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Abstract. We are considering an optimal control problem for a type of hybrid
system involving ordinary differential equations and a discrete time feature.
One state variable has dynamics in only one season of the year and has a jump
condition to obtain the initial condition for that corresponding season in the
next year. The other state variable has continuous dynamics. Given a gen-
eral objective functional, existence, necessary conditions and uniqueness for an
optimal control are established. We apply our approach to a tick-transmitted
disease model with age structure in which the tick dynamics changes seasonally
while hosts have continuous dynamics. The goal is to maximize disease-free
ticks and minimize infected ticks through an optimal control strategy of treat-
ment with acaricide. Numerical examples are given to illustrate the results.

1. Introduction. In many economic, biological and physical scenarios, one needs
to make reasonable choices at a number of decision making levels. While the specifics
of the problem depend on the application context, the goal is to “optimize perfor-
mance”. The underlying system often has continuous dynamics, frequently governed
by ordinary or partial differential equations. Decisions, such as resource allocation
or control adjustment, may occur at discrete times. Thus these hybrid systems in-
volve continuous and discrete components. The analysis needed for optimal control
of such systems is a mixture of control techniques for infinite dimensional systems
[10, 18, 32, 34] and ideas from Pontryagin’s Maximum Principle [27].

After developing the control analysis of a particular hybrid system, we will first
be applying this approach to a model of a tick-transmitted disease—Lyme disease—
which is a serious health problem affecting humans as well as domestic animals in
many parts of the world. The infections are generally transmitted through a bite
of an infected tick, and it appears that most infections are widely present in some
wildlife species. Hence, an understanding of tick population dynamics and its in-
teraction with hosts is essential to understand and control the disease [17]. We use
the model presented by Ghosh and Pugliese [13], which is a type of hybrid system
with eleven ordinary differential equations. The dynamics of ticks (Ixodes ricinus
in Trentino, Italy) changes seasonally and has some discrete components, while the
hosts have continuous dynamics throughout the years. The goal is to maximize the
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Figure 1. Tick life cycle [9]

disease-free ticks and minimize the infected ticks through an optimal control strat-
egy of treatment with acaricide. In numerical examples, we also illustrate the case
when only minimizing the infected tick and the cost of applying the acaricide. The
most consistently effective method for reducing an abundance of ticks on residen-
tial properties is to spray or otherwise broadcast acaricides onto vegetation where
the ticks live. Acaricides can be delivered directly to tick hosts to kill ticks on the
animals. The use of a bait box to attract rodents and directly treat them with the
acaricide fipronil kills ticks on the rodents. Another baited device to lure deer and
treat them with acaricide has the potential to reduce tick populations over wide
areas [15].

Ixodidae ticks have a two-year life cycle (Fig. 1). After hatching from eggs, they
pass from one life stage to another by molting, after a blood meal. In temperate
climates, the life cycle is strongly influenced by the seasonal rhythm [1, 28]. Eggs
are laid by an adult female tick in the spring and hatch into larvae later in the
summer. These larvae reach their peak activity in August. The larva then attaches
itself to its host, begins feeding, and over a few days, engorges (swells up) with
blood. Most larvae, after feeding, drop off their hosts and molt, or transforming
into nymphs in the fall. The nymphs remain inactive throughout the winter and
early spring. In May, nymphal activity begins. The nymph then latches on to its
host and feed for four or five days, engorging with blood and swelling to many
times its original size. Once engorged, the nymph drops off its host into the leaf
litter and molts into an adult. These adults actively seek new hosts throughout the
fall. Peak activity for adult ticks occurs in late October and early November. As
winter closes in, adult ticks unsuccessful in finding hosts take cover under leaf litter
or other surface vegetation, becoming inactive in temperatures below 40 degrees
F. Adult female ticks that attach to deer, whether in the fall or spring, feed for
approximately one week. Mating may take place on or off the host, and is required
for the female’s successful completion of the blood meal. The females then drop off
the host, become gravid, lay their eggs underneath leaf litter in early spring, and
die. Each female lays eggs which hatch later in the summer, beginning the two-year
cycle anew [1].

Infection is transmitted from infected ticks to susceptible hosts, or vice versa from
infected hosts to susceptible ticks, while a tick is feeding on a host. A larva feeding
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on an infected host may become, after molting, an infected nymph; analogously, a
nymph feeding on an infected host may become an infected adult. In both cases,
infection is assumed to last forever [13]. On the other hand, we assume that a
host, after a period of infection, will become immune and no longer capable of
transmitting the infection.

There has been work on diseases in ticks from different perspectives. Sandberg
et al. [31] used a matrix model to investigate the seasonally varying population
densities of questing ticks. Awerbuch-Friedlander et al. [2] studied a nonlinear sys-
tem of difference equations that models the three-stage life cycle of the deer tick
over four seasons and showed that seasonality can increase the stability of the sys-
tem. Mount et al. [24, 25, 26] formulated a series of computer simulations based
on age-structured difference equations to examine the relationship between host
density, tick density and the persistence of a tick-borne disease. Gaff and Gross
[12] studied a tick-borne disease model incorporating nonconstant population sizes
and spatial heterogeneity utilizing a system of differential equations that may be
applied to a variety of spatial patches. By creating a set of patches that reflect an
area of interest, Gaff [11] explored different control options to aid in choosing the
most effective program prior to field application. Buskirk and Ostfeld [5] used a
computer model to show that the density of ticks was more sensitive to the avail-
ability of hosts for juveniles than of hosts for adults; hence, modifying the average
reservoir competence of hosts for juveniles, could be used to manipulate the risk
of Lyme disease without actually changing the density of ticks. They also studied
the importance of spatial heterogeneity by combining field sampling and modeling
approaches [6]. Busenberg and Cooke [4] studied vertically transmitted disease; i.e.,
the passing of the infection from parent to offspring. They presented a difference
equation model for the transmission of rickettsia in ticks. They concentrate on one
aspect of vertical transmission, which is the cumulative effect of some pathogens as
they are vertically transmitted through several generations. Here we focus on the
seasonal pattern of ticks in various life stages and their interactions with hosts and
try to find a best strategy to control the disease.

In work related to optimal control of hybrid systems, Miller and Rubinovich [23]
studied optimal impulse control problems with a restricted number of impulses.
They used the method of discontinuous time change to derive the necessary and
sufficient optimality conditions in the form of a maximum principle. Cassandras et
al. [8] presented a hybrid system modeling framework (motivated from manufac-
turing environments) which combines the time-driven dynamics of various physical
processes with the event-driven dynamics describing switches between the physical
processes. We call attention to some papers in two special issues on “control of hy-
brid systems” in Automatica and IEEE Transactions of Automatic Control [16, 21].
Many of these papers deal with systems for which time is the underlying variable,
entering in some states as continuous variables and in other states as discrete vari-
ables; there is some emphasis on stability and reachability issues [22, 33]. See the
treatment of optimal control of systems with continuous time dynamics between
jumps at discrete times in [7, 19].

This paper is organized as follows: First we describe the tick-transmitted disease
model. Then we set up the mathematical framework on a prototype model to
deal with the optimal control of the hybrid ODE system, and derive the existence,
necessary conditions, and uniqueness for the optimal control. Finally, we apply
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our approach to the tick-transmitted disease model and give numerical examples to
illustrate the results.

2. Tick model with infection. As seen in the life cycle of ticks, there are two
distinct periods in which ticks are active or dormant. So, we consider a simple
model for tick dynamics with only two distinct time periods, called “summer” and
“winter”. To be precise, assume that larvae and nymphs that feed during one
“summer” go through the molting stage but arrest their development in “winter”
and emerge (as nymphs or adults, respectively) in the following “summer”. On the
other hand, assume that after the adult females feed and produce eggs, a proportion
of the eggs hatch immediately, so that larvae emerge in the same “summer”, while
the rest arrest their development and larvae emerge in the following “summer”.
Finally, assume that larvae, nymphs, and adults die at the end of the “summer”
in which they have emerged, if they have not succeeded in feeding. Of course,
these assumptions are rather crude with respect to the complex interactions among
climate factors, individual fat reserves, and feeding time; we believe, however, they
capture some essential features of ticks’ seasonal rhythm [13].

For the sake of simplicity, we disregard transmission between cofeeding ticks (i.e.,
direct transmission among ticks feeding close to each other). Also we assume that
the infection does not affect either tick or host demography. Rodents have often
been implicated as one of the important hosts for nymphs, while deer or other large
mammals are preferred at the adult stage [3]. Hence, for host 1 (rodents), we assume
the total population is constant, and so is host 2 (deer). Otherwise, population
might fluctuate for reasons other than interactions with ticks [13]. Moreover, as in
model [13], only host 1 (rodents) is assumed to become infected and divided into
susceptible, infected, and recovered classes; host 2 (deer) is needed only to sustain
the tick population which is not partitioned into those three classes, and host 2
remains as a constant.

Our state variables are as follows:

• Ln(t) : density of larvae in summer n;
• Ns

n(t) : density of susceptible nymphs in summer n;
• N i

n(t) : density of infected nymphs in summer n;
• As

n(t) : density of susceptible adults in summer n;
• Ai

n(t) : density of infected adults in summer n;
• Hs

n(t) : density of susceptible host 1 (rodent) in year n;
• Hi

n(t) : density of infected host 1 (rodent) in year n; and
• Hr

n(t) : density of recovered host 1 (rodent) in year n;

where time t is the underlying variable. For host 1, we denote the total population
as H1, which is taken as a constant; i.e., H1 = Hs

n +Hi
n +Hr

n, but each class has its
own dynamics. For host 2, we denote the total population as H2, which is also taken
as a constant and is not divided into susceptible, infected, and recovered classes.

The assumptions mentioned above translate into the following model from Ghosh
and Pugliese [13] supplemented with control coefficients. We first list the differential
equations for ticks in the “summer”:
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Summer: n = 0, · · · , N




L̇n = pcgA(Ai
n + As

n)− (un + gL)Ln,

Ṅs
n = −(un + gN )Ns

n,

Ṅ i
n = −(un + gN )N i

n,

Ȧs
n = −(un + gA)As

n,

Ȧi
n = −(un + gA)Ai

n.

(1)

where
• p is the probability of immediate development of tick larvae;
• c is the average number of eggs produced per fed adult;
• un is the death rate of ticks of various stages in summer n, for n = 0, · · · , N ,

our bounded control variable. We control it by applying the acaricide to the
ticks, the lower bound is the natural death rate of ticks and the upper bound
depends on the effectiveness of the acaricide;

• gz are the feeding rates in stage z, where z = L,N,A.

As in Rosa et al. [30], the feeding rates gz are assumed to depend on host densities
according to a saturation function, because of the extended feeding period; i.e.,

gz = (βz
1H1 + βz

2H2)ψz(H1,H2),

with
ψz(H1,H2) =

1
1 + cz

1H1 + cz
2H2

,

where cz
i =

βz
i

σz
i

, βz
i are the rates of encounters between questing ticks in stage

z, for z = L,N,A and hosts Hi, i = 1, 2; σz
i are the detachment rates of ticks in

stage z, z = L,N,A, feeding on host i, for i = 1, 2.
Note we assumed host densities to be constant; thus, feeding rates will also be

constant. And the rate at which susceptible hosts become infected is

qNβN
1 ψN (H1,H2)N i

n + qAβA
1 ψA(H1,H2)Ai

n,

where qz is the probability of becoming infected for a host of type 1 by an infectious
tick in stage z, with z = N, A.

This gives rise to the following equations for host 1:



Ḣs
n = a1H1 − b1H

s
n − qNβN

1 Hs
nψN (H1,H2)N i

n

−qAβA
1 Hs

nψA(H1,H2)Ai
n,

Ḣi
n = qNβN

1 Hs
nψN (H1,H2)N i

n + qAβA
1 Hs

nψA(H1,H2)Ai
n

−(b1 + γ)Hi
n,

Ḣr
n = γHi

n − b1H
r
n,

(2)

where a1 is the birth rate for host 1 (rodents) and b1 is the death rate for H1. We
choose a1 = b1, so that H1 = Hs

n + Hi
n + Hr

n is a constant; γ is the recovery rate
from the disease for H1.

During “winter”, ticks arrest their development, so we only have host 1 (rodents)
dynamics, given by:
Winter: n = 0, · · · , N 




Ḣs
n = a1H1 − b1H

s
n,

Ḣi
n = −(b1 + γ)Hi

n,

Ḣr
n = γHi

n − b1H
r
n.

(3)
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System (1) – (3) needs to be complemented with initial conditions. Each class
of host 1 has continuous dynamics; host 2 (deer) is constant, which is used in the
feeding rate. We need to keep track of the fact that larvae and nymphs that have
fed on infected hosts will emerge as infected nymphs and adults respectively. These
initial conditions include some jumps, which are hybrid-type features.
Initial conditions: n = 0, · · · , N − 1




Ln+1(365(n + 1)) = w

∫ 365n+T

365n

(1− p)cgA(Ai
n(s) + As

n(s))ds,

Ns
n+1(365(n + 1)) = mL

[ ∫ 365n+T

365n

gLLn(s)ds−
∫ 365n+T

365n

βL
1 Hi

n(s)ψLLn(s)ds
]
,

N i
n+1(365(n + 1)) = mL

∫ 365n+T

365n

βL
1 Hi

n(s)ψLLn(s)ds,

As
n+1(365(n + 1)) = mN

[ ∫ 365n+T

365n

gNNs
n(s)ds−

∫ 365n+T

365n

βN
1 Hi

n(s)ψNNs
n(s)ds

]

Ai
n+1(365(n + 1)) = mN

∫ 365n+T

365n

βN
1 Hi

n(s)ψNNs
n(s)ds,

Hs
n+1(365(n + 1)) = Hs

n(365(n + 1)),
Hi

n+1(365(n + 1)) = Hi
n(365(n + 1)),

Hr
n+1(365(n + 1)) = Hr

n(365(n + 1)),
(4)

where:

• w is the probability of survival through winter for larvae that have delayed
development;

• mz are the molting rates in stage z with z = L, N, A, taken as constants;
• T is the length of “summer”.

We illustrate the initial condition for susceptible nymphs in the beginning of the
(n + 1)th summer as follows: after molting, larvae will become susceptible nymphs,
but since some larvae encounter an infected host of type 1, they will become infected
nymphs.

Now we are ready to set up the optimal control problem.
Given the control set

UM = {u = (u0(t), u1(t), · · · , uN (t)) : un is Lebesgue measurable, m ≤ un(t) ≤ M,

t ∈ [365n, 365n + T ], n = 0, · · · , N}.
(5)

We choose the lower bound to be the natural death rate of ticks and the upper
bound to depend on the effectiveness of the acaricide. We want to maximize the
following objective functional:

J̄(u) =
N∑

n=0

∫ 365n+T

365n

[
C(Ln +Ns

n +As
n)−B(N i

n +Ai
n)− K

2
u2

n(t)
]
dt, u ∈ UM , (6)

where B, C,K are positive constants balancing the three parts of the objective
functional. This means we want to maximize disease-free ticks and minimize infected
ticks during N +1 years while minimizing the cost of applying acaricide. We take a
quadratic cost for simplicity; other formats could also be treated. If minimizing the
infected ticks is the main goal, we can take C = 0 (done in numerical examples).
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3. Framework of mathematical approach. Now we set up the framework to do
optimal control of the hybrid ODE system. We need to develop the optimal control
analysis for the seasonal pattern of tick life and the integral initial conditions because
we cannot use Pontryagin’s Maximum Principle [27] directly.

We consider an abstract model for the dynamics of two populations with two
distinct seasons: “summer” and “winter”. We consier N + 1 years and use sub-
script n to denote the population in year n, where n = 0, 1, · · · , N. Population
1 (x(t) = (x0(t), x1(t), · · · , xN (t))) has dynamics only in “summer” and has a
jump condition to obtain the initial condition for next “summer”; population 2
(y(t) = (y0(t), y1(t), · · · , yN (t))) has continuous dynamics throughout the years.
Then populations 1 and 2 have dynamics similar to ticks and hosts respectively.
The corresponding state variables x(t), y(t) satisfy the state system:
Summer: t ∈ [365n, 365n + T ], n = 0, · · · , N

{
x′n(t) = fn(xn(t), yn(t), un(t)),
y′n(t) = g1,n(xn(t), yn(t)),

(7)

Winter: t ∈ [365n + T, 365(n + 1)], n = 0, · · · , N

y′n(t) = g2,n(yn(t)), (8)

Initial conditions:



xn+1(365(n + 1)) = p1xn(365n + T ) + p2

∫ 365n+T

365n

xn(s)ds

+p3

∫ 365n+T

365n

xn(s)yn(s) ds, n = 0, · · · , N − 1,

yn(365n) = yn−1(365n), n = 1, · · · , N,

(9)

where x0(0), y0(0) are given, and p1, p2, p3 are constants. The initial condition for y
means it has continuous dynamics, and 365 is the last day of the current year, which
is also the first day of the following year. For the tick application, p2 and p3 type
jump conditions are needed, but p1 is not needed. Note p1 is included here since it
is a common condition in many other applications. The jump with p1 means the
information at the beginning of the next year depends on the information at the end
of the previous year, a condition is often used in resource allocation in economics.

In this section, our basic assumption is that

fn(xn(t), yn(t), un(t)), g1n(xn(t), yn(t)), g2n(yn(t)), n = 0, · · · , N

are bounded and Lipschitz continuous for their arguments. So the solution to (7) –
(9) exists and is a priori bounded and unique [20].

The goal is to maximize the objective functional:

J(u) =
N∑

n=0

∫ 365n+T

365n

kn(xn(t), yn(t), un(t))dt, u ∈ UM , (10)

where kn(xn(t), yn(t), un(t)), n = 0, · · · , N are in C1 for their arguments.

4. Existence of an optimal control. We use ideas from Fleming and Rishel [10]
and Strauss [34] to prove the existence of an optimal control.

THEOREM 4.1. In (7)− (10), for n = 0, · · · , N, assume

fn(xn(t), yn(t), un(t)) = an(xn(t), yn(t)) + bn(xn(t), yn(t))un(t) [H1]



640 W. DING

and kn(xn(t), yn(t), un(t)) is a concave function. Then there exists an optimal con-
trol u ∈ UM that maximizes J(u).

Proof. Since for any control u ∈ UM , m ≤ un ≤ M, there exists C1 such that the
corresponding states satisfy

|xn(t)| ≤ C1, |yn(t)| ≤ C1,

for all t, n = 0, · · · , N. The continuity of the kn function gives the existence of C2,
such that

J(u) ≤ C2, for all u ∈ UM .

Then supu∈UM
J(u) exists, and there exists a maximizing sequence {uk}∞k=1 ⊂ UM ,

such that
lim

k→∞
J(uk) = sup

u∈UM

J(u).

Define for each n, n = 0, · · · , N,

xk
n = xn(uk

n), yk
n = yn(uk

n), k = 1, 2, · · · .

Here we explicitly show the dependence of the states on the controls, and we note
that time is still the underlying variable. Because of the uniform boundedness of
{xk

n(t)}∞k=1, {yk
n(t)}∞k=1, {uk

n(t)}∞k=1 and the continuity of fn, g1,n, g2,n, ODEs (7) –
(8) imply the uniform boundedness for {(xk

n(t))′}∞k=1, {(yk
n(t))′}∞k=1, n = 0, · · · , N.

Then we obtain that {xk
n(t)}∞k=1 {yk

n(t)}∞k=1 are equicontinuous.
By Ascoli-Arzela Theorem, on subsequences, {xk

n(t)}∞k=1, {yk
n(t)}∞k=1 converge

uniformly to some continuous functions x∗n(t), y∗n(t) respectively; i.e.,

xk
n(t) −→ x∗n(t), yk

n(t) −→ y∗n(t) uniformly, as k −→∞, n = 0, · · · , N.

Since {uk
n}∞k=1 are bounded in L2([365n, 365n + T ]), n = 0, · · · , N, then on a sub-

sequence, uk
n ⇀ u∗n weakly as k →∞ in L2([365n, 365n + T ]), n = 0, · · · , N.

Using ODE (7), we can write: for t ∈ [365n, 365n + T ], n = 0, · · · , N,

xk
n(t) =xk

n(365n) +
∫ t

365n

fn(xk
n(s), yk

n(s), uk
n(s))ds

=xk
n(365n) +

∫ t

365n

[
an(xk

n(s), yk
n(s)) + bn(xk

n(s), yk
n(s))uk

n(s)
]
ds

=xk
n(365n) +

∫ t

365n

[
an(xk

n(s), yk
n(s))− an(x∗n(s), y∗n(s))

]
ds

+
∫ t

365n

an(x∗n(s), y∗n(s))ds

+
∫ t

365n

[
bn(xk

n(s), yk
n(s))uk

n(s)− bn(x∗n(s), y∗n(s))uk
n(s)

]
ds

+
∫ t

365n

[
bn(x∗n(s), y∗n(s))uk

n(s)− bn(x∗n(s), y∗n(s))u∗n(s)
]
ds

+
∫ t

365n

bn(x∗n(s), y∗n(s))u∗(s)ds.

Since an(xn(t), yn(t)), bn(xn(t), yn(t)) are continuous, xk
n(t) −→ x∗n(t), yk

n(t) −→
y∗n(t) uniformly as k → ∞, and uk

n(s) ⇀ u∗n(s) as k → ∞ in L2([365n, 365n +
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T ]), n = 0, · · · , N , passing to the limit, we have

x∗n(t) = x∗n(365n) +
∫ t

365n

[
an(x∗n(s), y∗n(s)) + bn(x∗n(s), y∗n(s))u∗n(s)

]
ds.

Notice in the initial conditions (9), we can write

∫ 365n+T

365n

xk
n(s)yk

n(s) ds =
∫ 365n+T

365n

(xk
n(s)− x∗n(s))yk

n(s) ds

+
∫ 365n+T

365n

x∗n(s)(yk
n(s)− y∗n(s)) ds.

So we obtain (x∗n, y∗n) are solutions of (7) – (8) associated with u∗ and satisfy the
initial conditions (9).

Because kn(xn(t), yn(t), un(t)) is concave, using upper semicontinuity with re-
spect to weak convergence,

J(u∗) ≥ lim
k→∞

J(uk) = sup
u∈UM

J(u).

Therefore u∗ is an optimal control that maximizes the objective functional J(u).

5. Necessary conditions of optimal control. We need to differentiate the ob-
jective functional with respect to the control u. Denote

x(u) = (x0(u0), x1(u1), · · · , xN (uN )), y(u) = (y0(u0), y1(u1), · · · , yN (uN )).

Since x = x(u), y = y(u) are involved in J(u), we first state the appropriate differen-
tiability of the mapping u −→ (x(u), y(u)). The proof of this “sensitivity” result fol-

lows from estimates on difference quotients
x(u + εv)− x(u)

ε
and

y(u + εv)− y(u)
ε

of the state system.

LEMMA 5.1. (Sensitivity)
The mapping

u ∈ UM −→ (x(u), y(u))

is differentiable in the following sense: there exist functions ψn ∈ L∞([365n, 365n+
T ]), φn ∈ L∞(365n, 365(n + 1)), n = 0, · · · , N, such that
t ∈ [365n, 365n + T ], n = 0, · · · , N,

xn(un + εvn)− xn(un)
ε

→ ψn uniformly in time t,

t ∈ [365n, 365(n + 1)], n = 0, · · · , N

yn(un + εvn)− yn(un)
ε

→ φn uniformly in time t,

as ε → 0, for any u satisfying u + εv ∈ UM , and v = (v0, · · · , vN ),
vn ∈ L∞([365n, 365n + T ]), n = 0, · · · , N. Moreover, ψn, φn are solutions of the
following problem:
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t ∈ [365n, 365n + T ],




(ψn)′ = (fn)xψn + (fn)yφn + (fn)unvn, n = 0, · · · , N

ψn+1(365(n + 1)) = p1ψn(365n + T ) + p2

∫ 365n+T

365n

ψn(s)ds,

+p3

∫ 365n+T

365n

(
ψn(s)yn(s) + xn(s)φn(s)

)
ds, n = 0, · · · , N − 1

ψ0(0) = 0;
(11)

and {
(φn)′ = (g1,n)xψn + (g1,n)yφn, n = 0, · · · , N

φ0(0) = 0;
(12)

t ∈ [365n + T, 365(n + 1)],
{

(φn)′ = (g2,n)′φn, n = 0, · · · , N

φn(365n) = φn−1(365n), n = 1, · · · , N,
(13)

where (fn)x, (fn)y, (fn)un are partial derivatives of fn = fn(xn, yn, un) with re-
spect to xn, yn, un respectively; (g1,n)x, (g1,n)y are partial derivatives of g1,n =
g1,n(xn, yn) with respect to xn, yn respectively; and (g2,n)′ is the derivative of g2,n

with respect to yn.

To obtain the characterization of the optimal control, we need the following ad-
joint equations. We define λ1(t) = (λ10(t), λ11(t), · · · , λ1N (t)), λ2(t) = (λ20(t), · · · ,
λ2N (t)). Note that λi,n+1 just means λi(t), i = 1, 2 in year n + 1.

THEOREM 5.2. Assume [H1], given an optimal control u∗ and the corresponding
solutions x∗, y∗ of the state system (7) – (9), there exist adjoint variables λ1, λ2

satisfying:
Summer: t ∈ [365n, 365n + T ], n = 0, · · · , N − 1

λ′1n = −
[
(kn)x(x∗n, y∗n, u∗n) + λ1n(fn)x(x∗n, y∗n, u∗n) + λ2n(g1,n)x(x∗n, y∗n)

+ λ1,n+1(365(n + 1))
(
p2 + p3y

∗
n

)]
,

(14)

with
λ1n(365n + T ) = p1λ1,n+1(365(n + 1)), n = 0, · · · , N − 1; (15)

and t ∈ [365N, 365N + T ],

λ′1N = −[(kN )x(x∗N , y∗N , u∗N )+λ1N (fN )x(x∗N , y∗N , u∗N )+λ2N (g1,N )x(x∗N , y∗N )], (16)

with
λ1N (365N + T ) = 0; (17)

and λ2 solving:
Summer: t ∈ [365n, 365n + T ], n = 0, · · · , N − 1

λ′2n = −
[
(kn)y(x∗n, y∗n, u∗n) + λ1n(fn)y(x∗n, y∗n, u∗n) + λ2n(g1,n)y(x∗n, y∗n)

+ p3λ1,n+1(365(n + 1))x∗n
]
;

(18)

and t ∈ [365N, 365N + T ],

λ′2N = −
[
(kN )y(x∗N , y∗N , u∗N )+λ1N (fN )y(x∗N , y∗N , u∗N )+λ2N (g1,N )y(x∗N , y∗N )

]
; (19)
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Winter: t ∈ [365n + T, 365(n + 1)], n = 0, · · · , N

λ′2n = −λ2n(g2,n)′(y∗n), (20)

with

λ2,n+1(365(n + 1)) = λ2n(365(n + 1)), n = 0, · · · , N − 1,

and

λ2N (365(N + 1)) = 0.

Furthermore, for n = 0, · · · , N, u∗n satisfies:




On {t | m < u∗n(t) < M}, (kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n) = 0;
On {t | u∗n(t) = m}, (kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n) ≤ 0;
On {t | u∗n(t) = M}, (kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n) ≥ 0.

Proof. Using (7) – (8), we add three zero terms to the objective functional and then
use integration by parts:

J(u) =
N∑

n=0

∫ 365n+T

365n

[
kn(xn, yn, un) +

(
λ1nfn(xn, yn, un)− λ1nx′n

)
(21)

+
(
λ2ng1,n(xn, yn)− λ2ny′n

)]
dt +

N∑
n=0

∫ 365(n+1)

365n+T

[
λ2ng2,n(yn)− λ2ny′n

]
dt

=
N∑

n=0

∫ 365n+T

365n

[
kn(xn, yn, un) +

(
λ1nfn(xn, yn, un) + λ′1nxn

)

+
(
λ2ng1,n(xn, yn) + λ′2nyn

)]
dt (22)

N∑
n=0

[
− (λ1nxn)(365n + T ) + (λ1nxn)(365n)

− (λ2nyn)(365n + T ) + (λ2nyn)(365n)
]

(23)

+
N∑

n=0

∫ 365(n+1)

365n+T

[
λ2ng2,n(yn) + λ′2nyn

]

+
N∑

n=0

[
− (λ2nyn)(365(n + 1)) + (λ2nyn)(365n + T )

]
. (24)

We first consider boundary terms for population 1 in “summers”.

N∑
n=0

[
− λ1n(365n + T )xn(365n + T ) + λ1n(365n)xn(365n)

]

=− λ10(T )x0(T ) + λ10(0)x0(0)

− λ11(365 + T )x1(365 + T ) + λ11(365)x1(365)
...

− λ1N (365N + T )xN (365N + T ) + λ1N (365N)xN (365N).
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Using initial conditions (9), the above becomes

− λ10(T )x0(T ) + λ10(0)x0(0)[
− λ11(365 + T )x1(365 + T )

+ λ11(365)
(
p1x0(T ) + p2

∫ T

0

x0(s)ds + p3

∫ T

0

x0(s)y0(s)ds
)]

...
[
− λ1N (365N + T )xN (365N + T ) + λ1N (365N)

(
p1xN−1(365(N − 1) + T )

+ p2

∫ 365(N−1)+T

365(N−1)

xN−1(s)ds + p3

∫ 365(N−1)+T

365(N−1)

xN−1(s)yN−1(s)ds
)]

.

We choose λ1n(365n + T ) = p1λ1,n+1(365(n + 1)), n = 0, · · · , N − 1; this reduces
the above to

λ10(0)x0(0)− λ1N (365N + T )xN (365N + T )

+
N∑

n=1

λ1n(365n)
(
p2

∫ 365(n−1)+T

365(n−1)

xn−1(s)ds + p3

∫ 365(n−1)+T

365(n−1)

xn−1(s)yn−1(s)ds
)
.

We reindex for n and obtain the boundary terms as

λ10(0)x0(0)− λ1N (365N + T )xN (365N + T )

+
N−1∑
n=0

λ1,n+1(365(n + 1))
(
p2

∫ 365n+T

365n

xn(s)ds + p3

∫ 365n+T

365n

xn(s)yn(s)ds
)
.

(25)

Notice population 2 has continuous dynamics throughout the years, so the bound-
ary terms for population 2 are simply:

N∑
n=0

[
− λ2n(365n + T )yn(365n + T ) + λ2n(365n)yn(365n)

]

+
N∑

n=0

[
− λ2n(365(n + 1))yn(365(n + 1)) + λ2n(365n + T )yn(365n + T )

]

=λ20(0)y0(0)− λ2N (365(N + 1))yN (365(N + 1)).

(26)

Then we rewrite the objective functional (21) using (25) and (26) as

J(u) =
N∑

n=0

∫ 365n+T

365n

[
kn(xn, yn, un) + λ1nfn(xn, yn, un) + λ′1nxn

+ λ2ng1,n(xn, yn) + λ′2nyn

]
dt +

[
(λ10x0)(0)− (λ1NxN )(365N + T )

+
N−1∑
n=0

λ1,n+1(365(n + 1))
(
p2

∫ 365n+T

365n

xn(s)ds + p3

∫ 365n+T

365n

xn(s)yn(s)ds
)]

+
N∑

n=0

∫ 365(n+1)

365n+T

[
λ2ng2,n(yn) + λ′2nyn

]
dt +

[
(λ20y0)(0)− (λ2NyN )(365(N + 1))

]
.



OPTIMAL CONTROL ON HYBRID ODE SYSTEMS 645

Let u∗ ∈ UM be an optimal control and (x∗, y∗) be the corresponding opti-
mal state solutions. Let u∗ + εh ∈ UM for ε > 0, h = (h0, · · · , hN ), hn ∈
L∞([365n, 365n+T ]), n = 0, · · · , N. Denote xε

n = xn(u∗n +εhn), yε
n = yn(u∗n +εhn)

be the corresponding solutions of the system (7) – (8) for n = 0, · · · , N . We com-
pute the directional derivative of the objective functional J(u∗) with respect to u∗

in the direction of h. Since J(u∗) is a maximum value, we have

0 ≥ lim
ε→0+

J(u∗ + εh)− J(u∗)
ε

= lim
ε→0+

1
ε

{
N∑

n=0

∫ 365n+T

365n

[(
kn(xε

n, yε
n, u∗n + εhn)− kn(x∗n, y∗n, u∗n)

)

+
(
λ1nfn(xε

n, yε
n, u∗n + εhn)− λ1nfn(x∗n, y∗n, u∗n)

)
+

(
λ′1nxε

n − λ′1nx∗n
)

+
(
λ2ng1,n(xε

n, yε
n)− λ2ng1,n(x∗n, y∗n)

)
+

(
λ′2nyε

n − λ′2ny∗n
)]

dt

+
[
λ10(0)xε

0(0)− λ10(0)x∗0(0)
]
− (λ1Nxε

N )(365(N + 1)) + (λ1Nx∗N )(365N + T )

+
N−1∑
n=0

λ1,n+1(365(n + 1))
[
p2

∫ 365n+T

365n

(xε
n − x∗n)ds + p3

∫ 365n+T

365n

(xε
nyε

n − x∗ny∗n)ds
]

+
N∑

n=0

∫ 365(n+1)

365n+T

[(
λ2ng2,n(yε

n)− λ2ng2,n(y∗n)
)

+
(
λ′2nyε

n − λ′2ny∗n
)]

dt

+
[
λ20(0)yε

0(0)− λ20(0)y∗0(0)
]
− (λ2Nyε

N )(365(N + 1)) + (λ2Ny∗N )(365(N + 1))

}
.

Using the chain rule, the sensitivity from Lemma 5.1; i.e.,

xε
n − x∗n

ε
−→ ψn,

yε
n − y∗n

ε
−→ φn as ε −→ 0,

and

xε
nyε

n − x∗ny∗n = (xε
n − x∗n)yε

n + x∗n(yε
n − y∗n), xε

0(0) = x∗0(0), yε
0(0) = y∗0(0),

we have

0 ≥
N∑

n=0

∫ 365n+T

365n

{[
(kn)x(x∗n, y∗n, u∗n) + λ1n(fn)x(x∗n, y∗n, u∗n) + λ′1n

+ λ2n(g1,n)x(x∗n, y∗n)
]
ψn(t)

+
[
(kn)y(x∗n, y∗n, u∗n) + λ1n(fn)y(x∗n, y∗n, u∗n) + λ′2n + λ2n(g1,n)y(x∗n, y∗n)

]
φn(t)

+
[
(kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n)

]
hn

}
dt− (λ1NψN )(365N + T )

+
N−1∑
n=0

λ1,n+1(365(n + 1))
[
p2

∫ 365n+T

365n

ψn(s)ds + p3

∫ 365n+T

365n

(
ψny∗n + x∗nφn

)
ds

]

+
N∑

n=0

∫ 365(n+1)

365n+T

[
λ′2n + λ2n(g2,n)′(y∗n)

]
φn(t)dt− (λ2NφN )(365(N + 1)).
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Combining the terms involving ψn and φn respectively, we have

0 ≥
N−1∑
n=0

∫ 365n+T

365n

{[
(kn)x(x∗n, y∗n, u∗n) + λ1n(fn)x(x∗n, y∗n, u∗n) + λ′1n

+ λ2n(g1,n)x(x∗n, y∗n) + λ1,n+1(365(n + 1))
(
p2 + p3y

∗
n

)]
ψn(t)

+
[
(kn)y(x∗n, y∗n, u∗n) + λ1n(fn)y(x∗n, y∗n, u∗n) + λ′2n

+ λ2n(g1,n)y(x∗n, y∗n) + p3λ1,n+1(365(n + 1))x∗n
]
φn(t)

}
dt

+
N∑

n=0

∫ 365n+T

365n

[
(kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n)

]
hn dt

+
∫ 365N+T

365N

[
(kN )x(x∗N , y∗N , u∗N ) + λ1N (fN )x(x∗N , y∗N , u∗N ) + λ′1N

+ λ2N (g1,N )x(x∗N , y∗N )
]
ψN (t)

+
∫ 365N+T

365N

[
(kN )y(x∗N , y∗N , u∗N ) + λ1N (fN )y(x∗N , y∗N , u∗N ) + λ′2N

+ λ2N (g1,N )y(x∗N , y∗N )
]
φN (t)

+
N∑

n=0

∫ 365(n+1)

365n+T

[
λ′2n + λ2n(g2,n)′(y∗n)

]
φn(t)dt

− (λ1NψN )(365N + T )− (λ2NφN )(365(N + 1)).

We choose λ1 to solve:
Summer: t ∈ [365n, 365n + T ], n = 0, · · · , N − 1

λ′1n = −
[
(kn)x(x∗n, y∗n, u∗n) + λ1n(fn)x(x∗n, y∗n, u∗n) + λ2n(g1,n)x(x∗n, y∗n)

+ λ1,n+1(365(n + 1))
(
p2 + p3y

∗
n

)]
,

(27)

with
λ1n(365n + T ) = p1λ1,n+1(365(n + 1)), n = 0, · · · , N − 1; (28)

and t ∈ [365N, 365N + T ],

λ′1N = −
[
(kN )x(x∗N , y∗N , u∗N ) + λ1N (fN )x(x∗N , y∗N , u∗N ) + λ2N (g1,N )x(x∗N , y∗N )

]
,

(29)
with

λ1N (365N + T ) = 0; (30)

and λ2 solving:
Summer: t ∈ [365n, 365n + T ], n = 0, · · · , N − 1

λ′2n =−
[
(kn)y(x∗n, y∗n, u∗n) + λ1n(fn)y(x∗n, y∗n, u∗n) + λ2n(g1,n)y(x∗n, y∗n)

+ p3λ1,n+1(365(n + 1))x∗n
]
;

(31)
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and t ∈ [365N, 365N + T ],

λ′2N = −
[
(kN )y(x∗N , y∗N , u∗N )+λ1N (fN )y(x∗N , y∗N , u∗N )+λ2N (g1,N )y(x∗N , y∗N )

]
; (32)

Winter: t ∈ [365n + T, 365(n + 1)], n = 0, · · · , N

λ′2n = −λ2n(g2,n)′(y∗n); (33)

with
λ2,n+1(365(n + 1)) = λ2n(365(n + 1)), n = 0, · · · , N − 1,

and
λ2N (365(N + 1)) = 0.

So we obtain

0 ≥
N∑

n=0

∫ 365n+T

365n

[
(kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n)

]
hn.

For each n = 0, · · · , N, on the set where u∗n = m, we choose variation hn with
support on this set and hn ≥ 0, which implies that

(kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n) ≤ 0;

when m < u∗n < M, hn is arbitrary, we have

(kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n) = 0;

when u∗n = M, hn ≤ 0, we have (kn)u(x∗n, y∗n, u∗n) + λ1n(fn)u(x∗n, y∗n, u∗n) ≥ 0. This
gives the desired characterization of the optimal control.

6. Uniqueness of the optimal control. We show uniqueness of the optimal
control by considering the convexity of the objective functional with respect to the
control.

THEOREM 6.1. Suppose in (7)−(8), for n = 0, · · · , N, fn = fn(xn(t), yn(t), un(t)),
g1,n = g1,n(xn(t), yn(t)), g2,n = g2,n(yn(t)), kn = kn(xn(t), yn(t), un(t)) are in C2

for their arguments, their second partial derivatives are bounded, (kn)uu < 0 with
sufficiently large absolute value; then there is a unique optimal control.

Proof. We have shown the existence of an optimal control; now we show uniqueness
of the optimal control by showing for all u, v ∈ UM , 0 < ε < 1,

g′′(ε) < 0,

where g(ε) = J(εu + (1 − ε)v) = J(v + ε(u − v)). This implies the strict convexity
of the following map:

u ∈ UM −→ J(u).
To calculate

g′(ε) = lim
δ→0

J(v + (ε + δ)(u− v))− J(v + ε(u− v))
δ

,

for n = 0, · · · , N, denote

x̃ε
n = xn(vn + ε(un − vn)), ỹε

n = yn(vn + ε(un − vn)),

x̃ε+δ
n = xn(vn + (ε + δ)(un − vn)), ỹε+δ

n = yn(vn + (ε + δ)(un − vn)).
Using Lemma 5.1, we have t ∈ [365n, 365n + T ], n = 0, · · · , N,

x̃ε+δ
n − x̃ε

n

δ
→ ψε

n
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t ∈ [365n, 365(n + 1)], n = 0, · · · , N,

ỹε+δ
n − ỹε

n

δ
→ φε

n

as δ → 0 and the sensitivities ψε
n, φε

n satisfy:
t ∈ [365n, 365n + T ],




(ψε
n)′ = (fn)xψε

n + (fn)yφε
n + (fn)u(un − vn), n = 0, · · · , N,

ψε
n+1(365(n + 1)) = p1ψ

ε
n(365n + T ) + p2

∫ 365n+T

365n

ψε
n(s)ds

+p3

∫ 365n+T

365n

(
ψε

n(s)ỹε
n(s) + x̃ε

n(s)φε
n(x) ds

)
, n = 0, · · · , N − 1,

ψε
0(0) = 0;

(34){
(φε

n)′ = (g1,n)xψε
n + (g1,n)yφε

n, n = 0, · · · , N,

φε
0(0) = 0;

(35)

t ∈ [365n + T, 365(n + 1)],
{

(φε
n)′ = (g2,n)′φε

n, n = 0, · · · , N,

φε
n(365n) = φε

n−1(365n), n = 1, · · · , N,
(36)

where the derivatives of fn, g1n, g2n are evaluated at (x̃ε
n, ỹε

n, vn + ε(un − vn)).
From (34) and (35), we obtain

|ψε
n(365n + t)|+ |φε

n(365n + t)| (37)

≤|ψε
n(365n)|+ |φε

n(365n)|+
∫ 365n+t

365n

C1|un − vn|ds +
∫ 365n+t

365n

C2

(
|ψε

n|+ |ψε
n|

)
ds,

(38)

where C1 = Cfn , C2 = max{Cfn , Cg1,n}, and Cfn , Cg1,n are the bounds for the
partial derivatives of fn(xn, yn, un) and g1,n(xn, yn) respectively, since we have Lip-
schtiz conditions. Gronwall’s Inequality implies for 0 ≤ t ≤ T,

|ψε
n(365n + t)|+ |φε

n(365n + t)| (39)

≤
(
|ψε

n(365n)|+ |φε
n(365n)|+

∫ 365n+t

365n

C1|un − vn|ds
)
×

(
1 + C2TeC2T

)
. (40)

For T ≤ t ≤ 365, we get a similar estimate from (36):

|φε
n(365n + t)| ≤ C3|φε

n(365n + T )|, (41)

where C3 = (1+Cg2,n(365−T )eCg2,n (365−T )), and Cg2,n is a bound for the derivative
of g2,n(yn).

Since ψ0, φ0 are bounded, we can use the bounds of ψε
n−1, φ

ε
n−1 to estimate

ψε
n, φε

n. We obtain: for 0 ≤ t ≤ T, n = 0, · · · , N,

|ψε
n(365n + t)|+ |φε

n(365n + t)| ≤ C̃

n∑

j=0

∫ 365j+T

365j

|uj − vj |ds. (42)

To calculate g′′(ε), we need a second derivative of x, y with respect to the control
u. As in Lemma 5.1, we have, n = 0, · · · , N,

ψε+η
n − ψε

n

η
−→ σε

n,
φε+η

n − φε
n

η
−→ τ ε

n,
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as η → 0 and σε
n, τ ε

n satisfy
t ∈ [365n, 365n + T ], n = 0, · · · , N,




(σε
n)′ = (fn)xσε

n + (fn)xx(ψε
n)2 + 2(fn)xyφε

nψε
n + 2(fn)xu(un − vn)ψε

n

+(fn)yτ ε
n + (fn)yy(φε

n)2 + 2(fn)yuφε
n(un − vn) + (fn)uu(un − vn)2,

σε
n+1(365(n + 1)) = p1σ

ε
n(365n + T ) + p2

∫ 365n+T

365n

σε
n(s)ds

+p3

∫ 365n+T

365n

(
σε

n(s)ỹε
n(s) + 2ψε

n(s)φε
n(s) + x̃ε

n(s)τ ε
n(s)

)
ds,

σε
0(0) = 0;

(43)
and{

(τ ε
n)′ = (g1,n)xσε

n + (g1,n)xx(ψε
n)2 + 2(g1,n)xyφε

nψε
n + (g1,n)yτ ε

n + (g1,n)yy(φε
n)2,

τ ε
0(0) = 0;

(44)
t ∈ [365n + T, 365(n + 1)], n = 0, · · · , N,

{
(τ ε

n)′ = (g2,n)′τ ε
n + (g2,n)′′(φε

n)2,
τ ε
n(365n) = τ ε

n−1(365n).
(45)

where the derivatives of fn, g1n, g2n are evaluated at (x̃ε
n, ỹε

n, vn + ε(un − vn)).
We can get the estimates for σε

n, τ ε
n, n = 0, · · · , N,

|σε
n(365n + t)|+ |τ ε

n(365n + t)| ≤ C4

n∑

j=0

∫ 365j+T

365j

|uj − vj |2ds, 0 ≤ t ≤ T. (46)

Then we are ready to calculate the derivatives of g. We have

g′(ε) = lim
δ→0

1
δ

N∑
n=0

∫ 365n+T

365n

[
kn(x̃ε+δ

n , ỹε+δ
n , vn + (ε + δ)(un − vn))

− kn(x̃ε
n, ỹε

n, vn + ε(un − vn))
]
dt

=
N∑

n=0

∫ 365n+T

365n

[
(kn)xψε

n + (kn)yφε
n + (kn)u(un − vn)

]
dt,

(47)

where the arguments for (kn)x, (kn)y, (kn)u are (x̃ε
n, ỹε

n, v + ε(un − vn)).
For the second derivative, we have

g′′(ε) = lim
η→0

g′(ε + η)− g′(ε)
η

= lim
η→0

1
η

N∑
n=0

∫ 365n+T

365n

{[
(kn)x(x̃ε+η

n , ỹε+η
n , vn + (ε + η)(un − vn))ψε+η

n

+ (kn)y(x̃ε+η
n , ỹε+η

n , vn + (ε + η)(un − vn))φε+η
n

+ (kn)u(x̃ε+η
n , ỹε+η

n , vn + (ε + η)(un − vn))(un − vn)
]

−
[
(kn)x(x̃ε

n, ỹε
n, vn + ε(un − vn))ψε

n + (kn)y(x̃ε
n, ỹε

n, vn + ε(un − vn))φε
n

+ (kn)u(x̃ε
n, ỹε

n, vn + ε(un − vn))(un − vn)
]}

dt.
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Then

g′′(ε) =
N∑

n=0

∫ 365n+T

365n

[
(kn)xσε

n + (kn)xx(ψε
n)2 + 2(kn)xyφε

nψε
n + 2(kn)xu(un − vn)ψε

n

+ (kn)yτ ε
n + (kn)yy(φε

n)2 + 2(kn)yu(un − vn)φε
n + (kn)uu(un − vn)2

]
dt.

The arguments for (kn)x, (kn)xx, (kn)xy, (kn)xu, (kn)y, (kn)yy, (kn)yu, (kn)uu are
(x̃ε

n, ỹε
n, vn + ε(un − vn)).

Using the estimates (42), (46) for φε
n, ψε

n, σε
n, τ ε

n, we obtain

g′′(ε) =
N∑

n=0

∫ 365n+T

365n

(
(kn)uu(un − vn)2 + C5

n∑

j=0

∫ 365j+T

365j

(uj − vj)2
)

< 0,

if we choose (kn)uu < 0 and large enough in absolute value, where C5 > 0 depends
on T and the bounds on the derivatives of fn, g1,n, g2,n, kn.

This completes the proof for the uniqueness.

7. Application to the tick and host model. We now apply our ideas above to
the tick model with seasonal pattern. To use the adjoint equations in Theorem 5.2,
we need the the molting probabilities mz, z = N,L, A in (4) to be constants. This
differs from Ghosh and Pugliese’s [13] model and we describe how we choose the
parameter values in section 7.2.

7.1. Adjoint system. We note that the first five adjoint variables correspond
to the tick state variables and the last three adjoint variables correspond to the
rodent host state variables. Use an extension of Theorem 5.2, we have the adjoint
system corresponding to the state system (1) – (4):
Summer: n = 0, · · · , N − 1




λ′1n = −
[
C − λ1n(un + gL) + mLλ2,n+1(365(n + 1))(gL − βL

1 ψLHi
n)

+mLβL
1 ψLλ3,n+1(365(n + 1))Hi

n

]
;

λ′2n = −
[
C − λ2n(un + gN ) + λ4,n+1(365(n + 1))mN

(
gN − βN

1 ψNHi
n

)

+λ5,n+1(365(n + 1))mNβN
1 ψNHi

n

]
;

λ′3n = −
[
−B − λ3n(un + gN )− λ6nqNβN

1 Hs
nψN + λ7nqNβN

1 Hs
nψN

]
;

λ′4n = −
[
C + λ1npcgA − λ4n(un + gA) + λ1,n+1(365(n + 1))w(1− p)cgA

]
;

λ′5n = −
[
−B + λ1npcgA − λ5n(un + gA)− λ6nqAβA

1 Hs
nψA + λ7nqAβA

1 Hs
nψA

+λ1,n+1(365(n + 1))w(1− p)cgA

]
;

λ′6n = −
[
λ6n

(
− b1 − qNβN

1 ψNN i
n − qAβA

1 ψAAi
n

)

+λ7n

(
qNβN

1 ψNN i
n + qAβA

1 ψAAi
n

)]
;

λ′7n = −
[
λ7n(−b1 − γ) + λ8nγ − λ2,n+1(365(n + 1))mLβL

1 ψLLn

+λ3,n+1(365(n + 1))mLβL
1 ψLLn − λ4,n+1(365(n + 1))mNβN

1 ψNNs
n

+λ5,n+1(365(n + 1))mNβN
1 ψNNs

n

]
;

λ′8n = −[λ8n(−b1)];
(48)
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with
λjn(365n + T ) = 0, j = 1, · · · , 5, (49)

and



λ′1N = −[C − λ1N (uN + gL)];
λ′2N = −[C − λ2N (uN + gN )];

λ′3N = −
[
−B − λ3N (uN + gN )− λ6NqNβN

1 Hs
NψN + λ7NqNβN

1 Hs
NψN

]
;

λ′4N = −[C + λ1NpcgA − λ4N (uN + gA)];

λ′5N = −
[
−B + λ1NpcgA − λ5N (uN + gA)− λ6NqAβA

1 Hs
NψA

+λ7NqAβA
1 Hs

NψA
]
;

λ′6N = −
[
λ6N

(
− b1 − qNβN

1 ψNN i
N − qAβA

1 ψAAi
N

)

+λ7N

(
qNβN

1 ψNN i
N + qAβA

1 ψAAi
N

)]
;

λ′7N = −[λ7N (−b1 − γ) + λ8Nγ];
λ′8N = −[λ8N (−b1)];

(50)
with

λjN (365N + T ) = 0, j = 1, · · · , 5, (51)
Winter: n = 0, · · · , N 




λ′6n = −λ6n(−b1);
λ′7n = −(λ7n(−b1 − γ) + λ8nγ);
λ′8n = −λ8n(−b1);

(52)

with

λj,n+1(365(n + 1)) = λjn(365(n + 1)), j = 6, 7, 8, n = 0, · · · , N − 1,

and
λ6N (365(N + 1)) = λ7N (365(N + 1)) = λ8N (365(N + 1)) = 0. (53)

Note that for our objective functional which is quadratic in the control, we can
explicitly solve the characterization for the optimal control: for n = 0, · · · , N,

u∗n = min{max{m,
λ1nLn + λ2nNs

n + λ3nN i
n + λ4nAs

n + λ5nAi
n

−K
},M}. (54)

7.2. Numerical results and discussion. Table 1 is the list of all parameters used
in our numerical simulations. All the parameter values, which are considered to be
reasonable for describing Ixodes ricinus tick populations in Trentino, Italy (see CEA
Report 2000 for background information [29]), are from Ghosh and Pugliese [13],
except w, C,B, m, M, mz,K. In all parameters time is measured in days, and host
densities are per hectare.

We take the probability of survival through winter for larvae that have delayed
development w to be 0.5. For C, B, K, constants that balance the three parts in
the objective functional, we take C = 1, B = 30 to indicate minimizing infected
ticks is more important than maximizing the disease-free ticks. Other values can
be investigated. Our goal is to see how the change in the cost of applying acaricide
will affect the control strategy. We take the weight in the objective functional for
the cost K to be 500, 5000, 50000. We choose m = 0.01 and M = 0.9 as the lower
and upper bound for control u. The molting probability mz in [13] is taken as a
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Table 1. Parameter Values

Parameter Description Value
p the probability of immediate development

of tick larvae
0.8

c average number of eggs produced per fed
adult (considering also their sex ratio)

1300

w the probability of survival through winter
for larvae that have delayed development

0.5

K cost weight in objective functional 500,5000,50000
C weight in objective functional for suscep-

tible ticks
1

B weight in objective functional for infected
ticks

30

m lower bound for control u 0.01
M upper bound for control u 0.9
mz the molting rates in stage z (z=L, N,A) 0.1
T1 length of summer 182
T2 length of winter 365-T1

gz feeding rate in stage z = L, N, A [0.31,0.028,0.013]
a1 birth rate of host 1 1/365
b1 death rate of host 1 1/365
βz

1 encounter rates between questing ticks in
stage z = L, N, A and host H1

[0.028,0.0009,0]

βz
2 encounter rates between questing ticks in

stage z = L, N, A and host H2

[0.05,0.03,0.13]

qz probability of becoming infected for a host
1 bitten by an infectious tick in stage z =
N, A

0.5

ψz auxiliary function, z = L,N, A [0.3717,0.9434,0.9747]
H1 density for host 1 30
H2 density for host 2 0.1
r recovery rate of host 1 0.01

function of average integral values x of ticks in stage z over each summer which is
given by 0.15e−0.008x, here we take it as a constant (m = 0.1) to derive the adjoint
system using Theorem 5.2.

The optimality system consists of the state ODEs and the adjoint ODEs coupled
with the optimal control characterization. We solve the optimality system of hybrid
ODEs by the following forward-backward sweep method [14].

1. Initialization step: Choose initial guesses for ticks, hosts and control u.
2. Iteration: un is known

(a) Solve (1) – (4) forward in time by fourth-order Runge-Kutta method using
initial conditions for ticks and hosts, we get the values for
(Ln, Ns

n, N i
n, As

n, Ai
n,Hs

n,Hi
n,Hr

n);
(b) Solve (48), (50), (52) backward in time by fourth-order Runga-Kutta

method using transversality conditions (49), (51), (53), we get (λin, i =
1, · · · , 8);
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(c) Update the control by entering new ticks, hosts values and adjoint values
into the characterization of optimal control (54);

3. Repeat step 2 if a stopping criterion is not satisfied.

Our initial conditions are (L0, N
s
0 , N i

0, A
s
0, A

i
0) = (150, 200, 175, 20, 10) and

(Hs
0 ,Hi

0,H
r
0 ) = (20, 5, 5), which are the steady-state solutions from [13]. We did

the simulation for two years (730 days), because ixodidae ticks have a two-year
life cycle, and the time step within each Rugga-Kutta iteration is 0.01. To see the
figures clearly, our x-axis is [-10, 730] instead of [0, 730].

One might have two different goals: maximizing disease-free ticks and minimizing
infected ticks (we took C = 1, B = 30 in this case); or only minimizing the infected
ticks (we took C = 0, B = 30 in this case). Figure 2 is the optimal control for
C = 1 and C = 0 respectively. We find in the C = 0 case we need to apply more
acaricide (u = 0.61) in the beginning of the second summer with K = 500, while
when C = 1, we only need u = 0.39.

Also we see the seasonal pattern of applying the acaricide, which is indicated by
the seasonal pattern of ticks. We see the dramatically changing strategy of applying
the acaricide. We apply it heavily for a short period of time in the beginning of
the first summer, then apply the minimum amount (lower bound of the optimal
control) until the end of summer; in the beginning of the second summer, we apply
much less acaricide, then quickly reduce to the lower bound. We vary K to see how
the change in the cost of acaricide affects the control u. We can see that increasing
the cost will decrease the optimal control u, because it is more expensive to apply
acaricide at higher cost.

We compare numerical results without and with control in Figures 3 – 10. With-
out any control, we can see the tick’s population in every life stage increases rapidly.
We can see the optimal control strategy can significantly reduce the infected ticks
density in every life stage and the density of infected host 1, and it also can increase
the density of susceptible host 1. We observe a sharp change in the slopes of the
tick density curves when the control hits its lower bound as a result of the control
strategy.

Figure 3 is the graph for density of larvae. We can see when the cost is relatively
high, the larvae density is also relatively high, because it is expensive to kill the
ticks. The “hump” in the first summer is due to the adults producing new eggs
emerging to larvae.

For Figures 4 and 5 we use log scale for y-axis because the differences in densities
of the nymphs between the first and second summer are large. We can see that
decreasing the cost will decrease susceptible nymphs, because it is cheaper to apply
control. We can see the nymphs are killed quickly with the optimal control strategy.
And we observe the drastic change in the slopes of the density curves within each
summer when the control hits its lower bound. Figure 4 is for susceptible nymphs.
For Figure 5, similar situations occur. As the cost of applying acaricide increases,
we can see higher density of infected nymphs, because it is harder to remove them.
Also we see the drastic change in the densities of infected nymphs during each
summer. The infected ticks survive for only a short period.

Figures 6 and 7 also use a logarithmic scale for the y-axis. Figure 6 is for
susceptible adult ticks. We can see that decreasing the cost will decrease both
susceptible and infected adult ticks because it is easier to apply control. Figure 7
shows infected adult ticks. We see the changing behavior of the density of adult
ticks.
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Figure 2. Optimal control u: C = 1(on the top), and C = 0
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Figure 3. Density of larvae: (left) without control; (right) with
control for K = 500, 5000, 50000

Figure 8 is for susceptible host of type 1. Notice the continuity of the host graphs
as expected from the model. We can see that decreasing the cost will increase the
susceptible host because infected nymphs and adult ticks decrease (see Hs eqn).
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Figure 4. Density of susceptible nymphs: (left) without control;
(right) with control on log scale
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Figure 5. Density of infected nymphs: (left) without control;
(right) with control on log scale
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Figure 6. Density of susceptible adult ticks: (left) without con-
trol; (right) with control on log scale

The graphs of infected host 1 are in Figure 9. We can see decreasing the cost will
decrease the infected host-1 density, because we have fewer nymphs and adult ticks
(see Hi eqn). Figure 10 shows the recovered host 1. We can see decreasing cost
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Figure 7. Density of infected adult ticks: (left) without control;
(right) with control on log scale
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Figure 8. Density of susceptible host 1: (left) without control;
(right) with control
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Figure 9. Density of infected host 1: (left) without control;
(right) with control

will decrease the recovered host 1 density because the infected host 1 decreases
accordingly (see Hr eqn).
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Figure 10. Density of recovered host 1: (left) without control;
(right) with control

8. Conclusion. We developed the necessary conditions for an optimal control and
corresponding states and adjoints for an unusual ODE system with a hybrid feature.
The specific hybrid structure was motivated by a tick model from [13]. We success-
fully applied our control results to determine optimal acaricide levels in this tick
model and illustrated our results with numerical simulations. The optimal controls
and corresponding states responded as expected to changes in the cost of acaricide,
meaning higher cost coefficient gave lower level of control. We found that applying
the acaricide treatment more heavily at the beginning of the first summer for a short
period of time, then quickly reducing to the lower bound, applying much less in the
beginning of the second summer then reducing to the lower bound, was optimal.
This indicates the density of ticks in every stage can be decreased dramatically after
a short period. And we see the drastic change in the densities of ticks in every life
stage in each summer resulting from the optimal control strategy.

Notice we have only host 1 (rodents) dynamics in the model. This is the first step
in understanding the interactions between the host and ticks to find the optimal
strategy to control Lyme disease. Later we can include deer dynamics as well.

Our goal is to maximize disease-free ticks and minimize infected ticks considering
cost to apply the acaricide. We can thus have different values for the weight coef-
ficients for each component. In particular, we include graphs for only minimizing
infected ticks (take C = 0) which required more control efforts in the beginning of
the second summer when K = 500 and can reduce tick population more than in the
C = 1 case.

The term “hybrid” has wide applications these days and can be used for a variety
of systems that have components with distinct features. The existence, uniqueness,
and robustness properties depend on the type of features involved. Our particular
“hybrid system” has continuous dynamics during certain seasons and then has jump
dynamics to start the next corresponding season.

In our numerical simulation, the optimality system is robust in the sense that it
is not overly sensitive to the variation of the parameter values we have tested. If
the functions on the right-hand side of the Hybrid ODE system are bounded and
Lipschitz continuous for their arguments, then the solution exists and is a priori
bounded and unique [20].
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The techniques developed here can be applied to other systems with similar
“jumps” in the dynamics. This hybrid feature is quite appropriate for models of
many populations.
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