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Abstract. We consider an SIR metapopulation model for the spread of rabies
in raccoons. This system of ordinary differential equations considers subpop-
ulations connected by movement. Vaccine for raccoons is distributed through
food baits. We apply optimal control theory to find the best timing for dis-
tribution of vaccine in each of the linked subpopulations across the landscape.
This strategy is chosen to limit the disease optimally by making the number
of infections as small as possible while accounting for the cost of vaccination.

1. Introduction. Rabies is one of the oldest known viral diseases and remains
the most important viral zoonotic disease world-wide. The most common mode of
rabies virus transmission is through the bites of an already infected animal. Rabies
virus characteristically migrates from the bite wound through the peripheral nervous
system and into the central nervous system and brain. When rabies virus reaches
the brain, it replicates rapidly, is shed through the salivary glands, and the infected
animal starts to show signs of disease. Time between initial infection and disease
onset is somewhat variable and may depend on the location and severity of wound,
but infected animals usually die within a week of onset of symptoms. Although
rabies vaccinations have been available for domestic animals for many years, until
recently no preventive action existed to control the spread of rabies in wildlife. In
the United States, wild animals accounted for 93% of reported cases of rabies in
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2001 [18]. Within wildlife reservoirs, several distinct rabies virus variants have been
identified. There are geographically partitioned and molecularly distinguishable
variants associated with different terrestrial hosts such as raccoons, skunks, foxes,
coyotes, and bats [21]. However, among terrestrial animals, raccoons have been the
most frequently reported rabid species (37.2% of all animal cases during 2001) and
they are the primary terrestrial reservoir for rabies in the eastern United States
[18].

Raccoon rabies variant emerged along the Virginia-West Virginia border in the
mid 1970s and spread as an irregular wave over the eastern seaboard of the US.
Raccoon rabies variant now occurs from Ontario to Alabama. The westward ex-
pansion of rabies virus in raccoons has been largely halted through the delivery of
an effective oral rabies vaccine (ORV). The vaccine is a live vaccinia virus recom-
binant expressing the rabies glycoprotein. The live virus is embedded in a fishmeal
base encased within a plastic package coated in fish meal and oil. When the raccoon
eats the bait, there is an immune response to the rabies virus glycoprotein antigen,
which creates antibodies to fight off the disease. Baits are distributed by fixed-wing
aircraft and by truck in rural areas and by hand in urban and suburban areas. In
2003, more than 10 million baits were distributed in the United States and Canada
[22].

A number of authors have explored models for control under epidemic expan-
sion. Analytic results for optimal control applied to a simple SIR epidemic model
including vaccination, quarantine, and costs for a health promotion campaign were
obtained by Behncke [2]. Greenhalgh considers control of an epidemic spreading in
a homogeneously mixing population, which is controlled by both immunizing sus-
ceptibles and isolating infecteds [12]. For epidemics in heterogeneous populations
in which the optimal vaccination policy is linked to the changing growth rate, see
the work by Cairns [3]. For deterministic and stochastic models in discrete time,
describing an epidemic in an university setting, see the work by Martin et. al.[15].
Clancy treated optimal intervention policies for general stochastic epidemic models
[5]. Francis [10] gives an economic analysis for a vaccination model in a flu season.
Sethi, Morton, and Wickwire survey fundamental work on control of epidemics
[16, 23, 24]. Ögren and Martin studied optimal vaccination patterns for a rapidly
spreading disease in an urbanized, highly mobile population setting [19]. Their
model is similar to one presented here but with a different spatial arrangement.

The modeling of rabies spread and control has been widely studied by ecologists
and mathematical biologists. Murray, Stanley, and Brown [17] studied the spatial
spread of rabies among foxes in England. In their PDE model, the fox population
was divided into three classes: susceptible, infected but noninfectious, and infectious
rabid [17]. Evans and Pritchard extended this model as a nonlinear time-varying
control system described by partial differential equations with feedback control to
drive the system toward a desired profile [7]. Coyne, Smith, and McAllister devel-
oped a model which makes explicit the development of natural immunity to rabies
and used this to evaluate culling and vaccination strategies [6]. In this model, six
classes were considered: susceptible raccoons, infected but noninfectious raccoons
that develop rabies, infected but noninfectious raccoons that eventually develop im-
munity, rabid raccoons, raccoons that are immune as a result of natural infection,
and vaccinated raccoons. Both discrete-time deterministic and stochastic models
were analyzed by Allen, Flores, Tatnayake, and Herbold [1]. Their models are struc-
tured with respect to space (m patches), age (juvenile and adults) and three disease
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states: susceptible, infected, and vaccinated. An SEIR (susceptible, exposed, in-
fectious, and recovered) model was developed to describe the spatial and temporal
patterns of raccoon rabies epizootic in [4]. Optimal control has not been previously
applied to an epidemic model for rabies in raccoons; thus, this work is the first
optimal control application in this area.

Rabies vaccine is distributed spatially and current distribution effort is based
on guesswork and expert opinion. There is a need to develop a framework for
guiding these vaccine distribution strategies. This paper is the first step toward
the development of that framework and is based on spatial optimal control. This
first step lays out the approach and documents the feasibility of this approach.
Later papers will specifically used the techniques developed here and apply them to
specific landscapes and at larger scales. In this paper, we show the success of the
general approach under idealized simple landscapes. We also note that the results
here are an illustration of a tool that can be adapted to other epidemic scenarios.

There are very few optimal control papers with space as a discrete variable and
geographic layout. In our model, the distances in the spatial layout are shown in
the movement coefficients.

Our goal is to investigate optimal vaccination strategies to control the spread of
rabies using a metapopulation SIR model with a system of ODEs. In Section 2, the
assumptions of our model and definitions of parameters are stated. We then give
a description of our metapopulation SIR model and the objective functional to be
minimized. In Section 3, we apply Pontryagin’s Maximum Principle to find the nec-
essary conditions for the optimal control. In Section 4, we show simulation results
to illustrate the population dynamics with the rate of vaccination as a control. Our
conclusions are given in Section 5.

2. Metapopulation model. We consider a population consisting of n subpop-
ulations which are connected by immigration or emigration. Figure 1 represents
the flow diagram of our model. Subpopulation i is divided into three classes; the
susceptibles, Si, that can be infected with rabies virus; the infecteds, Ii, individual
raccoons that are currently infected with rabies and can transmit the virus; and the
removed class, Ri, corresponding to individuals that are vaccinated and become im-
mune to infection by rabies virus. To illustrate how control may be rapidly applied
with vaccine distribution after an outbreak, we consider a short period. Natural
deaths occur at a low level all year round, but birth rate occurs at a higher level
during a specific time of year. Investigating the effect of seasonal birth pulse rate
on vaccine distribution is important and will be considered in our future work. Be-
cause of the short period, we assume that the individuals in class Ri do not lose
immunity once they are vaccinated. Our objective is to develop optimal schemes
for rapid mobilization of vaccine distribution following detection of an outbreak, as
this would be useful to assist in determining the best spatial distribution of effort
when a surveillance program detects an outbreak.

Individuals in class Ri are removed from the system only when they die, with
mortality rate µR. The mortality rate for the class Ii due to rabies is much higher
compared to the mortality caused by natural causes or factors other than the disease,
so we only include the mortality due to rabies for the class Ii. Moreover, since the
rabid animals usually die within a week after the symptoms of the disease appear,
individuals in Ii do not enter the class Ri. Only the individuals in Si can enter
Ri when they are vaccinated. We do not consider the case that infected animals
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recover from the disease and become immune to it, since there is little evidence for
a naturally formed immune class of animals [4]. Thus, once individuals are infected,
they die and are removed from the system. In Figure 1, the symbol aij represents
the rate of geographic movement of uninfected individuals (susceptible and immune
classes) and cij represents the rate of geographic movement of infecteds. Depending
on the spatial orientation of subpopulations, aij may not be the same as aji and
similarly for cij and cji. The values are assumed to be inversely proportional to
the distance between the subpopulations i and j. There is some controversy about
whether infected animals change their behavior, become aggressive, and move much
more rapidly than uninfected ones. We can allow for the case of the movement
coefficients for infecteds to be different or the same as for susceptibles. On the other
hand, there are no reported alterations in behavior associated with vaccination. We
assume that there is no significant change in the behavior of raccoons before and
after the consumption of baits. The definition of the parameters used is summarized
in Table 1.

Figure 1. Flow diagram

Key assumptions for our model are listed below.

Assumptions

• The mortality rates for susceptible and immune classes are the same; i.e.,
µS = µR.

• The magnitude of the rates of geographic movement, aij and cij , reflects the
distance between the subpopulations i and j. Figure 2 shows two examples
of possible spatial configurations of four subpopulations from the viewpoint
of subpopulation 1. In the example in Figure 2(a), the subpopulation 1 is
located at the same distance from the other subpopulations 2, 3, and 4. In
this case, the rates of geographic movement from S1 to the other three, S2,
S3 and S4 are the same. However, if the distance between subpopulation 3
and subpopulation 1 is largest, as shown in Figure 2(b), then the rate a13 is
smallest.

• If raccoons consume the baits containing the vaccine, they instantly become
immune to the disease.
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Table 1. Nomenclature

Symbol Definition
aij rate of geographic movement of noninfecteds (susceptible

and immune classes) from subpopulation i to subpopula-
tion j

cij rate of geographic movement of infecteds from subpopula-
tion i to subpopulation j

βi rate of transmission in subpopulation i
µS mortality rate for class S
µI mortality rate for class I
µR mortality rate for class R
σi rate of vaccine bait distribution (control)
γ efficacy of vaccination distribution
Si number of susceptibles in subpopulation i
Ii number of infecteds in subpopulation i
Ri number of individuals immune to the disease in subpopu-

lation i

The state system is

dSi

dt
= −βiSiIi − γσiSi +

n∑

j=1,j 6=i

ajiSj −
n∑

j=1,j 6=i

aijSi − µSSi

dIi

dt
= βiSiIi +

n∑

j=1,j 6=i

cjiIj −
n∑

j=1,j 6=i

cijIi − µIIi

dRi

dt
= γσiSi +

n∑

j=1,j 6=i

ajiRj −
n∑

j=1,j 6=i

aijRi − µRRi

(1)

S(0) = S0, I(0) = I0, R(0) = R0.

We consider this system on the time interval [0, T ]. The control set is defined as

U = {σ = (σ1, . . . , σn) | σi is Lebesgue measurable,

0 ≤ σi(t) ≤ σmax a.e. for i = 1, 2, . . . , n}.
We choose the upper bound for σ to be 1, to represent the amount of vaccine
distribution resulting from the highest level of vaccine bait distribution currently
used, roughly about 150 baits/km2. The combined coefficient γσi(t) represents the
rate of removal of susceptibles from subpopulation i due to vaccination. We wish
to minimize the total number of infecteds and the cost associated with vaccination.
We consider the following optimal control problem, for σ ∈ U .

Minimize J(σ) =
n∑

i=1

T∫

0

(Ii +
α

2
σ2

i ) dt (2)

where α > 0 is the weight factor in the cost of control. We choose a quadratic
cost on the control for analysis convenience for this prototype problem. One can
easily modify this to consider a combination of quadratic and linear cost, Aσi +Bσ2

i

where A > 0, B > 0, or other convex functions. When applying this approach to a
more elaborate, realistic setting, one should choose the objective functional to more
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(a) a12 = a13 = a14 (b) a12 > a14 > a13

Figure 2. Rate of geographic movement aij

closely represent the actual cost and the specific goals. In a recent paper about
vaccination optimal control, a cost functional of σ10 was used with justification
about the big difference in cost between vaccinating at a low level compared to a
high level [11].

In the next section, we show the existence of optimal controls and derive corre-
sponding necessary conditions.

3. Necessary conditions for the optimal control. Note that the solutions
to the state system exist and are bounded [14], independent of the control. The
objective functional is convex on the compact, closed control set and the state
differential equations are linear functions of the control. Using a standard result
[9], we have the following existence result for an optimal control.

Theorem 3.1. There exists an optimal control σ in U that minimizes the objective
functional J(σ).

By using Pontryagin’s Maximum Principle [20, 13], we derive the necessary con-
ditions for optimality. We form the Hamiltonian with adjoint variables λ1 i, λ2 i and
λ3 i for i = 1, 2, ..., n.

H(t, S, I, R, σ) =
n∑

i=1

[Ii +
α

2
σ2

i + λ1 iS
′
i + λ2 iI

′
i + λ3 iR

′
i], (3)

where λ1i is multiplied by the right hand side of the Si ODE and similarly for λ2i

and λ3i.

Theorem 3.2. Given an optimal control σ = (σ1, σ2, ..., σn) in U and corresponding
state solutions S = (S1, S2, ..., Sn), I = (I1, I2, ..., In), and R = (R1, R2, ..., Rn),
there exist λ1 = (λ11, λ12, ...λ1n), λ2 = (λ21, λ22, ...λ2n), and λ3 = (λ31, λ32, ...λ3n)
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satisfying the adjoint system:

λ′1i =− ∂H

∂Si
= λ1i(βiIi + γσi +

n∑

k=1,k 6=i

aik + µS)− λ2iβiIi−

λ3iγσi −
n∑

k=1,k 6=i

λ1kaik

λ′2i =− ∂H

∂Ii
= −1 + λ2i(−βiSi +

n∑

k=1,k 6=i

cik + µI) + λ1iβiSj −
n∑

k=1,k 6=i

λ2kcik

λ′3i =− ∂H

∂Ri
= λ3i(

n∑

k=1,k 6=i

aik + µR)−
n∑

k=1,k 6=i

λ3kaik

(4)

and λ1i(T ) = λ2i(T ) = λ3i(T ) = 0 for i = 1, 2, ..., n.

Furthermore we conclude

σi = min{max{0,
γSi(λ1i − λ3i)

α
}, σmax} for i = 1, 2, ..., n. (5)

Proof. Suppose σ = (σ1, σ2, ..., σn) is an optimal control and S = (S1, S2, ..., Sn),
I = (I1, I2, ..., In), and R = (R1, R2, ..., Rn) are corresponding solutions. Using the
result of Pontryagin’s Maximum Principle [20], there exist adjoint variables λ3i, λ2i

and λ1i satisfying: For i = 1, 2, · · · , n

λ′1i = −∂H

∂Si

λ′2i = −∂H

∂Ii

λ′3i = − ∂H

∂Ri

(6)

where H is the Hamiltonian, with the transversality conditions

λ1i(T ) = λ2i(T ) = λ3i(T ) = 0. (7)

For example, λ′1i for i = 1, . . . , n is given by

λ′1i = −∂H

∂Si

= λ1i(βiIi + γσi +
n∑

k=1,k 6=i

aik + µS)− λ2iβiIi − λ3iγσi −
n∑

k=1,k 6=i

λ1kaik

(8)

The general form for the optimality condition is given by

∂H

∂σi
= ασi − γSi(λ1i − λ3i) = 0 , at σ∗i (9)

on the set {t| 0 < σ∗i (t) < σmax, i = 1, 2, ..., n}. By solving (9) for σ∗i (t) for
i = 1, 2, · · · , n on the interior of the control set, we have

σ∗i (t) =
γSi(λ1i − λ3i)

α
. (10)

Using the control bounds, we obtain the optimal characterization (5).
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Since the solutions of the state and adjoint systems are L∞ bounded, the right-
hand side of these ODEs are Lipschitz in the state and adjoint variables, which
guarantees the uniqueness of the optimality system consisting of (1), (4), and (5)
(with initial state and final adjoint conditions). This Lipschitz property implies,
for T sufficiently small, the solutions of the optimality system are unique [8].

4. Numerical results. To illustrate our control results, we consider a population
consisting of nine subpopulations whose geographical orientation is given by Figure
3. Figure 3 shows only the symmetric spatial arrangement, not the flow lines. In our
examples, all nine subpopulations are connected to each other, and each movement
coefficient depends solely on the distance between two subpopulations.

Since we have three state variables, susceptibles (Si), infected (Ii) and removed
(immune) (Ri) for each subpopulation i = 1, ..., 9, our state system given by (1)
consists of twenty-seven ODEs. There is a corresponding system of adjoint variables
consisting of twenty-seven ODEs.

Figure 3. Spatial arrangement of subpopulations used in numer-
ical simulation

We numerically solved the optimality system, consisting of fifty-four ODEs from
the state and adjoint equations. Each subpopulation and the optimal control (vac-
cination rate) have been generated iteratively. First, we solve the state equations
with a guess for the control, the state system is solved forward in time with a fourth
order Runge-Kutta method. Using these state solutions, we solve the adjoint sys-
tem backward in time. We repeat the iteration with the updated control (convex
combination of the previous control and the value from the characterizations given
by (5)) until the solutions converge.

The following is the default setting for the initial conditions and parameters. We
used these values unless specified otherwise. Units are per day for all rates. We
take
α = 100
βi = 0.01 for all i
µS = µR = 0.00236, µI = 0.1818.
Si(0) = 100 for i 6= 9, S9(0) = 90
Ii(0) = 0 for i 6= 9 I9(0) = 10
σmax = 1



CONTROL OF RABIES METAPOPULATION MODEL 227

A = (aij) = 10−4 ×




0 3.83 1.92 3.83 2.71 1.71 1.92 1.71 1.36
3.27 0 3.27 2.31 32.7 2.31 1.46 1.64 1.46
1.92 3.83 0 1.71 2.71 3.83 1.36 1.71 1.92
3.27 2.31 1.46 0 3.27 16.4 3.27 2.31 1.46
1.97 2.78 1.97 2.78 0 27.8 1.97 2.78 1.97
1.46 2.31 3.27 1.64 3.27 0 1.46 2.31 3.27
1.92 1.71 1.36 3.83 2.71 1.71 0 3.83 1.92
1.46 1.64 1.46 2.31 3.27 2.31 3.27 0 3.27
1.36 1.71 1.92 1.71 2.71 3.83 1.92 3.83 0




C = (cij) = aA
where the element, (aij), in the matrix A is the rate of movement for noninfected
(susceptibles and removed (immune)) from subpopulation i to subpopulation j and
similarly for (cij) for the infecteds. The parameters, µS , µR, µI , were estimated
using the parameters in [6]. An estimate for βi can be found in [6], but because of
the short time period here, we tried a variety of values for the rate of transmission.
The parameter γ, the efficacy of the vaccine distribution, is difficult to find in
the literature, and we evaluated several different γ values. We can choose the
coefficient, a, to adjust for differences in the movement of infected animals. We ran
the simulations for a = 1 and 1.5.

The A values were determined in the following way. First, we assume that the
population exponentially decays without birth. We determine the exponent for a
simple decay model such that approximately 50% of animals will move to another
subpopulation in one year (= 365 days). Of course, this percentage would be depend
on the size of the regions as compared with the average home range of raccoons, so
for illustration, we choose the 50% level. This can be done by solving the following
equation for k,

0.5S1(0) = S1(0)e−365k,

which gives

k =
ln2
365

≈ 1.899× 10−3. (11)

Next, we find the ratios of the spatial distances between subpopulation 1 and the
others. Let lij denote the spatial distance between subpopulation i and j. From
Figure 3, the ratios of spatial distances between subpopulation 1 and the rest of
subpopulations are

l12 : l14 : l15 : l13 : l17 : l16 : l18 : 119

= 1 : 1 :
√

2 : 2 : 2 :
√

5 :
√

5 : 2
√

2.

The rates of geographic movement, aij (for noninfected) and cij (for infected), are
assumed to be inversely proportional to the distances between the subpopulations
i and j.

We use the reciprocal of the lij and distribute the value of k to find

a1j =
1
l1j

(
k∑j=9

j=2
1

l1j

).

Note that
∑j=9

j=2 a1j = k ≈ 1.899×10−3. Note also that A is not necessarily sym-
metric depending on the spatial configuration of each subpopulation with respect
to each other.

By default, the initial fraction of infecteds is set to 10% of one subpopulation.
In other words, if the total number in subpopulation 9 is 100 and the infection



228 E. ASANO, S. LENHART, L. J. GROSS, AND L. A. REAL

started from this subpopulation, I1(0) = 10 and S1(0) = 90. There are no removed
(immune) individuals present at the beginning.

We discuss the results of varying certain parameters in the simulations. We
changed the ratio, a, between the movement coefficients for the infected and those
for the susceptibles, from 1 to 1.5. The general shape of the graphs were very similar
with small changes in magnitude. If the coefficients, βi, are too large, the disease
spreads very fast. We choose βi = .01 for illustration. (Note for a more realistic
case, one could choose different values for βi in different subpopulations to represent
different conditions.) If we changed γ to be a lower value than .4, this results in
a corresponding lower level of vaccine control. Note that for all the simulations,
the time period is 15 days. We are thus considering a very brief period following a
serious outbreak. First we show the simulation results for two different γ values.

Example 1) γ = .4: The numbers in each class (susceptibles (solid line), infected
(dotted line) and removed (dashed line)) are shown in Figure 4(a), and the optimal
control (vaccination rate) is shown in Figure 4(b). The numbers in each class for
the whole population are shown in Figure 5.

Because of the spatial symmetry of the subpopulations, both the final time popu-
lation distribution and the optimal control(vaccination) are symmetric. The vaccine
graphs are the same for pairs 2 and 4, 3 and 7, and 6 and 8. If one compares the
actual vaccine values for different pairs, the numbers are slightly different.

Larger values of α mean the cost associated with vaccination is larger; thus, we
expect that less control(vaccination) will be applied for larger α. We verified this by
considering α = 50, 100, 200. For all three cases, the infecteds in the subpopulation
9 die out, since there are not enough susceptible raccoons present.

For reference, the numbers in the susceptible and infected classes starting with
the same initial populations without control are shown in Figure 8(a). The numbers
in each class for the whole population are shown in Figure 8(b). There are no
removed in this case. Without vaccination, rabies spreads quickly to wipe out the
population.

Example 2) γ = .1: In this example, only the efficacy of vaccination distribu-
tion, γ, is changed from 0.4 to 0.1. The numbers in each class and the optimal
control are shown in Figure 6. The numbers in each class for the whole population
are shown in Figure 7. The numbers in susceptible in subpopulation 9 decrease
similarly for both cases, but for lower value of γ, there are more immunes and less
infecteds.

The different sizes and location of the initial subpopulations seems to be a crucial
feature. Next, we examined varying the initial population.

Example 3) γ = .1:

S1(0) = S6(0) = S9(0) = 100,

S2(0) = S5(0) = 50, S3(0) = 150, S4(0) = 45,

S7(0) = 250, S8(0) = 200,

I4(0) = 5.

The origin of the spread is subpopulation 4. The numbers in each class (suscep-
tibles, infected, and removed) are shown in Figure 9(a). The onset of the spread is
much faster in large subpopulations. In this example, five infecteds are introduced in
subpopulation 4. The animals move out to either subpopulation 1 or subpopulation
7 with equal rates. However, the number of infecteds in the larger subpopulation
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Figure 4. Population distribution and optimal control with γ =
.4, I9(0) = 10 (Example 1).
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Figure 5. Total population with γ = .4, I9(0) = 10 (Example 1).
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7 started increasing earlier than that in subpopulation 1. Moreover, subpopulation
5 is closer to the origin of the spread, subpopulation 4, than subpopulation 3, but
the spread is faster in subpopulation 3, where more susceptibles are present. The
numbers in each class for the whole population are shown in Figure 10.

Examining the optimal control shown in Figure 9(b), we see more control (vac-
cination) is applied in larger subpopulations, such as subpopulations 3, 7, and 8.
Almost no control is applied for the much smaller populations such as 2 and 5. As
before, without control, the population will rapidly die.

Example 4) γ = .1. In this example, only the origin of the spread is changed.
Instead of subpopulation 4, we started with the infected individuals in subpopula-
tion 7. Note that the number of infected is 25 (10% of the total number). The only
change from the last example is the following.

S4(0) = 50, S7(0) = 225, I7(0) = 25.

The results are shown in Figures 11 and 12. As in the last example, the strategy to
minimize the objective functional is to vaccinate the populations large in size. In this
example, the infection started in the largest subpopulation. Since the susceptibles
in subpopulation 7 are quickly infected, the intensity of the control is much less
than that of the previous example. Again, if the population size is relatively large,
the vaccination rate is very high.

5. Conclusions. We constructed a metapopulation SIR (susceptible, infected, and
removed(immune)) model to investigate optimal vaccination strategies to control
rabies among raccoons over a short-term time period. It is a system of 3n ODEs
(n is the number of subpopulations). This model and the control techniques could
easily be adapted to other epidemics than rabies. This work provides a useful tool
for analyzing optimal control in metapopulation epidemic models.
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(a) Population S(solid), I(dotted), R(dashed)
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(b) Optimal control

Figure 6. Population distribution and optimal control with γ =
.1, I9(0) = 10 (Example 2).
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Figure 7. Total population with γ = .1, I9(0) = 10 (Example 2).
S(solid), I(dotted), R(dashed).

We have developed the necessary conditions for the optimal control using the
Pontryagin’s Maximum Principle. Using the state and adjoint system together
with the characterization of the optimal control, we solved the problem numerically
with a variety of parameter values.

For the case of nine subpopulations, the optimal strategy is to vaccinate at a
higher rate in larger subpopulations. When the cost of applying the vaccine is
higher, as expected, the amount of effort devoted to vaccination is lower. This can
also be seen in the graphs for the total population. These control results illustrate
how the spatial arrangement and the location of the initial infecteds can affect the
optimal vaccination strategy.

When we compare the numbers of each class for the whole populations in exam-
ples 1 and 2 (different γ values), the case with higher γ values (example 1) shows
that the number of the infecteds stays low all the time. On the other hand, when
the efficacy of vaccination is lowered, the number of infecteds starts rising around
day 10 and keeps increasing to reach 200 after at day 15.

When the initial number of each subpopulation is different (examples 2 through
4), the pattern of the change in the total number of infecteds depends on the size of
the subpopulation where the initial infected animals were introduced. In example 2
(see Figure 7), there is a slight increase in the number of infecteds, but the number
remains low until it gradually increases around day 10. In example 3 (see Figure 10),
the number of infecteds begins to increase around day 5; then the rate of increase
slows down as the number of susceptibles decreases. Even though the initial number
of infecteds in example 3 is less than in example 2, the number of infecteds reaches
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(a) Population distribution S(solid), I(dotted)
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Figure 8. Population distribution without control (Examples 1
and 2 ). S(solid), I(dotted).
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(a) Population S(solid), I(dotted), R(dashed)
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(b) Optimal control

Figure 9. Population distribution and optimal control with
I4(0) = 5 (Example 3).
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Figure 10. Total population with I4(0) = 5 (Example 3).
S(solid), I(dotted), R(dashed).

approximately 100 by day 8, whereas it takes about 12 days in example 2. When
the initial infecteds are placed in relatively large size subpopulation as in example
4, the number of infecteds increases quickly at the beginning and does not change
much after that (see Figure 12).

Note also that convergence of the iterative method to find the optimal control
was quick and this indicates that problems with even much more refined spatial
grids could be handled readily.

The following is a list of some features which could be added to increase the
predictive power of the model for decision making by policy agencies.

• Introduce another state variable to add the dynamics of the bait, since the
baits are delivered at different spatial locations and may decay over time or
be consumed by other animals.

• Add another class, exposed (latently infected), E, which represents the group
of individuals who are infected but do not transmit the disease yet. This
extension would be particularly relevant if the time period for the analysis
were taken to be longer than the period immediately following an outbreak
we consider here.

• Include birth and growth terms, including possibly a birth pulse function or
maturity movement function, in the state equations.

• Add more constraints such as a limit on the amount of vaccine to be used.
• Add age or gender structures(adult/juvenile/male/female).
• Use more realistic parameter values and geographic layout.
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(a) Population S(solid), I(dotted), R(dashed)
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(b) Optimal control

Figure 11. Population distribution and optimal control with
I7(0) = 25 (Example 4).
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Figure 12. Total population with I7(0) = 25 (Example
4).S(solid), I(dotted), R(dashed).
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