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Abstract. In this work, we propose a mesoscopic model for tumor growth to
improve our understanding of the origin of the heterogeneity of tumor cells.

In this sense, this stochastic formalism allows us to not only to reproduce but

also explain the experimental results presented by Brú. A significant aspect
found by the model is related to the predicted values for β growth exponent,

which capture a basic characteristic of the critical surface growth dynamics.

According to the model, the value for growth exponent is between 0,25 and
0,5, which includes the value proposed by Kadar-Parisi-Zhang universality class

(0,33) and the value proposed by Brú (0,375) related to the molecular beam
epitaxy (MBE) universality class. This result suggests that the tumor dynamics

are too complex to be associated to a particular universality class.

1. Introduction. Cancer is a highly complex, nonlinear dynamic system. In early
stages, it self-organizes as an invasive and adaptive network in a proliferation-
invasion-proliferation sequence [7, 19] in which bifurcations play an important role
at a macroscopic level in the origin of its complexity [14].

Transition phenomena, far from being in thermodynamic equilibrium, are re-
lated due to bifurcations, to states characterized by correlations that affect the
macroscopic behavior of the tumor. Coherence in tumor cells is associated with
simultaneous reinforcement of fluctuations. A recent work shows that tumors oper-
ate close to an instability threshold [17]. This study demonstrates that tumor cell
populations live close to this threshold at a certain level of genetic instability.

An important characteristic of complex dynamic systems is their stability in front
of external perturbations. We have recently demonstrated that dynamic systems
may or may not be controlled by the effect of periodic external fluctuations, accord-
ing to the type of dynamic systems’ complexity [3]. In other words, the sensitivity
of the system to external fluctuations depends on its robustness.

In spite of achievements in molecular biology and genomics, the growth mech-
anism for tumor cells and the nature of its robustness are still unknown. Tumor
cell robustness enables a system to maintain its functionality in the face of various
external and internal perturbations [12, 13]. Tumor cells exhibit two aspects of
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robustness: functional redundancy, which is enabled by cellular heterogeneity, and
feedback-control systems [12, 13]. Controlling cell robustness by reducing hetero-
geneity is a potential strategy for the development of drugs and therapies.

Tumor cell heterogeneity is manifested by the irregularity of the tumor bound-
aries. Fractal geometry proves to be useful for describing the pathological archi-
tecture of tumors and for yielding insights into the mechanisms of tumor growth
[2].

Mathematical models represent a language for formalizing the knowledge on liv-
ing systems obtained in theoretical biology. Basic models of tumor growth [10] make
possible the description of the principal regularities and are an effective guideline for
cancer therapy, drug development, and clinical decision-making [16]. These models
can be classified into two general groups: deterministic [11] and stochastic models
[1, 8, 15]. The stochastic methods are a natural approach to describe tumor growth,
in particular, dynamic behavior, pattern formation, and geometrical characteristics
such as a fractal dimension.

The goal of this paper is to give a theoretical framework the mathematical mod-
eling of tumor cell growth, based on a mesoscopic model that allows improving our
understanding of the origin of tumor cell heterogeneity and thus its robustness.

2. Mesoscopic model. To obtain a mathematical model to predict tumor cell
growth, the following considerations were made: the variable to describe the system
at a microscopic level is the total number of tumor cells n, while at a macroscopic
level the variable considered is the tumor radius r.

The behavior of the radius is affected only by reproduction and death of tumor
cells, near the border, because the mechanism that determines the tumor growth
is competition between tumor and host cells for the available space [6]. Thus, a
tumor can be divided into an inner compact zone, where the concentration of cells
in the surface of the host is constant in space and time, and a bordering zone
called contour, where the tumor growth takes place. Both cell reproduction and
death in the tumor contour are processes that take place within a certain transition
probability per unit of time; the behavior of these processes is established a priori
so that r is a stochastic variable. The stochastic character of r is manifested in the
border roughness and the not uniform distribution of contour cells, which can be
characterized by its fractal dimension.

It is also considered that the stochastic process of tumor growth has the Markov
property [18]. This property is mathematically expressed as follows:

P (nm/nm−1) = P (nm/nm−1 . . . n0) , (1)

where P (nm/nm−1) is the probability of having nm cells in tm times when there
are nm−1 cells at time tm−1. This supposition implies that the future state depends
on the present state and not on the way it was reached. This is only approximately
what happens in reality, but one must consider using stochastic modeling techniques
based on a master equation (ME) [18].

The magnitude of radius fluctuation scales up with the size of the contour mi-
croscopic entities, which can be independent cells or cell aggregates, according to
the observation scale.

To obtain the master equation that describes temporal behavior of the probability
P (n; t) of having n cells in t time, it is considered a priori that the transition
probability T1 of contour cell reproduction per unit of time is:
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T1 = ψ
l

2
√
n, (2)

while the transition probability T2 of contour cells death is

T1 = η
l

2
√
n, (3)

where ψ[L.t−1] is a constant that describes the effects of cell reproduction on
tumor growth rate, η[L.t−1] is a constant related to cell death, and l is the size of
the entity in the contour.

After the above-mentioned considerations, the master equation is obtained from
equations (2) and (3):

∂P (n;t)
∂t =

(
E−1
n − 1

)
ψ
l

2
√
nP (n; t) +

(
E+1
n − 1

)
η
l

2
√
nP (n; t). (4)

The ME (4) is nonlinear in the sense of its transition probability per unit of time;
an exact analytic solution is not possible, and so it is necessary to use approximate
methods [9, 18]. In this case the first two terms of Van Kampen’s Ω expansion
method will be used [9].

To use this method, the microscopic variable n is expressed as a function of the
fluctuations ξ that take place as a result of the probabilistic character of tumor cell
reproduction and death, and to the macroscopic variable:

n = ΩπR2 + Ω0.5,

n = 1
l2 ,

(5)

where R is the expected value of the tumor radius. Also, considering that the in-
verse of probability P is proportional to the average magnitude of fluctuations ξ, the
following relationship between probability P (n; t), corresponding to the microscopic
variable, and probability Π(ξ; t), corresponding to its fluctuations, is established:

P (n; t) = Ω−0.5Π, (6)

∂P (n;t)
∂t = Ω−0.5 ∂Π

∂t − 2πR dR
dt

∂Π
∂t , (7)

If we consider that the change ∆n that takes place when a single cell reproduces
or dies is negligible compared to the value of n, both n and r can be expressed as
continuous variables, and so operator E in ME (4) can be expressed as a differential
form so that ME (4) could be written as a function of a series of powers of Ω where
only the first two terms were taken:

Ω0 1
2πR

∂Π
∂t − Ω0.5 dR

dt
∂Π
∂ξ = Ω0.5(−V )∂Π

∂ξ + Ω0(Vt)∂
2Π
∂ξ2 , (8)

where V = ψ − η[L.t−1] is the tumor growth rate observed at macroscopic level,
and V = ψ + η[L.t−1] is the sum of reproduction and death rate constants. In the
ME (4), the coefficients associated with the parameter Ω0.5 determine the behavior
of the expected value of the tumor radius R[L]; consequently:

−Ω0.5 dR
dt

∂Π
∂ξ = Ω0.5(−V )∂Π

∂ξ ,

dR
dt = V,

(9)
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while the others define the Fokker-Planck equation that describes the temporary
behavior of the probability Π(ξ; t) as a function of the expected value of the tumor
radius:

Ω0 1
2πR

∂Π
∂t = Ω0(Vt)∂

2Π
∂ξ2 . (10)

The solutions of the Fokker-Planck equation (10) for the fluctuations expected
values are

d〈ξ〉
dt = 0, (11)

dvar(ξ)
dt = 2πVtR. (12)

To obtain the equation that describes the variance var(R) of the macroscopic
variable r, the following scaling relation between var(r) and var(ξ) is considered:

var(ξ) = Ω4π (var (r))2 . (13)
Then we obtain:

d((var(r))2)
dt = 2l8VtR,(

(var (r))2
)
t=t0

=
(
(var (r (t0)))2

)
.

(14)

3. Results and discussion. The temporary evolution of the tumor is described
according to the behavior of the expected value R of the tumor radius and the
average magnitude of the radius fluctuations, defined as χ = ((var(r)2))0.25 (see
equations (5), (6), (14)). Both behaviours are obtained from equations (12) and
(14), considering an initial value for Rc from which tumor growth is determined,
only by cell competition for the available space, or a value for R0 ≥ Rc, inside the
tumor, for which fluctuations equal zero. It turns out that:

R = V t+R0, (15)

χ = l2
[
Vt

(
V t2 + 2R0t

)]0.25
. (16)

The contour width Wi in a point i of the border is proportional to the difference
between the expected value of the tumor radius, which is in the contours, and the
radius of an inner zone of the tumor, where the concentration of cells is constant.
This value can be estimated from the average magnitude of internal fluctuations,
which is expressed by equation (16), as follows:

Wi = χ. (17)
It has been experimentally proven [5, 6] that contour width grows with time

according to the following relation:

Wi = ktβ . (18)
As a result, the following equivalence between theoretical and experimental re-

sults can be established:

l2
[
Vt

(
V t2 + 2R0t

)]0.25 = ktβ . (19)
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We can predict from this equation that

V t2 >> R0t⇒ β = 0.5,

V t2 << R0t⇒ β = 0.25.
(20)

In this case, it is predicted that the range of possible values (0.25 - 0.5) for
the growth exponent β, which capture a basic characteristic of the critical sur-
face growth dynamics, suggests a Kadar-Parisi-Zhang (KPZ) universality class [4],
for which β = 0.33, and the value suggested by Brú [5], associated to the MBE
universality class, is of β = 0.33.

Fig. 1 shows the comparison between the experimental results [6] and the range
of values predicted by the model. The space and time invariance of β for one specific
type of tumor implies that the R0 value is not arbitrary, but the R0 value must take
into account this invariance. This shows a correlation between R and R0, which
implies that fluctuation autocorrelation time is different from zero. In this regard,
when we considered the Markov property to model the system with methods based
on the master equation, the autocorrelation time was not taken into account, but
this can be corrected with the condition of invariance in scale.

Figure 1. Comparison of the value of β determined for different
cultures [6] (dots) with the range of values predicted by the model
(lines).

It has been experimentally demonstrated that at certain times fluctuations reach
a critical value in such a way that the contour width in the i zone of the border is
different from the total width, because of spatial fluctuations in the expected value
of R [5]. This phenomenon is known as super-roughness, and it occurs at a specific
time, designated saturation time ts. As experiment results show, in situations like
these the total width of the contour scale up with the perimeter L according to the
relation

W ≡ Lαglo , (21)
where αglo is the global roughness exponent.
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To describe this phenomenon, we will consider that two other processes could
take place, apart from cell reproduction and death, when fluctuations in the contour
reach certain critical value. One of these processes is the migration of cells to a zone
with a higher concentration of cells to form an aggregate in the border. In the other
process, a cell receives other cells to form an aggregate that will increase its size
exponentially until the aggregated cells start competing for the available space.
Both phenomena change the size of the contour microscopic entities and break the
correlation between R y R0 in such a way that the contour width in a point i will
be expressed as

Wi = l2
[
Vt

V R
2
i

]0.25
= l2

[
Vt

V

]0.25
R0.5
i , (22)

while space fluctuations in R, as a result of the above mentioned processes, which
determine the total width of the contour will be expressed by

χR = ω2
[
Vt

V

]0.25
R0.5, (23)

where ω represents the characteristic length of the small aggregates formed by
cell migrations and of the conglomerate that can be formed by the reproduction of
one cell in the contour. Because the available space for these phenomena to take
place is proportional to the local width of the contour in a point i,

ω = Wi. (24)
Consequently the total width of the contour is expressed as

W = l4
[
Vt

V

]0.75
R1.5. (25)

If we express the expected value of radius R as a function of the perimeter L, it
turns out that

W = l4

(2π)1.5

[
Vt

V

]0.75
L1.5, (26)

and an equivalence between the experimental and the theoretical results can be
established as

W = l4

(2π)1.5

[
Vt

V

]0.75
L1.5 ≡ Lαglo . (27)

As a result, the global-roughness exponent αglo = 1.5 is obtained. Fig. 2 shows
the comparison between experimental [6] and theoretical results.

The tumor fractal dimension is considered as the fractal dimension of its perime-
ter which, is equivalent to the fractal dimension of the irregular distribution of cells
in a local area ai of the contour. The dimension of this local area is determined by
the relation:

ai = θ
(
R+ Wi

2

)2 − θR2 = θWi

(
R+ Wi

4

)
. (28)

If the equation is reformulated as a function of Wi for t << ts:

ai = θ2
[
Vt

V

]0.25
(R−R0)

β
(
R+ l2

4

[
Vt

V

]0.25
(R−R0)

β
)
, (29)

and for t >> ts :

ai = θ2
[
Vt

V

]0.25
R0.5

(
R+ l2

4

[
Vt

V

]0.25
R0.5

)
, (30)
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Figure 2. Comparison of the values of αglo determined for differ-
ent cultures [6] with the value predicted by the model (continuous
line).

where θ is the angle of the contour section analyzed and ts is the time when the
phenomenon of super-roughness appears [5]. Taking into account that the contour
area is equivalent to the total amount of cells, the following relation to predict the
fractal dimension df is obtained: for t << ts:

kRdf = θ2
[
Vt

V

]0.25
(R−R0)

β
(
R+ l2

4

[
Vt

V

]0.25
(R−R0)

β
)
, (31)

for t >> ts:

kRdf = θ2
[
Vt

V

]0.25
R0.5

(
R+ l2

4

[
Vt

V

]0.25
R0.5

)
. (32)

From this, a fractal dimension from 1 and 1.5 is predicted, according to the value
of the following relation:

l2

4

[
Vt

V

]0.25
= Φ, (33)

and the value of β, according to the specific case. On the one hand, the fact
that the fractal dimension is constant for a time shorter than the saturation time
could be explained by the correlation between the expected value of the contour
radius and the expected value of the culture inner radius, and this is related to
the way information in the inner radius of the culture is transmitted to the culture
contour. On the other hand, the fact that the fractal dimension is constant in a
time longer than the saturation time when the super-roughness property appears
could be the result of a change in the size of cell aggregates in the contour. Fig. 3
shows a comparison between the range of fractal dimension values predicted by the
model and the experimental values obtained [6]:

As demonstrated in this paper, the mesoscopic model of the tumor growth ex-
plains the fact that contour roughness is a manifestation of the internal fluctuations
system as a result of the probabilistic character of the processes that take place in
individual cells.
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Figure 3. Comparison of the values of df determined for different
cultures [6] (dots) with the range of values predicted by the model
(lines).

With this model, it is possible to simulate the stochastic growth of the culture;
that is, its morphology. The morphology of tumor contours determines the dynamic
behavior of growth by means of the scale invariance of their complex structures. In
this regard, if the total cell growth rate is defined as the difference between the
reproduction rate and the death rate, then as the difference between the total
growth rate and the reproduction rate decreases, contour roughness increases.

As demonstrated, the fractal dimension is related to the average magnitude of
the culture radius fluctuation equations (31) and (32); therefore, it can be used to
establish the relation between V and Vt, and consequently characterize the culture
behavior at a microscopic level.

To obtain the culture morphology from the solution of the mesoscopic model
and geometrical relation, the fractal dimension of the culture perimeter could be
determined by

2Rdf = 4R1.5Φ. (34)

Equation (34) is equivalent to equation (31) and (32) if the contour fluctuations
are taken into account as the cause of the perimeter-fractal dimension greater than
its topological dimension. If we consider Brú’s experimental findings [6] that the
fractal dimension remains constant with the radius, the following relation is estab-
lished to determine the value of the scaled-up parameter Φ for a radius of 1000
(arbitrary units):

Φesc = 2(1000)df−αglob , (35)

where the value for the parameter , which determines the different morphologies
simulated for the culture, will be of

Φ = Φesc

2π (1000)0.5. (36)
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(a)

(b)

Figure 4. (a) Evolution of the tumor morphology obtained using
the model for different tumor sizes, df = 1.20; (b) Cell colony
contours of a C6 cell line at different culture times, df = 1.20 [6]

The culture morphology is simulated considering the culture radius with a sto-
chastic variable which has a normal distribution function whose expected value and
standard deviation are

R = 1000
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χ = ΦescR0.5

To simulate the culture morphology with an expected value for the radius differ-
ent from 1000, the standard deviation of the normal probability function is deter-
mined from the following scaling relation:

Φesc(1000)−0.5 = χ
R . (37)

Fig. 4(a) shows the morphology of a hypothetical culture, simulated using the
mesoscopic model for different values of the culture radius, the fractal dimension,
df = 1.20, obtained using the box counting method. A similarity with the morphol-
ogy (Fig. 4(b)) of a real cultures observed [6], C6 cell line, with fractal dimension,
df = 1.20.

Fig. 5 shows the morphology of cultures with different fractal dimensions and an
expected value for the radius of 1000.

(a) (df )p = 1.1; (df )bc = 1.12; Φ = 2 (b) (df )p = 1.2; (df )bc = 1.2;Φ = 4

(c) (df )p = 1.3; (df )bc = 1.31;Φ = 8 (d) (df )p = 1.4; (df )bc = 1.41; Φ = 16

Figure 5. Morphology of cultures with different fractal dimension
and radius expected value of 1000.

In this case, the value of parameter Φ, established to simulate the morphology,
the fractal-dimension value predicted by the model (df )p and the fractal dimension
value calculated by the box counting method (df )bc, are shown.
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Having a culture morphology calculated for different values of Φ, the fractal
dimension is calculated by the box-counting method. Fig. 6 shows the comparison
between the fractal dimension values predicted by the model and those calculated
by the box-counting method.

Figure 6. Comparison of the fractal dimension value predicted
for different value of parameter Φ (line) with the fractal dimension
calculated by the box-counting method (dots).

4. Conclusions and remarks. In summary, in this work a mesoscopic model for
tumor growth has been presented, considering only the effect of internal fluctua-
tions, to improve our understanding of the origin of tumor cells’ heterogeneity. In
this sense, this stochastic formalism permits us not only to reproduce but also to
better understand the experimental results presented by Brú [6]. The presented
formalism is conceptually related to Kitano’s theoretical considerations [12, 13] on
cancer robustness, regarding the role of internal fluctuations in tumor cells’ hetero-
geneity. In fact, the internal fluctuations give an explanation to the super-rough
dynamics on tumor growth [5], where the change of microscopic entities size is taken
into account. Another important feature of the mesoscopic model is that it allows
us to predict a range of values for the critical exponents and the fractal dimensions
corresponding to the experimental findings presented by Br [6] for different tumor
cell cultures. A significant aspect of the model’s findings relates to the predicted
values for β growth exponent (0.25-0.5), which capture a basic characteristic of the
critical surface growth dynamics, suggesting a Kadar-Parisi-Zhang (KPZ) univer-
sality class [4], for which β = 0.33, and those proposed by Brú [5] associated with
the MBE universality class, for which β = 0.375. This result suggests that the
tumor dynamics are too complex to be associated with a particular class.

Finally, the mesoscopic model allows simulating the morphology of tumor cells.
In this sense, the fractal dimension calculated using the box-counting method ap-
plied to the morphology simulated by the model coincides with the fractal dimension
values used to build this morphology. We hope the present theoretical framework
in mathematical modeling for tumor growth will lead to improved cancer therapy.
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