called the dormant
tumor stage [15].

The analytic solution of the differential equation (23) gives the behavior of the
expected value of the radius

R = Rss
(R0+Rss) exp(2 V

Rss
t)+(R0−Rss)

(R0+Rss) exp(2 V
Rss

t)−(R0−Rss)
;

Rss =
(
ψ
η − 1

)0.5

D,
(25)

where Rss is the expected value of the tumor radius in the stationary state or
dormant tumor stage. As the tumor can not physically exceed the size of the area
in which it grows, the relation between reproduction and endogenous death rates is
limited by the possible values; so,

1 < ψ
η < 2.

(26)

If the initial radius of the tumor, when only interface cells can reproduce and
die, is negligible with respect to the size of the system, R0 << Rss, then equation
(25) can be written as:

R = Rss
exp(2 V

Rs t)−1

exp(2 V
Rs t)+1

. (27)

Additionally, if in the initial stages of the tumor development, we take into
account that 1 >> R2

D2 , the equation (23) is reduced to a differential equation of
order zero with respect to tumor radius and its solution is

R = V t+R0,
R = (ψ − η) t+R0,

(28)

which reproduces the experimental behavior observed by Brú [4].
According to our hypothesis, the tumor fractal dimension depends on the physio-

logical condition of active cells at the interface, and it must include the reproduction
and death rate constants. To determine the characteristic fractal dimension of the
tumor, the right side of equation (24) is equaled to zero, so that

dσ
dt = 0;
D = H,

(29)

and the variance is expressed as

σ = H2

4
Ω
R2

(
ψ
η + 1 + R2

H2

)
. (30)



MORPHOGENESIS OF THE TUMOR PATTERNS 305

Because the height difference between two points at the interface is equivalent to
the magnitude of internal fluctuations (expressed by the square root of the variance)
[3], the following adimensional expression is obtained from equation (30):

w2 = l2

4

(
ψ
η + 1 + L2

)
, (31)

where:

w = σ0.5

H , (32)

l =
(

Ω
R2

)0.5
, (33)

L = R
H , (34)

L2 = f
(
l2

)
. (35)

In equation (35), f(l2) is, according to the preestablished considerations (see
equation (4)), a scale down function which takes into account the fact that that
internal fluctuations will depend on the size of the microscopic entities and the size
of the system.

Also, because there is a linear relation between the expected value of the radius
and the perimeter, the adimensional variable l is equivalent to the distance between
two interface points. Consequently, the following scaling relation can be assumed:

L2 = f
(
l2

)
L2 = 1− l2,

(36)

so, equation (31) is expressed as

w2 = l2

4

(
ψ
η + 2− l2

)
. (37)

Substituting equation (37) in (3) gives:

y = liml→1

∆ ln

((
l2
4 (ψη +2−l2)

)0.5
)

∆ ln(l)

y = liml→1

d ln

((
l2
4 (ψη +2−l2)

)0.5
)

dl

 (
d ln(l)
dl

)−1

y =
(

ψ
ψ+η

)
y =

(
µ
µ+b

)
,

(38)

and finally, (38) in equation (2) gives:

df = 2− 1
2

[
C1

(
µ
µ+b

)
+ C2

]
, (39)

where constants C1 and C2 are evaluated, taking into account the interval of values
physically possible that can be obtained by the relation between the reproduction
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and endogenous death rate constants expressed by equation (26) and its correspon-
dent fractal dimension value. Then two extreme cases appear:

ψ
η = 1 ⇒ df = 2,

(40)

because when ψ
η = 1, the tumor does not grow and so the fractal dimension is

equal to the surface dimension; and

ψ
η = 2 ⇒ df = 1,

(41)

because when ψ
η = 2, the contour rugosity is zero and the fractal dimension is

equal to the topological dimension of the contour of a circle of radius H. Taking
into account both extreme conditions given by equations (40) and (41), the follow-
ing expression is proposed to determine the characteristic fractal dimension of the
tumor:

df =
5−ψη
ψ
η +1

. (42)

3. Stochastic model. External fluctuations have been taken into account in order
to understand the effects that the host and immune system produce in the tumor.
The differential equation to determine the expected value of the tumor radius is
taken as a starting point, and the random nature of the environment (action of the
host and immune system) is considered to be reflected by the stochastic nature of
the reproduction and death rate constants; so, equation (23) can be expressed as

dR
dt = ψ̂ − η̂

(
1 + R2

D2

)
; (43)

ψ̂ = ψ + ξ; (44)

η̂ = η + ζ;
(45)

R0 > 0,
(46)

where ψ and η are the expected values, while ξ and ζ are the fluctuations related
to these parameters, respectively. According to the mathematical structure of the
model, ξ is an additive noise to the system, while ζ is a multiplicative noise. These
noises, by simplification, are considered to have the following properties:

〈ξ〉 = 0,
(47)

〈ζ〉 = 0,
(48)〈

ξ2
〉

= 2 (σψ) , (49)
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〈
ζ2

〉
= 2 (ση) , (50)

〈ξζ〉 = 2λ (σψση)
0.5
, (51)

where λ is the coefficient of correlation between the additive and the multiplicative
noises, σψ is the variance of the additive noise, and ση is the variance of the mul-
tiplicative noise. From equation (43) to equation (51), the stochastic differential
equation (SDE) is obtained:

dR =
(
ψ − η

(
R2

D2 + 1
))

dt

+
(
2σψ + 2ση − 2λ (σψση)

0.5
)0.5

d$

+
(
2R

2

D2ση + R4

D4ση − 2R
2

D2λ (σψση)
0.5

)0.5

d$,

(52)

where $ is a stochastic variable whose probability function is a Wiener process [10].
The FPE corresponding to the SDE (52) is:

∂P (r;t)
∂t = − ∂

∂r

[(
ψ − η

(
1 + r2

D2

))
P (r; t)

]
+ 1

2
∂2

∂r2

[(
2σψ + 2ση − 2λ (σψση)

0.5
)
P (r; t)

]
+ 1

2
∂2

∂r2

[(
2R

2

D2ση + R4

D4ση − 2R
2

D2λ (σψση)
0.5

)
P (r; t)

]
,

P (r0; t0) = 1.

(53)

Because we want to know the effect of external fluctuations over the macroscopic
features of the tumor, that is, over the fractal dimension which is related to rugosity
and the scope of the fluctuations in the radius as a result of environment random-
ness, only the expected value and the variance obtained from the equation (53) are
needed. So, for the expected value

dR
dt =

(
ψ − η

(
R2

D2 + 1
))

, (54)

and for variance σe related to the external fluctuations

dσe
dt = − 4ηR

D2 σe + 2 (Iψ)2 ψ2 + 2 (Iη)
2
η2 − 2λIψIηψη

+ 2R
2

D2 (Iη)
2
η2 + 2R

4

D4 (Iη)
2
η2 − 2R

2

D2λIψIηψη,
(55)

where Iψ and Iη are the intensity of the additive and multiplicative noises respec-
tively, which are defined as

Iψ = (σψ)0.5

ψ (56)

and

Iη = (ση)
0.5

η . (57)

The ODE (54) is structurally equivalent to the relation obtained from the meso-
scopic model (see equation (23)). In this case, the formalism ignores the effect of
external fluctuations on the expected value of the radius. Also, the variance σe
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expresses the magnitude of fluctuations of the tumor radius due to the random
nature of the environment (host-immune system). If in a particular case, the noise
intensity is considered constant, the system can be “frozen” in time:

dσe
dt = 0;
D = H,

(58)

and the following adimensional relation is obtained:

(we)
2 = l

((Iψ)2µ2+(Iη)
2b2−λIψIηµb+(Iη)

2b2L2+(Iη)
2b2L4−λIψIηµbL2)

8(Ω
4 )0.5

b
.

(59)

In this case, although external fluctuations are not considered to affect the ex-
pected value of the radius, these fluctuations are manifested at a macroscopic level
in the distortion of the tumor fractal dimension with respect to its characteristic
fractal dimension.

To find the relation among the fractal dimension in front of external fluctuations
def , the characteristic fractal dimension df , and the intensity of noises Iψ and Iη,
the following is considered. First, the relation between the reproduction and death
rate constants is related to the fractal dimension through and expression obtained
from equation (42):

ψ
η = µ

b = (5−df )
df+1 . (60)

Second, the scaling relation given by equation (36) will be considered, and third,
the total height difference between two interface points separated by a perimeter
distance l will be considered as the sum of the height difference due to external
fluctuations we and a height difference due to internal fluctuations w, so the fractal
dimension def will be calculated as:

def = 2− 1
2ye + C3, (61)

where:

ye = liml→1
∆ ln(we+w)

∆ ln(l) (62)

and C3 is a constant evaluated taking into account that when there is no external
noise, the fractal dimension def has the same value as the characteristic fractal
dimension of the tumor df . Then,

def = 0.833 33df + 0.833 33− (5−df )

6

(√
0.333 34( ηΩ )A1+1

)

+
0.408 24( ηΩ )0.5

((
I2η−

(
(5−df)
(df+1)

)2

I2ψ−λ
(

(5−df)
(df+1)

)
IψIη

))
(df+1)0.5

A2

√√√√(I2η+
(

(5−df)
(df+1)

)2

I2ψ−λ
(

(5−df)
(df+1)

)
IψIη

)

A1 =
(
(df + 1) I2

η + (5−df )2
(df+1) I

2
ψ − λ (5− df ) IψIη

)
A2 =

(√
0.333 34

(
η
Ω

)
A1 + 1

)
.

(63)
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4. Results and discussion. To analyze the validity of the developed formalism
(section 2, equation (25)), a parameterization of the model is carried out to com-
pare the temporal behavior of the radius of the tumor with that experimentally
observed by Brú [4] for a HT-29 (colon adenocarcinoma) cell colony growing in a
Petri dish 5 cm in diameter at a rate of 1.93 µm.h−1 and a fractal dimension of 1.13.
The macroscopic parameters, reproduction constants and death rate constants are
determined from equations (28) and (60), to obtain

ψ = 4. 29 µm.h−1

and

η = 2. 36 µm.h−1.

Given that the Petri dish has a radius of 2.5 cm, as an initial condition we
select the one given by Brú [4] for a colony of HT-29 (colon adenocarcinoma) cells
(R0 = 250 µm, t0 = 400 h). The graph shown in Figure 2 is obtained from equation
(25).

Figure 2. Predicted behavior of R for a colony of HT-29 colon
adenocarcinoma cells. The initial condition was selected according
to the results shows by Brú [14] (R0 ∼ 250 µm, t0 ∼ 400 hour).

As observed, the macroscopic model (equation (23)) which is derived from stochas-
tic formalism reproduces the experimental results found by Brú [4]. To generalize
the model, five tumor cell lines shown in Figure 3, were selected. The features
of theses cells are reported by Brú [4]. Table 1 shows the linear growth rates V
µm.h−1, their fractal dimension df [4], as well as the reproduction ψ and death η[
µm.h−1

]
rate constants of these cells, predicted by the model.

As can be seen, in the absence of external fluctuations, the stochastic formalism
allows formulating a macroscopic model that on the one hand describes the linear
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Table 1. Macroscopic characteristics reported by Brú observed in
different types of in vitro cell lines were formed in 5-cm-diameter
petri dishes. a: macroscopic characteristics reported by Bru; b:
Reproduction and death rate constants calculated by the proposed
model from the observed macroscopic characteristics.

Number Cell line Type daf V a ψb ηb

1 HT-29 Colon adenocarcinoma 1.13 1.93 4.29 2.36
2 C-33 cervix carcinoma 1.25 6.40 16.00 9.00
3 Saos-2 osteosarcoma 1.34 0.94 2.60 1.66
4 AT5 primary human foreskin fibroblasts 1.23 8.72 21.34 12.62
5 3T3 mouse fibroblasts 1.20 1.10 2.61 1.51

Figure 3. Predicted dynamical behavior of expected radius: (1)
HT-29 Colon adenocarcinoma; (2) C-33 cervix carcinoma; (3) Saos-
2 osteosarcoma; (4) AT5 primary human foreskin fibroblasts; (5)
3T3 mouse fibroblasts.

growth of the tumor radius in time and on the other hand its evolution until reaching
a stable stationary state, which seems to be associated with tumor dormant state.

On one hand, it has been experimentally demonstrated that once the tumor
appears, which is considered as a self-organising systems, spatial and temporarilly
far from thermodynamic equilibrium, it shows a linear growth in the host [4] until
reaching a critical size; then, for reasons not yet clarified, it stops growing for
a period known as the dormant state [22]. After this, the tumor metastasizes,
invading other organs, and this is main cause of death for cancer patients.

On the other hand, the host responds to the tumor growth. Where the active
tumor cells try to escape from the host’s action, they concentrate within a rough
border, which shows the robustness of the tumor [5], which can be measured through
the tumor fractal dimension. After this, the immune system cannot to eliminate it
[23].
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Three extreme cases are considered to analyze the effect of the external noise on
the tumor in the dormant state; that is, the random action of the immune systems
and the host over the tumor systems: 1. the effect of additive noise in absence of
multiplicative noise, 2. the effect of the multiplicative noise in absence of additive
noise, and 3. the effect of the additive and multiplicative noises when both are
present with or without correlation. To evaluate these effects, the fractal dimension
is calculated by equation (63) for the five tumor cell lines used before (see Table 1)
[4]. The results obtained are shown in Figure 4.

In this case, two extreme behaviors are observed. Additive noise (Figure 4.A)
implies a slight decrease of the tumor fractal dimension, while the multiplicative
noise (Figure 4.B) and the action of both in absence of correlation causes an increase
of the tumor fractal dimension. On the other hand, a correlation of both noises leads
to a stochastic resonance [1], which means that at low noise intensity values, the
fractal dimension first decreases and then increases. A similar result was reported
by Zhong et al. [26].

This stochastic resonance phenomenon could explain as to why tumors remain
in the dormant state for some time and then metastasize.

If we considered, as stated at the beginning of this work, that the external noise
is associated with the random host-immune system action, in an early stage (Fig. 4
D) the appearance of an atypical behavior of the stochastic resonance is observed.
That is, the fractal dimension decreases with low noise intensity, which could mean
that the action of both systems reduces the malignancy of the tumor. This has been
observed in the anticancer therapy processes [17] where the tumor fractal dimension
decreases after therapy.

In addition, as the host and immune system effects have a random nature, the
fractal dimension increases with noise intensity which produces an increasing malig-
nity of the tumor, as experimentally observed that the increase in the malignancy
of the tumor produces an increase of the tumor’s fractal dimension [2]. This seems
to be related to the increase in the number of active cells at the interface. Finally,
it is important to highlight that although it is possible to predict when a tumor
will reach the dormant state it is nearly impossible to predict when the tumor will
reach the metastatic stage due to the highly random nature of the host and immune
system actions, which involves not only the noise intensity but also the correlation
among them. This aspect is something that which must be considered in cancer
treatments.

5. Conclusions and remarks. In summary, in this work, a stochastic formalism
that allows a better understanding of the morphogenesis of the tumor pattern for-
mation dynamics has been developed. The stochastic formalism developed not only
reproduces the experimental results observed by Brú [4] but clarifies the physics of
the complexity observed of the tumor patterns.

From the mesoscopic model, an ordinary differential equation which describes
the tumor radius change, including both the linear growth and the dormant stages,
was obtained. The parameterization of this model allows us to reproduce the ex-
perimental results observed by Brú [4]. Another important characteristic of the
formalism is that the resulting equation allows us to relate the fractal dimension of
the tumor with the tumor reproduction and death rate constants.

According to the hypothesis presented, when the external fluctuations are rele-
vant (that is to say, the magnitude of the fluctuations related to the effect of the
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Figure 4. Effect of the external noise on the fractal dimension
dfe for different tumor cell lines [14]. (1) HT-29 Colon adenocarci-
noma; (2) C-33 cervix carcinoma; (3) Saos-2 osteosarcoma; (4) AT5
primary human foreskin fibroblasts; (5) 3T3 mouse fibroblasts. A.
Effect of additive noise in absence of multiplicative noise; B. Effect
of multiplicative noise in absence of additive noise; C. Effect of ad-
ditive and multiplicative noise in absence of correlation; D. Effect
of additive and multiplicative noise in presence of correlation.

immune systems and the host on the tumor is significant), the fractal dimension
of the tumor is distorted with respect to the tumor’s characteristic fractal value,
which influences the amount of active cells found at the interface of the tumor in
the dormant state.

When a correlation between both noises exists, a typical phenomenon of the
stochastic resonance appears. This could be an acceptable explanation for why a
tumor in a dormant phase, stationary state stable, can reach a critical state and
then metastasize in spite of the host and immune actions.

It is important to clarify the fact that although in first approximation it is possible
to predict when tumors reach the dormant state, it is practically impossible to
forecast when a tumor will metastasize, given the highly random character of the
action of immune system and the host.

The present theoretical framework for mathematical modeling of tumor growth
will, we hope, improve cancer therapy.
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