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Abstract. We consider a model of genetic network that has been previously
presented by J. Lewis. This model takes the form of delay differential equations
with two delays. We give conditions for the local stability of the non-trivial
steady state. We investigate the condition underwhich stability is lost and os-
cillations occur. In particular, we show that when the ratio of the time delays
passes a threshold, sustained oscillations occur through a Hopf bifurcation.
Through numerical simulations, we further investigate the ways in which var-
ious parameters influence the period and the amplitude of the oscillations. In
conclusion, we discuss the implications of our results.

1. Introduction. In vertebrate embryos, the most obvious metameric units are
the somites. They are aligned symmetrically along both sides of the neural tube
and give rise to the repetitive structures including the axial skeleton (vertebrae), the
dermis of the back, and the back muscles [3]. The generation and individuation of
the somites and their derivatives are fundamental to the evolution and diversification
of the vertebrate body plan. As a result, somitogenesis is still a very important yet
unresolved problem in developmental biology.

Somites are formed in a sequential, temporally ordered process that proceeds
from the anterior to the posterior of the embryo. New somites are formed at regular
intervals (90 minutes in the chick embryo, 120 minutes in the mouse, and 30 minutes
in the zebrafish).

To understand the mechanism of the formation of somites, several theoretical
models have been proposed. Among these are the clock and wave-front model by
Cooke and Zeeman[4], the reaction-diffusion model by Meinhardt[12], and the cell-
cycle model by Primmett et al. [15, 16]; see also [22].

Recently, a molecular clock, or somitogenesis clock was identified by Palmeirim
et al.[17] . It involves oscillations in both mRNA and protein levels of the basic gene
c-hairy1. The expression of c-hairy1(mRNA level, or protein level) sweeps across
anteriorly repeatedly, and a new somite is formed every time a wave reaches the
border. Moreover, this wave-like propagation of gene expression is caused not by cell
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movement but rather by the result of synchronized oscillation of c-hairy1 expression.
Subsequent to Palmeirim’s study, other cycling genes were identified: Hes1, Hes7,
and Hey2 in mouse (Jouve et al. 2000 [8]); Her1 and her7 in zebrafish (Oates and
Ho 2002 [14]). Thus, it is proposed that the periodic expression of the cyclic genes
is essential for somite segmentation. In fact, it is suggested by Palmeirim et al.[17]
that when groups of cells enter a similar phase of the cycle several times, they
increase their adhesive properties and aggregate to form a somite. Some synchrony
in the cell cycle is observed in the PSM. Figure 1 shows a zebrafish embryo stained
by in situ hybridization for gene deltaC mRNA. Oscillation of this gene expression
is similar to that of her1 and her7.

However, the cause of the oscillations in gene expression remained to be under-
stood until recently when some mathematical models were proposed to describe
such behaviors. In this paper, we study in more detail the mathematical model
proposed by Julian Lewis in [9]. In Section 2, we discuss the assumptions and the
formulation of the model. In Section 3, the steady states and the local stability
are considered. In Section 4, we show that Hopf bifurcation may occur when the
bifurcation parameter surpasses a threshold. In Section 5, we present our numerical
solutions emphasizing the effect of different parameters on the period and amplitude
of the periodic solutions. Finally in Section 6, we present a brief conclusion.

Remark 1. The fact that oscillations of a certain gene expression can lead to the
formation of somites falls into the scope of one of the most important biological
discoveries of the past two decades. Biologists discovered that even though many
animals are divergent in forms, they share specific families of genes that regulate
the main aspects of their body patterns. For a comprehensive review on this topic,
we refer the readers to the wonderful book by Sean Carroll [3].

Figure 1. Formation of somites in a zebrafish embryo at the 10-
Somites stage: dynamic expression of deltaC mRNA. The oscilla-
tions of this gene is similar to that of her1 and her7. (Courtesy of
Julian Lewis.)

2. Description of the model. The biology behind the model is the so-called
central dogma of biology: A gene (i.e., a section of the DNA molecule) is transcribed
onto messenger RNA (mRNA), which diffuses out of the nucleus of the cell into the
cytoplasm, and enters a structure called ribosome. In the ribosome the genetic code
on mRNA produces a protein. This process is called translation. The protein then
diffuses back into the nucleus, where it represses the transcription of its own gene
through direct binding to regulatory sequence in the promoter. The expression
state of a cell is thus controlled by a set of genes expressed at a given moment.
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Figure 2. Genetic regulatory network with a feedback loop: (1):
Transcription with delay τm; (2): Translation of mRNA with delay
τp; (3): Repression of transcript initiation.

These genes regulate the transcription of cell genes leading to a new state which
is defined by the concentration of the gene products. This can be formalized as
a concept of genetic network where all genes and their products are members of
a network. Methods used to model such genetic regulating networks include the
Boolean model that describes the state of genes as either ON or OFF, and the
continuous model that uses differential equations to describe the expression of the
gene products(concentrations). And there is also the hybrid approach that combines
the discrete model with the continuous model. For a comprehensive review on
modeling gene networks, we refer the interested readers to [20, 21] and references
therein.

A simple genetic regulatory network is illustrated in Figure 2. We are interested
in the concentration of the proteins and the mRNAs. We shall consider the following
simple differential equations, which include the delay effect during the transcription
and translation processes. Denoting the number of mRNAs at time t by m and the
number of proteins by p, we have the following simple model:

dp

dt
= am(t − τp) − bp(t), (1)

dm

dt
= f(p(t − τm)) − cm(t), (2)

where τp represents the time lag between the initiation of the translation and the
appearance of a mature protein and τm represents the time lag between transcription
and the appearance of a mature mRNA molecule; b and c represent the degradation
rates of proteins and mRNAs, respectively; a is the translational constant. Also
f(p) is a sigmoid function which signifies the switch-like phenomena during the
process. Here we shall consider the following type

f(p) =
kθn

θn + pn
,

where θ represents the critical protein concentration at which the transcription rate
is at half of its basal value and n is the hill coefficient that characterizes the degree of
cooperativity. This type of function has often been used in different neural network
models.

General mathematical models incorporating delay effect have been studied in
[10, 11, 20]. Characteristic of such delay differential equations is that oscillations
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are generated if the delays surpass a critical value, which is commonly referred to as
delay-induced oscillations, see, for example, [2, 19]. Note that in our present model,
we have two delays, and it turns out that when their ratio surpasses a critical value,
the oscillations will occur.

Remark 2. The specific gene we are interested here is her1 gene. Overall, τp could
be in the range of one to three minutes and τm is around ten to twenty minutes;
see Table 1.

3. Steady states and local stability. The steady states E∗ = (p∗, m∗) are given
by the solutions of

am − bp = 0, (3)

kθn

θn + pn
− cm = 0. (4)

In fact, p∗ satisfies
bcpn+1 + bcθnp − kaθn = 0,

which clearly has a unique positive solution.
For τm = τp = 0, equation(1) and equation(2) read as

dp

dt
= am(t) − bp(t), (5)

dm

dt
= f(p(t)) − cm(t). (6)

The characteristic equation of the linearized equation of (5)-(6) around E∗ is given
by

(λ + b)(λ + c) − af ′(p∗) = 0,

which clearly has eigenvalues with negative real parts; thus, E∗ is asymptotically
stable. In other words, without delays, the model will not generate sustained oscil-
lations.

Let r = τm/τp and we can reduce the system to the following one with dimen-
sionless time t/τp, which is again denoted by t:

dp

dt
= τp[am(t − 1) − bp(t)], (7)

dm

dt
= τp[f(p(t − r)) − cm(t)]. (8)

To examine the local stability of the steady state E∗ = (p∗, m∗), we linearize equa-
tion(7) and equaiton(8) around E∗. To this end, we define

u1 = (p − p∗)/p∗, u2 = (m − m∗)/m∗,

or equivalently,
p = p∗ + p∗u1, m = m∗ + m∗u2;

then (7) and (8) become

p∗
du1

dt
= τp[am∗u2(t − 1) − bp∗u1], (9)

m∗ du2

dt
= τp[−kθn(θn + p∗n)−2np∗nu1(t − r) − cm∗u2], (10)

which can be put into the following simpler form

du1

dt
= τp[bu2(t − 1) − bu1], (11)
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du2

dt
= τp[−c1u1(t − r) − cu2], (12)

where

c1 =
nbc2

kaθn
p∗n+1 = c

nx∗n

θn + p∗n
.

The associated characteristic equation has the following form:

∆(λ, r) = λ2 + (b + c)τpλ + bcτ2
p + c1bτ

2
p e−λ(r+1) = 0. (13)

Clearly, for each fixed delay τp, we have a characteristic equation with parameter
r. Next we shall study the stability of E∗ with respect to the ratio parameter r.

The following theorem gives the stability result for the steady state E∗.

Theorem 3.1. When c > ka
bθ

n−1
n

n

√
n − 1, E∗ = (p∗, m∗) is asymptotically stable

for all r ≥ 0. When c is small, there exists a critical value r0 such that the steady
state E∗ is asymptotically stable for r ∈ [0, r0) and unstable for r > r0, where

r0 =
1

ξ+
arccos

{

ξ2
+ − bcτ2

p

bc1τ2
p

}

− 1, (14)

and

ξ2
+ = −1

2
(b2 + c2)τ2

p +
1

2
τ2
p [(b2 − c2)2 + 4b2c2

1]
1/2. (15)

For the proof of Theorem 3.1, we need the following lemma.

Lemma 3.2. [5] Consider the equation

λ2 + āλ + ē + (c̄λ + d̄)e−λr = 0, (16)

where ā, b̄, c̄, d̄ and ē are real numbers. Let the hypotheses be as follows:

• (A1) ā + c̄ > 0,
• (A2) ē + d̄ > 0,
• (A3) c̄2 − ā2 + 2ē < 0 and ē2 − d̄2 > 0 or (c̄2 − ā2 + 2ē)2 < 4(ē2 − d̄2),
• (A4) ē2 − d̄2 < 0 or c̄2 − ā2 + 2ē > 0 and (c̄2 − ā2 + 2ē)2 = 4(ē2 − d̄2).

(a) If A1, A2 and A3 hold, then all roots of equation(16) have negative real parts
for all r ≥ 0.
(b) If A1, A2 and A4 hold, then there exists r0 > 0 such that when r ∈ [0, r0) all
roots of (16) have negative real parts; when r = r0, equation(16) has a pair of purely
imaginary roots ±iξ+, and for r > r0 (16) has at least one root with positive real
part. Here r0 and ξ+ are given by

r0 =
1

ξ+
arccos

{

d̄(ξ2
+ − ē) − āc̄ξ2

+

c̄2ξ2
+ + d̄2

}

,

ξ2
+ =

1

2
(c̄2 − ā2 + 2ē +

1

2
[(c̄2 − ā2 + 2ē)2 − 4(ē2 − d̄2)]1/2.

The proof of this lemma is quite simple and can be found in [5]. Now we are
ready to prove Theorem 3.1.

Proof. First we show that for c > ka
bθ

n−1
n

n

√
n − 1, E∗ is asymptotically stable for

all r ≥ 0. We shall verify the hypothesis (A1)-(A3) in Lemma 3.2. Comparing
characteristic equaiton(13) with (16), we have

• (A1) ā + c̄ := (b + c)τp + 0 > 0;
• (A2) ē + d̄ := bcτ2

p + cabτ2
p > 0; and
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• (A3) c̄2 − ā2 + 2ē := −(b2 + c2)τ2
p < 0 and ē2 − d̄2 := b2τ4

p (c2 − c2
1) > 0 for

c > ka
bθ

n−1
n

n

√
n − 1.

Thus, E∗ is asymptotically stable for all r ≥ 0 under the condition c > ka
bθ

n−1
n

n

√
n − 1.

Now for the change of the stability when c is small. We can verify (A4) as
ē2 − d̄2 := b2τ4

p (c2 − c2
1) < 0 for c small. From Lemma 3.2, the unique solution of

equation(13) has the following form:

ξ2
+ = −1

2
(b2 + c2)τ2

p +
1

2
τ2
p [(b2 − c2)2 + 4b2c2

1]
1/2,

and there exists a critical value of the ratio of the time delays

r0 =
1

ξ+
arccos

{

ξ2
+ − bcτ2

p

bc1τ2
p

}

− 1

so that E∗ is asymptotically stable for r ∈ [0, r0) and unstable for r > r0. This
ends the proof of Theorem 3.1.

4. Hopf bifurcation. In this section, we shall study the occurrence of Hopf bifur-
cation using the ratio of the time delays as the bifurcation parameter. Clearly, time
delays do not change the location of the equilibrium in equation (1) and equation
(2), but its stability with the change of a parameter; for example, the ratio of the
time delays. If any complex eigenvalue crosses the imaginary axis, then a stable
equilibrium loses its stability and oscillations occur locally. We recall the following
formulation of the Hopf bifurcation theorem for delay differential equations [7]:

Theorem 4.1. We consider the delay differential equation

dx(t)

dt
= F (x, x(t − r1), . . . , x(t − rn−1), µ). (17)

If
(a) F is analytic in x and µ in a neighborhood of (0, 0) in R

n × R;
(b) F (0, µ) = 0 for µ in an open interval containing 0, and x(t) = 0is an isolated

stationary solution of (17);
(c) the characteristic equation of (17) has a pair of complex conjugate eigenvalues

λ and λ̄ such that λ(µ) = α(µ) + iw(µ) where w(0) = w0 > 0, α(0) = 0, α′(0) 6= 0;
(d) the remaining eigenvalues of the characteristic equation have strictly negative

real part,
then the delay differential equation (17) has a family of Hopf periodic solutions.

More precisely, there is an ǫ0 > 0 and an analytic function µ(ǫ) = Σ∞
i=2µiǫ

i for 0 <
ǫ < ǫ0 such that for each ǫ ∈ (0, ǫ0) there exists a periodic solution pǫ(t) occurring
for µ(ǫ). If µ(ǫ) is not identically zero, the first nonvanishing coefficient µi has an
even subscript, and there is an ǫ1 ∈ (0, ǫ0] such that µ(ǫ) is either strictly positive
or strictly negative for ǫ ∈ (0, ǫ1). For each L > 2π/w0 there is a neighborhood
V of 0 and an open interval I containing 0 such that for every µ ∈ I the only
nonconstant periodic solutions of the delay differential equation (17) with period
less than L which lie in V are members of the family pǫ(t) for values of a satisfying
µ(ǫ) = µ, ǫ ∈ (0, ǫ0). For 0 < ǫ < ǫ0 the period T (ǫ) = 2π[1 + Σ∞

i=1τiǫ
i]/w0 of pǫ(t)

is an analytic function. Exactly two of the Floquet exponents of pǫ(t) approach 0
as ǫ → 0+. One is 0 for 0 < ǫ < ǫ0, and the other is an analytic function β(ǫ) =
Σ∞

i=2βiǫ
i for 0 < ǫ < ǫ0. The periodic solution pǫ(t) is orbitally asymptotically stable

if β(ǫ) < 0 and unstable if β(ǫ) > 0.
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The existence of a limit cycle at the nontrivial steady state E∗ is given in the
following theorem.

Theorem 4.2. When c < ka
bθ

n−1
n

n

√
n − 1, there exists ǫ0 > 0 such that for each

0 ≤ ǫ < ǫ0, equation (1) and equation (2) have a family of periodic solutions pǫ(t)
with period T (ǫ). Moreover, for the parameter r = r(ǫ), p0(t) = E∗, T (0) = 2π

ξ+

and r(0) = r0, where r0 and ξ+ are given in equation (14) and equation (15),
respectively.

Proof. For simplicity, we rewrite the characteristic equation in the following form:

∆(λ, r) = λ2 + a1λ + e + de−λ(r+1) = 0, (18)

where a1 = (b + c)τp, e = bcτ2
p and d = c1bτ

2
p . First we recall that at r = r0, this

equation has a pair of purely imaginary roots ±iξ+. We substitute λ = iξ+ and
obtain

−ξ2
+ + a1iξ+ + e + de−iξ+(r0+1) = 0,

from which we can easily obtain

(−ξ2
+ + e)2 + a2

1ξ
2
+ = d2,

or, equivalently

ξ4
+ + (a2

1 − 2e)ξ2
+ + e2 − d2 = 0.

There exists a complex function λ = λ(r) defined in a neighborhood of r0 such
that λ(r0) = ±iξ+. Differentiating on both sides of equation (18) with respect to r
yields

λ′(r) =
dλe−λ(r+1)

2λ + a1 − d(r + 1)e−λ(r+1)
. (19)

At r = r0, λ = iξ+, it follows from equation (19) that

d

dr
Re(λ)|r=r0

=
a1dξ+ sin(ξ+(r + 1)) + 2dξ2

+ cos(ξ+(r + 1))

A2 + B2
,

where

A = a1 − d(r + 1) cos(ξ+(r + 1))

and

B = 2ξ+ + d(r + 1) sin(ξ+(r + 1)).

Note that at r = r0,

sin(ξ+(r + 1)) =
a1ξ+

d
, cos(ξ+(r + 1)) =

1

d
(ξ2

+ − e).

Thus

a1dξ+ sin(ξ+(r + 1)) + 2dξ2
+ cos(ξ+(r + 1)) = 2ξ4

+ + (a2
1 − 2e)ξ2

+ > 0,

since 2ξ4
+ + (a2

1 − 2e)ξ2
+ = ξ4

+ + d2 − e2 = (c2
1 − c2)b2τ4

p > 0 for c1 > c.



668 P FENG AND M NAVARATNA

Table 1. Estimated parameters for her1 gene.

Parameter Value
a 4.5 molecules/min
b 0.23 molecules/min
c 0.23 molecules/min
k 33 molecules/cell· min
n 5
θ 40 molecules
τp 2.8 min
τm 10.2 min∼ 31.5 min

5. Numerical illustrations. In this section, we would like to see whether her1
could actually generate oscillations by the simple model and how different pa-
rameters can affect the period and amplitude of the oscillations. We shall apply
the following estimates on the parameters(Table 1). For her7, τp = 1.7 min and
5.9 < τm < 20.1. This table is based on [1, 6, 23, 9].

If we apply these estimates but keep τm as a variable, then the steady state
is given by (p∗, m∗) ≈ (80.8438, 4.1320). Thus we have c1 ≈ 1.1169 > c, ξ+ ≈
0.5712 and r0 ≈ 1.8269, and the corresponding critical mRNA delay time is τm ≈
5.1153. The period of the original system is given by 2π

ξ+
· τp ≈ 31min, which agrees

very well with the lab observation that in zebrafish embryo, each somite is formed
approximately every 30 minutes. Figure 3 shows that we have sustained oscillations
for these parameters. The phase portrait also shows that a limit cycle appears.
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(a) Sustained Oscillations at r0
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Figure 3. (a): Sustained oscillations generated with a = 4.5, b =
0.23, c = 0.23, k = 33, θ = 40, n = 5, τp = 2.8, τm = 5.1153;
(b): Evolution towards a limit cycle corresponding to the sustained
oscillations in (a).
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5.1. Effect of c. In this subsection, we investigate the effect of c (the degradation
rate of mRNAs). Our results imply that when c is too large, the steady state E∗

will always be asymptotically stable. In particular, when we choose the parameters
from Table 1 (with τm ≈ 15min), we arrive at the conclusion that when c > 17.0389,
E∗ is always stable; in other words, the oscillations will be damped and eventually
approach E∗. On the other hand, the second part of the theorem states that when
c < 17.0389, sustained oscillations can be achieved. To clarify the restriction on
c, we note from the proof of theorem 3 that only when c < c1, there exists a
critical value r0 beyond which we may have sustained oscillations. This condition
is equivalent to p∗ > θ

n
√

n−1
. From the equation for p∗, we have the following

restriction on our parameters

ka >
bcθ

n

√
n − 1

· n

n − 1
. (20)

If we take the parameters in Table 1 but we leave c and Hill coefficient n varying, we
obtain the following curve above which the oscillations will be damped and below
which the oscillations will be sustained. Figure 5 shows the damping oscillations

2 4 6 8 10 12 14 16 18 20
8
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14

16

18

20

n

c

Figure 4. The dependence of c on the value of Hill coefficient to
achieve sustained oscillations.

for c = 20 > 17.0389 even when τm = 40 but a sustained oscillation for c = 15 with
τm = 20.

5.2. Influence of each parameter individually. In this section, we investigate
the effect of each parameter, namely τm, τp, b and a, on the period and the amplitude
of the periodic solutions. In this part, we computed only the protein level. Our
parameters are chosen from Table 1 unless we choose it as a variable. All of our
simulations are done through dde23, a delay differential equation solver, which
is now part of Matlab official release. We would like to refer the readers to the
following website: http://www.runet.edu/thompson/webddes/.
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(a) Damped Oscillations for large c
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(b) Sustained Oscillations for small c

Figure 5. The effect of c: (a)a = 4.5, b = 0.23, c = 20, k = 33,
θ = 40, n = 5, τp = 2.8 τm = 40; (b)a = 4.5, b = 0.23, c = 15,
k = 33, θ = 40, n = 5,τp = 2.8, τm = 20.
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In our simulations, we choose to vary τm between zero to twenty minutes, τp

between zero to twenty minutes, the protein degradation rate b between zero to
ten molecules/min, the protein synthesis rate between zero to ten molecules/min.
The simulations clearly reveal that both τm and τp have a strong effect on the
total period of the oscillations (Figure 6, upper left and right). Even though one
might expect the a reduction of protein synthesis will somewhat affect the period
and amplitude. Our simulations clearly show that sustained oscillation is still seen,
both the period and the amplitude are almost unchanged (Figure 6, lower left and
right).

6. Discussion. In this paper we have summarized the mathematical model of J.
Lewis for somitogenesis in a zebrafish embryo. We have presented an analysis and
numerical simulations of the model equations, which provide a greater understand-
ing of the formation process and allow us to clearly understand which parameters
influence the period of the somite-forming process. In particular, we would like to
mention the following observations.

Our analysis shows that for a certain range of parameters (namely, b, c, a, θ, n
and k), Hopf bifurcation occurs when the ration of τm/τp crosses a threshold; n other
words, we have sustained oscillations. For certain other parameters, we always have
damped oscillations. In particular, when the degradation rate of mRNA c is too
large, we can only have damped oscillations. The amplitude of such oscillations may
still be very large and their decay may be slow. Thus this may be a main factor in
explaining a curious observation that in most of the mutants that show a disrupted
pattern of somite segmentation, the first few somites appear unaffected, but it fails
to appear as the amplitude of oscillation declines to zero. Moreover, our numerical
simulation shows that the period of oscillation is determined by the delay τm and τp,
yet is not so sensitive to the protein synthesis rate and the degradation rate. Note
that in our simulations, we have chosen the protein synthesis rate ranging from zero
to ten molecules/min while the estimated synthesis rate is 4.5 molecules/min.

It will be interesting to investigate how synchronization can be achieved in mul-
tiple cells. All the neighboring cells are communicating through the Notch signaling
mechanism. It is our future goal to extend this single cell model to a network of
cells.

Finally, we would like to mention that even though the delay differential equation
model predicted the period fairly well, it is not the ultimate explanation for somite
formation. Other models, such as the clock-and-wavefront model, the reaction-
diffusion model and the cell-cycle model, can produce results that are consistent
with the observation as well. More specifically, the clock-and-wavefront model can
to explain the control of somite number but conflicts with several experiments such
as mirosurgical and transplantation experiments. Moreover, it does not explain the
formation of anterior and posterior halves of a somite. The reaction-diffusion model
agrees with the observation that one full cycle of gene oscillation corresponds to the
formation of one somite. However, this model fails to explain the isolation and
transplantation experiments. The cell-cycle model, on the other hand, can explain
the isolation and transplantation experiments.But it can not explain oscillations of
the gene expression and its pattern in the PSM. For more detail, see Schnell and
Maini [22] and references therein.

Acknowledgments. The authors wish to thank Professor Julian Lewis for pro-
viding Figure 1.
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(a) Effect of τm (b) Effect of τp

(c) Effect of b (d) Effect of a

Figure 6. Influence of each parameters: (a)a = 4.5, b = 0.23,
c = 0.23, k = 33 θ = 40, n = 5, τp = 2.8; (b)a = 4.5, b = 0.23,
c = 0.23, k = 33 θ = 40, n = 5, τm = 15; (c)a = 4.5, c = 0.23,
k = 33 θ = 40, n = 5, τp = 2.8, τm = 15; (d)b = 0.23, c = 0.23,
k = 33 θ = 40, n = 5, τp = 2.8, τm = 15.
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