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Abstract. Discrete-time SI and SIS models formulated as the discretization
of a continuous-time model may exhibit behavior different from that of the
continuous-time model such as period-doubling and chaotic behavior unless the
step size in the model is sufficiently small. Some new discrete-time SI and SIS
epidemic models with vital dynamics are formulated and analyzed. These new
models do not exhibit period doubling and chaotic behavior and are thus better
approximations to continuous models. However, their reproduction numbers
and therefore their asymptotic behavior can differ somewhat from that of the
corresponding continuous-time model.

1. Introduction. Continuous-time epidemic models have played an important role
in the investigation of the transmission of diseases. Because of the mathematical
tractability of continuous systems, there has been fewer studies of discrete-time
epidemic systems. Allen [1] has considered discrete-time SI, SIR, and SIS mod-
els with constant total population size and standard incidence, and found that SI
and SIR models are similar in dynamical behavior to their continuous analogues
under some natural restrictions; however, SIS models can exhibit period-doubling
and chaotic behavior for some parameter values. Allen and Burgin [2] analyzed and
compared the dynamics of deterministic and stochastic discrete-time SIS and SIR
epidemic models. They determined the basic reproductive number for the deter-
ministic models under some restrictions. Castillo-Chavez and Yakubu [7, 8] studied
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discrete-time SIS epidemic models with dispersal and nonlinear incidence rate, and
found that bistability and period-doubling bifurcations are possible in an epidemic
model if they are possible for the underlying demographic model. Zhou and Fergola
[18] considered a discrete age-structured epidemic SIS model, and found the basic
reproductive number and the threshold for the existence or extinction of disease. Li
and Wang [13] studied a discrete epidemic model with stage structure, with a dis-
ease spreading among mature individuals and proposed a method for determining
the basic reproduction number.

Many discrete models that have been studied are discretizations of continuous
models, and are not necessarily descriptions of discrete processes. One reason for
formulating discrete epidemic models is that data are collected at discrete time
intervals, and it may be easier to compare experimental data with the predictions
of a model if these predictions are given in discrete form. An important aspect of
the results of this paper is a warning that there may be qualitative differences in the
behaviors of the continuous model and a discrete approximation. It is important to
choose the approximation scheme carefully [14], [15].

In this paper, we formulate new discrete-time SI and SIS epidemic models de-
scribing discrete observations of continuous processes. In these models we use ex-
ponential and Poisson probability distributions to describe the survival probability
and the disease transmission probability over a discrete time interval, rather than
using a linear discretization of a continuous model as has been customary in the
past. Such an approach has been used previously in [11].

Our models are non-standard finite difference approximations to differential equa-
tions [14], [15]. Non-standard approximations are used to formulate difference equa-
tions that share the qualitative properties of the differential equations they are ap-
proximating. Our models achieve this to some extent, but there is a possibility that
there may be a difference in reproduction numbers unless the step size is sufficiently
small. A way to choose a non-standard difference approximation that also avoids
this problem would be a very useful tool.

However, there are also discrete models derived directly from biological principles
rather than as approximations to continuous processes, for example the models
of [7, 8]. These models can exhibit period-doubling and chaotic behavior for the
population system without disease. As we are ruling out this possibility, our results
do not apply in such cases.

Global asymptotic results are obtained showing that the dynamical behaviors of
these new models agree more closely with those of the corresponding continuous-
time epidemic models. In particular, period-doubling and chaotic behavior are not
possible for our models. For the models studied earlier it is necessary to impose
some restrictions, that are usually natural requirements of the model, to rule out
the possibility of period-doubling and chaotic behavior. The point of our analysis
is that it is essential to be careful in formulating discrete models of continuous
processes to avoid spurious results.

The organization of this paper is as follows: in Section 2, continuous models are
described. In Section 3 the corresponding discrete models are formulated and ana-
lyzed and in Sections 4 through 6 a new discrete model is formulated and analyzed.
Some comparisons are made and some conclusions are drawn in Section 7.
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2. Continuous models. The basic continuous SIS model with births and natural
deaths, but no disease deaths, is

S′ = Λ(N)− β(N)SI − µS + γI (1)
I ′ = β(N)SI − (µ + γ)I.

We define N = S + I, the total population size. The assumptions made are:
1. The population has a density-dependent birth rate Λ(N) per unit time and a

proportional natural death rate µ in each class.
2. The number of contacts in unit time per individual is a nondecreasing function

Nβ(N) of total population size N . We assume that β(N) is a nonincreasing
function of N with β(0) < ∞. These assumptions include mass action inci-
dence, β(N) = β, and standard incidence, β(N) = λ/N (provided β(N) is
redefined near N = 0 to be biologically plausible and keep β(0) finite), as well
as many forms of saturating incidence.

3. There are no disease deaths and there is a rate γ ≥ 0 of recovery from the
infective class and return to the susceptible class.

The SI model, in which infectives remain infective and do not recover, is the
special case γ = 0. We will carry out our analysis for the general SIS model, but
the analysis also covers the SI model.

Since the total population size N satisfies

N ′ = Λ(N)− µN, (2)

it is easy to see that N(t) → K as t → ∞, where K is defined by Λ(K) = µK,
provided the stability condition Λ′(K) < µ is satisfied. Then the theory of asymp-
totically autonomous systems [6] implies that the asymptotic behavior of (1) is the
same as that of the simpler system in which N is replaced by the constant K and
S is replaced by K − I, namely the first order differential equation

I ′ = β(K)I(K − I)− (µ + γ)I. (3)

The equation (3) can be analyzed qualitatively (or solved analytically since it is a
logistic equation), and we see that if

R0 =
Kβ(K)
µ + γ

< 1,

then I → 0 as t → ∞, while if R0 > 1 then I → K − (µ + γ)/β(K) as t → ∞, for
every initial state with I(0) > 0.

For the continuous models (1) and (3) there is always a unique globally asymp-
totically stable equilibrium.

3. The discretization of the continuous model. In this section, we describe a
discrete SIS system that evaluates approximately the solutions of the continuous
system (1) at discrete times tn with a fixed interval h, so that

tn+1 − tn = h, tn = t0 + nh, n = 0, 1, · · · .

The continuous model has simple dynamics; that is, it has a unique globally stable
equilibrium. While discrete models may admit chaotic dynamics if the underlying
population model admits chaotic dynamics [7, 8], we are interested in the question
of whether a discrete model for which the underlying population model has simple
dynamics can admit chaotic dynamics. For this reason, we will require that our
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discrete model have simple dynamics if there is no disease. We mean by this that
the model without disease must have a unique asymptotically stable equilibrium.

We let Sn = S(tn), In = I(tn), Nn = N(tn) = S(tn)+I(tn). The discrete version
of the model (1), obtained by simple discretization of (1) is

Sn+1 = hΛ(Nn)− hµSn + Sn[1− hβ(Nn)In] + hγIn (4)
In+1 = In[1− (µ + γ)h] + hβ(Nn)SnIn.

This model is somewhat more general than the model studied in [1, 2], in which a
constant total population size is assumed. The SI model is the special case γ = 0.

Addition of the two equations of (4) gives

Nn+1 = hΛ(Nn) + (1− hµ)Nn. (5)

The equation (5) has an equilibrium N = K, with K given by Λ(K) = µK, and the
conditions for this equilibrium to be asymptotically stable are Λ′(K) < µ, (which
is also the condition for the equilibrium of the corresponding continuous model to
be asymptotically stable), together with hΛ′(K) + (1− hµ) > −1, or

h <
2

µ− Λ′(K)
.

We impose these conditions in order to assure simple behavior of the discrete model
without disease. Under these conditions, every solution of (5) has limit K as t →∞.
The system (4) is asymptotically autonomous, and according to the results of [16],
[17, Chapter 2] has the same asymptotic behavior as the simpler system in which
Nn is replaced by the constant K and Sn is replaced by K − In, namely the single
difference equation, in which we rename the constant β(K) as β,

In+1 = In[1 + hβK − (µ + γ)h]− hβI2
n. (6)

The model (6) has an equilibrium I = 0, and if

R0 =
βK

µ + γ
> 1,

there is also an endemic equilibrium given by

βI = (µ + γ)(R0 − 1) > 0.

The conditions for local asymptotic stability of an equilibrium I∗ are

−1 < 1 + hβK − (µ + γ)h− 2hβI∗ < 1,

or
0 < 2hβI∗ + (µ + γ)h− hβK < 2.

For the equilibrium I = 0, this reduces to

R0 < 1, h <
2

(µ + γ)− βK
,

and for the endemic equilibrium this reduces to

R0 > 1, h <
2

βK − (µ + γ)
.

Thus, in addition to a condition on the basic reproduction number, we must impose
an upper bound on h, namely

h <
2

|βK − (µ + γ)| , (7)
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in order for the model (6) to have asymptotic behavior similar to that of the model
(1) that it approximates. In addition, it is shown in [1, 2] that for the solutions of
the model (4) to be non-negative it is necessary to impose the conditions

h(µ + γ) < 1, hβK < (1 +
√

h(µ + γ))2. (8)

Thus the model (4) or (6) is a plausible approximation to the continuous model (1)
only if the additional restrictions (7) and (8) are imposed. With these restrictions,
the continuous model (1) and its discrete approximation have the same equilibrium
population size without disease and the same basic reproduction number.

4. A new discrete model. In this section we define a different discrete approxi-
mation to the continuous system (1), in which we acknowledge explicitly that nat-
ural mortality and recovery from disease are continuous processes and measure the
effects of these continuous processes at discrete times.

The number of members born in the time interval [tn, tn+1] is
∫ tn+1

tn

Λ(N(s))ds,

which we approximate by
hΛ(Nn).

The effective contact number for contacts of a susceptible individual with infec-
tive individuals in the time interval [tn, tn+1] is

∫ tn+1

tn
β(N(s))I(s)ds. Thus, using

the Poisson probability distribution, the probability that a susceptible individual
remains uninfected in the time interval [tn, tn+1] is

e−
∫ tn+1

tn
β(N(s))I(s)ds,

but we approximate this by
e−hβ(Nn)In .

Since it is assumed that there is a proportional death rate µ in each class, the
fraction e−µh in each class surviving from time tn to time tn+1 is given by an
exponential distribution. Similarly, other proportional departure rates from a class
translate into exponential retention rates. Thus the number of susceptibles Sn who
remain alive and susceptible until time tn+1 is

Sne−µhe−
∫ tn+1

tn
β(N(s))I(s)ds,

which we approximate by
Sne−µhe−hβ(Nn)In .

The number of susceptibles Sn who remain alive but become infective between time
tn and time tn+1 is

Sne−µh
(
1− e−

∫ tn+1
tn

β(N(s))I(s)ds
)

,

which we approximate by

Sne−µh(1− e−hβ(Nn)In).

Also, the number of infectives In who survive and remain infective until time
tn+1 is

Ine−µhe−γh,
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and the number of infectives In who survive and recover, returning to the susceptible
class, is

Ine−µh(1− e−γh).

Thus a new discrete model approximating (1) at time tn is

Sn+1 = hΛ(Nn) + Sne−µhe−hβ(Nn)In + Ine−µh(1− e−γh) (9)

In+1 = Ine−µhe−γh + Sne−µh(1− e−hβ(Nn)In).

It is clear that Sn ≥ 0, In ≥ 0 for all n if S0 ≥ 0, I0 ≥ 0.
In formulating the model (9) we made two approximations, namely the replace-

ment of
∫ tn+1

tn
Λ(N(s))ds by hΛ(Nn) and the replacement of e−

∫ tn+1
tn

β(N(s))I(s)ds by
e−hβ(Nn)In . These approximations correspond to births and new infections occur-
ring at discrete times. Thus model (9) represents both a new discrete approximation
to the continuous model (1) and a model for a disease in a population in which births
and new infections occur at discrete times.

For model (9) we have

Nn+1 = Sn+1 + In+1 = g(Nn) = hΛ(Nn) + e−µhNn. (10)

The difference equation (10) has an equilibrium K given by g(K) = K, or

Λ(K) =
1− e−µh

h
K.

The conditions for this equilibrium to be asymptotically stable are

−1 < hΛ′(K) + e−µh < 1,

or

Λ′(K) <
1− e−µh

h
, (11)

and
hΛ′(K) + e−µh > −1. (12)

The condition (12) has the form h < h∗ where h∗ = +∞ if Λ′(K) ≥ 0 and h∗ is the
root of the equation

hΛ′(K) + e−µh = −1

if Λ′(K) < 0.
Since we are requiring that the population model underlying our discrete disease

transmission model must have an asymptotically stable equilibrium, we assume that
conditions (11) and (12) are satisfied. Note that if the birth rate Λ(N) is constant,
these conditions are satisfied automatically for all h.

Under these conditions, every solution of (10) has limit K as t →∞. System (9)
is asymptotically autonomous, and according to the results of [16],[17, Chapter 2]
has the same asymptotic behavior as the simpler system in which Nn is replaced by
the constant K and Sn is replaced by K−In, namely the single difference equation,
in which we rename the constant β(K) as β,

In+1 = Ine−µhe−γh + (K − In)e−µh(1− e−hβIn) (13)

= Ke−µh(1− e−hβIn)− Ine−µh[1− e−hβIn − e−γh].

We make the change of variable

xn = βhIn
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and introduce new parameters

r = e−(µ+γ)h ≤ s = e−µh < 1, a = βhK

in (13). This transforms the model to

xn+1 = s(a− xn)(1− e−xn) + rxn. (14)

We note that
xn = βhIn ≤ βhK = a.

Also, for the SI model, r = s. The model (14) has the form

xn+1 = f(xn),

with
f(x) = s(a− x)(1− e−x) + rx ≥ 0. (15)

Lemma 4.1. For 0 < x < a, the inequality 0 < f(x) < a is true.

Proof. We have
f(0) = 0, f(a) = ra < a,

f ′(x) = −s + se−x(1 + a− x) + r, for x ∈ (0, a).
Also,

f ′′(x) = −se−x(2 + a− x) < 0, for x ∈ (0, a).
Then f ′(0) = as + r > 0 and f ′(a) = r − s(1 − e−a). If f ′(a) ≥ 0, then, since
f ′′(x) < 0, f ′(x) > 0 for 0 < x < a. Thus f(x) < f(a) < a for 0 < x < a. For the
SI model, since r = s, f ′(a) > 0.

On the other hand, if f ′(a) < 0, there exists xM ∈ (0, a) such that f ′(xM ) = 0,
that is,

se−xM =
s− r

1 + a− xM
.

In this case, the function f(x) attains its maximum, f(xM ), in the interval (0, a) at
the point x = xM . But, for r < s,

f(xM ) = (a− xM )
s(a− xM ) + r

1 + a− xM
+ rxM < s(a− xM ) + rxM < sa < a.

Thus, in either case, f(x) < a and the proof of Lemma 4.1 is complete.

Therefore, in what follows we will consider equation (14) in the interval [0, a).

5. Stability analysis. Since f(0) = 0, the model (14) has an equilibrium x = 0.

Theorem 5.1. If r + as ≤ 1, the only equilibrium of (14) in the interval [0, a) is
x = 0. If r + as > 1, equation (14) has an equilibrium x = 0 and also has a unique
positive equilibrium x∗ ∈ (0, a), where x∗ satisfies

e−x =
as− (1 + s− r)x

s(a− x)
. (16)

Proof. Let
F (x) = f(x)− x = s(a− x)(1− e−x) + (r − 1)x. (17)

Then the equilibria of (14) are the zeros of F (x). We have

F (0) = f(0) = 0, F (a) = f(a)− a = a(r − 1) < 0

and
F ′(0) = f ′(0)− 1 = r + as− 1.
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Since F ′′(x) = f ′′(x) < 0, if F ′(0) ≤ 0, then F (x) < 0 for 0 < x ≤ a, and x = 0
is the only equilibrium of (14). On the other hand, if F ′(0) > 0, then F increases
to a positive maximum and then decreases as x increases. Thus there is a unique
positive x∗ with F (x∗) = 0, and F ′(x∗) < 0.

Theorem 5.2. If r + as ≤ 1, the equilibrium x = 0 is (globally) asymptotically
stable and the disease dies out eventually. If r + as > 1 the equilibrium x = 0 is
unstable, and the disease does not die out.

Proof. Since 1− e−x < x for x > 0,

f(xn) = s(a− xn)(1− e−xn) + rxn

< sxn(a− xn) + rxn

= xn(r + as− sxn) < (r + as)xn.

Thus if r+as < 1, then xn decreases to zero. If r+as = 1, then xn+1 < xn, and the
sequence {xn} is decreasing. Therefore, we know lim

n→∞
xn = x∞ ≥ 0 from xn > 0.

We claim that x∞ = 0, because x∞ is an equilibrium of (14) and, by Theorem 5.1,
if r + as = 1, the only equilibrium of (14) is x = 0.

On the other hand, if r + as > 1, since limx→0
f(x)

x > 1, then xn+1 > xn if xn is
sufficiently small. This implies that xn does not approach 0.

If r + as > 1, there is a positive equilibrium x∗ of (14), and we examine its local
stability.

Theorem 5.3. If r + as > 1, the positive equilibrium of (14) is (locally) asymptot-
ically stable.

Proof. The equilibrium x∗ is locally asymptotically stable if |f ′(x∗)| < 1. As we
have seen in the proof of Theorem 5.1, F ′(x∗) < 0, and therefore f ′(x∗) < 1. Also,

f ′(x∗) > f ′(a) = r − s(1− e−a) > r − s > −1,

since 0 < r ≤ s < 1. Thus |f ′(x∗)| < 1, and the equilibrium x∗ is locally asymptot-
ically stable.

We calculate the basic reproduction number, which we denote by R(h), for the
model (13), using the results of [10, Section 1.1], as

R(h) =
βhKe−µh

1− e−(µ+γ)h
< 1.

As h → 0, the quantity R(h) approaches

βK

µ + γ
,

which is the basic reproduction number R0 for the continuous model (1).
In terms of the original model parameters, the condition r + as < 1 for local

asymptotic stability of the equilibrium x = 0 is

e−µh[e−γh + βhK] < 1,

or R(h) < 1.
It is not difficult to show that there is a value h∗ such that

R(h) > R0
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if γ > µ and 0 < h < h∗, and that

R(h) ≤ R0

otherwise. The proof of this is given at the end of this section. Therefore, with
suitable parameter value choices we can have either

R(h) > 1 > R0

or
R0 > 1 > R(h)

if h is not close enough to zero. Thus the discrete approximation (9) and the
continuous model (1) may behave quite differently. Of course, since

lim
h→0

R(h) = R0,

the asymptotic behaviors of the continuous and discrete models are the same if h
is sufficiently small.

This shows that it is necessary to be extremely careful in approximating a con-
tinuous disease transmission model by a discrete model. Approximations (4) and
(9) can each exhibit behavior different from that of (1), and the two discrete models
can differ from the continuous model in different ways.

To conclude this section, we give the proof that R(h) > R0 if γ > µ and 0 <
h < h∗. We define

g(h) = R(h)−R0 =
βhKe−µh

1− e−(µ+γ)h
− βK

µ + γ

=
βK

[1− e−(µ+γ)h](µ + γ)
g1(h),

with
g1(h) = (µ + γ)he−µh − 1 + e−(µ+γ)h,

and

g′1(h) = (µ + γ)e−µh(1− µh− e−γh) = (µ + γ)e−µhg2(h), g1(0) = 0.

Then
g′2(h) = −µ + γe−γh, g′2(0) = γ − µ.

If γ > µ, g′2(0) > 0. Because g′′2 (h) < 0 there exists h∗1 = ln(γ/µ)/γ > 0 such
that g′2(h) > 0 for 0 < h < h∗1 and g′2(h) < 0 for h > h∗1. Because g2(0) =
0, limh→∞ g2(h) = −∞, there exists h∗2 > h∗1 such that g2(h) > 0 for 0 < h < h∗2
and g2(h) < 0 for h > h∗2. Now, since g1(0) = 0, limh→∞ g1(h) = −1, there exists
h∗ > h∗2 such that g1(h) > 0 for 0 < h < h∗ and g1(h) < 0 for h > h∗. Since g(h)
and g1(h) have the same sign, this proves that R(h) > R0 for 0 < h < h∗.

We note that we have also shown that R(h) < R0 if γ > µ, h > h∗. If γ ≤ µ,
then g′2(0) ≤ 0. Because g′′2 (h) < 0 we have g′2(h) ≤ 0 for h > 0, and thus g1(h) ≤ 0
for h > 0. It follows that R(h) ≤ R0.

6. Global asymptotic stability. Model (14) always has a unique asymptotically
stable equilibrium. In fact, this equilibrium is globally asymptotically stable. If
r + as < 1, we have shown that every solution of (14) tends to zero, so that the
equilibrium x = 0 is globally asymptotically stable. For the positive equilibrium
x∗, if there is one, we have the following result.

Theorem 6.1. If Model (14) has a positive equilibrium, this equilibrium, which is
unique by Theorem 5.1, is globally asymptotically stable.
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Proof. Suppose that f(x) is a continuous function having the properties
1. f(0) = 0.
2. There is a unique locally asymptotically stable positive equilibrium x̄ such

that f(x̄) = x̄, f(x) > x for 0 < x < x̄, and f(x) < x for x̄ < x.

3. If f(x) has a maximum xM in (0, x̄), then f(x) is monotonically decreasing
for all x > xM such that f(x) > 0.

Then according to a theorem of Cull [9], the equilibrium x̄ of f(x) is globally asymp-
totically stable if there is no maximum of f(x) in (0, x̄) or if f ′′(x) < 0, f ′′′(x) > 0.
Since, as we have shown in the proof of Lemma 4.1, these conditions are satisfied,
the proof is complete.

It is not difficult to use the same argument to show that the endemic equilibrium
of (4) is globally asymptotically stable if it is locally asymptotically stable.

We may summarize the results of this section as follows:

Theorem 6.2. If R(h) ≤ 1, the only equilibrium of model (14) is x = 0, and this
equilibrium is globally asymptotically stable, so that the infection dies out eventually.
If R(h) > 1, the equilibrium x = 0 of (14) is unstable. There is a unique positive
equilibrium that is globally asymptotically stable, so that the infection is endemic.

7. Discussion. The discrete models (4) and (9) both have differences in behavior
from the continuous model (1) that they approximate. Model (4) may have negative
solutions and may exhibit period-doubling and chaotic behavior if the step size h is
not sufficiently small [1] but Model (9) does not have this shortcoming. We believe
that this difference is caused by the fact that the mortality and recovery rates are
uniformly distributed over time intervals of arbitrary length h for (4), while these
rates are not uniformly distributed for (1). The corresponding rates for (9) are
not uniformly distributed because probability distributions have been introduced.
The approximations in (9) are based on probabilistic considerations and not on
the linearity of the step size. If the exponential functions in (9) are replaced by
their linear approximations, the result is (4). The approximating models (4) and
(9) both have the model (1) as their limit as h → 0, but the model (9) is a closer
approximation than (4).

The step size in a discrete approximation to a continuous disease transmission
model is often taken as a convenient measurement interval. In using (4) as a model
for a continuous process, it is essential to verify that the measurement interval is
small enough; otherwise, the discrete model may predict spurious phenomena.

The basic reproduction number and the endemic equilibrium are not the same
for models (9) and (1), and the differences may lead to differences in asymptotic
behavior if h is not sufficiently small. These differences are significant only if the
basic reproduction number is close to 1. In using (9) as a model for a continuous
process it is essential to verify that the basic reproduction number is not too close
to 1. This is a problem that cannot be rectified by use of a different approximating
scheme.

We believe that chaotic behavior in a disease transmission model can be caused
only by the population dynamics and not by the disease dynamics, and that models
such as (4) are not admissible models. This is supported by the fact that if (9)
is viewed as a model for a population with discrete birth and disease transmission
processes and not just as an approximation to a continuous model, this model
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can exhibit chaotic behavior only if such behavior is possible in the underlying
population model. Because the processes of recovery and mortality usually depend
continuously on time, the use of linear approximations for them may introduce
errors.

If there are deaths due to disease or in an SIR model, the discrete approximation
cannot be reduced to a one-dimensional model. Our global asymptotic stability
result is restricted to one-dimensional models and can not be used in these cases.
However, it should be straightforward to carry out the local stability analysis for
discrete models analogous to the new model (9), such as the SIS model with a
disease death rate α,

Sn+1 = hΛ(Nn) + Sne−µhe−hβ(Nn)In + Ine−µh(1− e−(γ+α)h)

In+1 = Ine−µhe−(γ+α)h + Sne−µh(1− e−hβ(Nn)In).

and the SIR model

Sn+1 = hΛ(Nn) + Sne−µhe−hβ(Nn)In +

In+1 = Ine−µhe−(γ+α)h + Sne−µh(1− e−hβ(Nn)In)

Rn+1 = Rne−µh + Ine−µh(1− e−(γ+α)h).
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