
MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/
AND ENGINEERING
Volume 4, Number 4, October 2007 pp. 617–631

A MODEL OF ACTIVITY-DEPENDENT CHANGES IN
DENDRITIC SPINE DENSITY AND SPINE STRUCTURE

S. M. Crook

Department of Mathematics and Statistics and School of Life Sciences,
Arizona State University, Tempe, Arizona 85287

M. Dur-e-Ahmad

Department of Mathematics and Statistics

Arizona State University, Tempe, Arizona 85287

S. M. Baer

Department of Mathematics and Statistics

Arizona State University, Tempe, Arizona 85287

(Communicated by Yang Kuang)

Abstract. Recent evidence indicates that the morphology and density of den-
dritic spines are regulated during synaptic plasticity. See, for instance, a re-

view by Hayashi and Majewska [9]. In this work, we extend previous modeling

studies [27] by combining a model for activity-dependent spine density with
one for calcium-mediated spine stem restructuring. The model is based on

the standard dimensionless cable equation, which represents the change in the
membrane potential in a passive dendrite. Additional equations characterize

the change in spine density along the dendrite, the current balance equation

for an individual spine head, the change in calcium concentration in the spine
head, and the dynamics of spine stem resistance. We use computational studies

to investigate the changes in spine density and structure for differing synaptic

inputs and demonstrate the effects of these changes on the input-output prop-
erties of the dendritic branch. Moderate amounts of high-frequency synaptic

activation to dendritic spines result in an increase in spine stem resistance that

is correlated with spine stem elongation. In addition, the spine density in-
creases both inside and outside the input region. The model is formulated so

that this long-term potentiation-inducing stimulus eventually leads to struc-

tural stability. In contrast, a prolonged low-frequency stimulation paradigm
that would typically induce long-term depression results in a decrease in stem

resistance (correlated with stem shortening) and an eventual decrease in spine
density.

1. Introduction. Dendritic spines are specialized morphological compartments
that are responsible for post-synaptic activity for a vast majority of excitatory
synapses in the central nervous system. The number of spines and the spine struc-
ture change in response to hormonal signals, synaptic activity, and neurological
conditions [22]. For instance, high-frequency stimuli that induce long-term potenti-
ation (LTP), which is presumed to form the cellular basis for learning and memory,
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have been associated with increases in the number and size of spines [7, 20]. In con-
trast, low-frequency stimuli that induce long-term depression (LTD) are associated
with decreases in the number and size of spines [22]. Decreases in spine density may
also occur due to excitotoxicity associated with very high levels of activity such as
during seizures [21, 8, 23]. The time scale of restructuring can range from seconds to
hours, and hundreds of spines on a single branch may morph simultaneously but at
different rates. Conversely, slow structural changes in spines influence how electrical
activity spreads in the cell on a millisecond time scale. Resolving such interactions
will improve our understanding of the input-output properties of dendrites and how
morphological changes in dendrites both influence and are influenced by electrical
and chemical activity in the cell.

The abundance of postsynaptic AMPA receptors, which largely mediate exci-
tatory synaptic transmission, correlates with the number and size of spines [6].
Therefore, the regulation of the formation and morphology of spines is crucial for
controlling synaptic strength. Overall, the molecular mechanisms that regulate
spines are poorly understood; however, it is now well established that calcium in-
flux is a necessary step in long-term synaptic plasticity [3, 18]. Recent experiments
suggest that dendritic spines are unique calcium compartments that regulate local
changes in the calcium concentration independently of the parent dendrite [14, 15].
It is suggested that a moderate rise in the calcium concentration may cause elon-
gation of dendritic spines, while a very large increase in calcium concentration may
cause fast shrinkage and the eventual collapse of spines [24]. Here we propose a
mathematical model based on this conceptual model from [24], and we use com-
putational studies to investigate the changes in spine density and structure for a
variety of synaptic inputs of different frequencies and to study the effects of these
morphological changes on dendritic output. The model includes activity-dependent
spine densities and calcium-restructuring in individual spines and relies on a con-
tinuum formulation for the interaction of many spines due to Baer and Rinzel [2].

2. Model development. The model is based on the standard dimensionless cable
equation, which is used to model the change in membrane potential in a passive
dendrite. An additional equation represents the activity-dependent changes in spine
density along the dendrite. For this continuum model, a typical Hodgkin-Huxley
current balance equation [11] represents the change in membrane potential in an
isopotential compartment representing a spine head. The model also includes an
equation for activity-dependent changes in the calcium concentration in spines, as
well as an equation for the calcium-mediated changes in spine stem resistance that
correspond to changes in spine stem length and structure.

2.1. Membrane potential along a dendritic branch. Consider a branch of
passive dendrite cable of length l (µm) with both ends sealed that is studded with
a population of dendritic spines. The spine density N̄ is defined as the number
of spines per unit physical length. Over a short segment ∆x, the spine delivers
current ∆xNIss to the dendrite, where Iss represents the current flowing through
an individual spine stem.

As described in [26] and [27], the stem current Iss is expressed as an ohmic
voltage drop across the spine stem with resistance Rss (MΩ) and is given by the
equation

Iss =
Vsh − Vd

Rss
(2.1)
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where Vsh and Vd (mV ) are the membrane potentials in the spine head and den-
dritic base respectively. Previous studies present this simplified model as a good
approximation for the neglected membrane and cable properties of the spine stem
[25, 2]. Observe that for a very high value of Rss, Iss ≈ 0 and the spine head is
getting very close to isolation from its parent dendrite.

Table 1. Parameter values for the calcium-mediated model.

Symbol Parameter value Description
Ash 1.31 · 10−8 cm2 Surface area of each spine head
C1 30 nM Lower threshold for calcium in spine
C2 300 nM Upper threshold for calcium in spine
Cm 10−3 mF/cm2 Specific membrane capacitance
Cmin 5 nM Calcium lower bound
d 3.6 · 10−5 cm Dendritic cable diameter
ε1 3 · 10−3 ms−1 Rate of change in Ca equation
ε2 7.5 · 10−5 ms−1 Rate of change in Rss equation
ε3 1 · 10−5 ms−1 Rate of change in n̄ equation
γ 2.5 Channel density scale factor
ḡNa 1.2 · 10−1 S/cm2 Maximal sodium conductance
ḡK 3.6 · 10−2 S/cm2 Maximal potassium conductance
ḡL 3 · 10−4 S/cm2 Maximal leakage conductance
gp 7.4 · 10−11 S Peak synaptic conductance
κc 1 · 10−9 mA ms/nM Calcium scale factor
L 3 Dimensionless length of the cable
n̄min 16 (≈ 1 spine/10µm) Spine density lower bound
n̄max 100 (≈ 5 spines/10µm) Spine density upper bound
Ri 70 Ω cm Specific cytoplasmic activity
Rm 2.5 · 103 Ω cm Passive membrane resistance
Rmax 1000 · 106 Ω Stem resistance upper bound
Rmin 30 · 106 Ω Stem resistance lower bound
Rsh 1.02× 1011 Ω Resistance of each spine head
tp 0.2 ms Time to peak for gsyn

VNa 1.15 · 102 mV Sodium reversal potential
VK −12 mV Potassium reversal potential
VL 10.5989 mV Leakage reversal potential
Vsyn 102 mV Synaptic reversal potential

The change in electrical potential Vd(x, t) in a passive dendrite studded with N̄
spines per unit physical length is given by the cable equation

πdCm
∂Vd

∂t
=

πd2

4Ri

∂2Vd

∂x2
− πdVd

Rm
+ N̄Iss. (2.2)

Here Ri is the volume resistivity of the cable (measured in Ωcm), Rm is the resis-
tance across the unit area of the passive membrane (measured in Ωcm2), Cm is the
specific membrane capacitance (measured in µF/cm2), and d is the diameter of the
dendrite (measured in µm). Rewriting the above equation by multiplying by Rm

πd
gives

RmCm
∂Vd

∂t
=

dRm

4Ri

∂2Vd

∂x2
− Vd +

N̄IssRm

πd
. (2.3)



620 S. M. CROOK, M. DUR-E-AHMAD AND S. M. BAER

We introduce new parameters τm = RmCm, λ =
√

Rmd
4Ri

and R∞ = Rm

πdλ where τm is
membrane time constant, λ is the length constant and R∞ is cable input resistance.
Using these values in equation (2.3), we get

τm
∂Vd

∂t
= λ2 ∂2Vd

∂x2
− Vd + λN̄IssR∞. (2.4)

To arrive at the dimensionless cable equation for the electrical potential in the
dendrite of dimensionless length l = L/λ, we make the change of variables X = x/λ
and n̄ = λN̄ , to get

τm
∂Vd

∂t
=

∂2Vd

∂X2
− Vd + n̄IssR∞. (2.5)

Here n̄ represents the number of spines per unit electronic length λ.

Figure 1. Schematic for the conceptual model of the relationship
between the calcium concentration and the shape and density of
dendritic spines. Low calcium concentrations lead to shrinkage
and pruning, an increase in calcium concentration leads to spine
elongation and formation of new spines, and significantly higher
values cause spine shrinkage and pruning. This conceptual model
is adapted from [24].

2.2. Membrane potential in a spine head. To model the spine head, we as-
sume that it is an isopotential compartment and let Vsh(x, t) denote the membrane
potential of the spine head for the population of the spines distributed along the
dendrite. The total capacitance on each spine head is calculated by the relation
Csh = AshCm (µF ) where Ash is the spine head surface area and Cm is specific
membrane capacitance. The current balance equation for the membrane potential
in a single spine is given by

Csh
∂Vsh

∂t
= −Iion − Isyn − Iss. (2.6)

Here Iion represents ionic current passing through the head membrane, Isyn repre-
sents the synaptic current and Iss is the current flowing through the spine stem and
is calculated using equation (2.1). For the excitable membrane in the spine head we
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use Hodgkin-Huxley kinetics [11] for the voltage dependent ion channel currents.
The equation for the ionic current is given by

Iion = γAsh[(Vsh − VNa)ḡ
Na

m3h + (Vsh − V
K)ḡK

n4 + (Vsh − V
L
)ḡ

L
]. (2.7)

Here VNa, V
K

and V
L

are the reversal potentials for the sodium, potassium, and
leakage currents with maximal conductances ḡ

Na
, ḡ

K
and ḡ

L
respectively. The

activation and inactivation variables m, n and h satisfy the standard first-order
equations given by

∂m

∂t
= αm(1−m)− βmm (2.8)

∂n

∂t
= αn(1− n)− βnn (2.9)

∂h

∂t
= αh(1− h)− βhh (2.10)

where

αn =
0.01 φ (10− Vsh)

exp
(10− Vsh

10

)
− 1

, βn = 0.125 φ exp
(
− Vsh

80

)
,

αm =
0.1 φ (25− Vsh)

exp
(25− Vsh

10

)
− 1

, βm = 4φ exp
(
− Vsh

18

)
,

αh = 0.07φ exp
(
− Vsh

20

)
, βh =

φ

exp
(30− Vsh

10

)
+ 1

.

Here φ = 3
T−3.3

10 where T is the temperature, which is assumed to be 22oC. The fac-
tor γ in equation (2.7) allows for the adjustment of the channel densities. Following
values in [25], we use increased densities with γ = 2.5.

We will simulate the activation of a cluster of synapses by applying current to all
spines in an activation region Xo ≤ X ≤ Xo +∆X. The expression for the synaptic
current is given by

Isyn(X, t) = gsyn(X, t)(Vsh − Vsyn) (2.11)

where Vsyn is the synaptic reversal potential and gsyn is a brief synaptic conductance
generated by an α−function given by

gsyn(X, t) =

 gp
t

tp
e
1− t

tp , Xo ≤ X ≤ Xo + ∆X, t ∈ [0, p],

0, otherwise,
(2.12)

and gsyn(X, t + kp) = gsyn(X, t) for k = 1, 2, . . .. Here gp is the peak synaptic
conductance, tp is the time required to reach the peak after synaptic activation,
and p is the period for synaptic activation at a set frequency.

2.3. Calcium concentration, stem resistance, and spine density. Since the
potential in the spine head increases with the increase in the synaptic activity, it
is convenient to use the spine stem current defined in equation (2.1) as a measure
of the electrical activity between the spine head and the dendritic base [26, 16]. If
the potential in the spine head is higher than the potential in the dendrite, then
Iss > 0, and the current will flow from the spine head to the dendrite. Similarly, if
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the potential in the spine head is less than the potential in the dendrite then Iss < 0
and the current will flow from the dendrite to the spine head. If Iss = 0, no current
will pass through the spine stem.

The change in intraspine calcium is dependent on activity and is given by
∂Ca

∂t
= −ε1(Ca − Cmin) +

1
κc
|Iss|. (2.13)

Here, ε1 is the rate constant for Ca decay due to calcium extrusion from the spine
head (measured in ms−1). κc (measured in pA · ms/nM) is a scale factor that
associates electrical activity, as measured by |Iss|, with an increase in calcium. In
the absence of activity (Iss = 0), calcium will decay slowly to its minimum value,
Cmin. Observe that the change in calcium is constrained to vary with the potential
difference between the spine head and the dendritic base which will increase in
response to the increase in the spine head potential due to excitatory synaptic input.
This is consistent with both calcium entry to the spine head that is associated with
synaptic activity and also calcium entry through voltage-dependent ion channels.
More detailed models for the calcium handling in the spine are possible but are not
presented here.

We also need equations for the changes in dendritic spine density and stem re-
sistance which are both mediated by the concentration of calcium. As reviewed in
[24], a moderate and transient increase in calcium will cause elongation of spines
and increases in spine density; however, if the amount of calcium is too low or too
high, spines will start shrinking and eventually disappear, as summarized in the
schematic in Figure 1. Thus, the equation for the change in spine density in the
model is given by

∂n̄

∂t
= −ε3

(
Ca

Cmin
− 1

) (
Ca

C1
− 1

) (
Ca

C2
− 1

) (
1− n̄

n̄max

)
(n̄− n̄min). (2.14)

Similarly, we add an equation for the change in the spine stem resistance Rss, which
is also mediated by the calcium concentration and is given by

∂Rss

∂t
= −ε2

(
Ca

Cmin
− 1

) (
Ca

C1
− 1

) (
Ca

C2
− 1

) (
1− Rss

Rmax

)
(Rss −Rmin).(2.15)

Here, C1 and C2 are lower and upper threshold values for the effects of calcium in
the spine head on the density and structure of spines. Equations (2.14) and (2.15)
imply that the spine density n̄ and the spine stem resistance Rss will decay if the
calcium level is either too low (i.e., below C1) or too high (i.e., above C2). The
values of the parameters used in the model are summarized in Table 1. Note that
ε1 small ensures that the rate of change in calcium is slow relative to the changes in
the membrane potential which occur on a millisecond time scale. Further, ε2 and
ε3 are several orders of magnitude smaller than ε1, since changes in spine length
and spine density occur on a time scale of seconds to hours. Exact values for these
parameters influence the time scales for the dynamics of the model but do not affect
the overall behavior as long as these relative relationships are maintained.

2.4. Analysis of slow variables. Note that the forms of equations (2.14) and
(2.15) have identical dependence on calcium; thus, the spine stem resistance and
the spine density will have similar monotonic features as functions of t due to the
activity-dependent changes in Ca over time. Therefore, for this analysis we focus
our attention on the two equations (2.13) and (2.14) for Ca and n̄; results for Rss

will be similar to those for n̄. The only dependence between the subsystem defined
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by (2.13) and (2.14) and the rest of the model is through the function Iss. In what
follows, we consider the dynamics of this subsystem where we treat Iss as a fixed
parameter which we call I∗ss.

We can easily determine the Ca nullcline

Ca = Cmin +
I∗ss

ε1κc
= C∗, (2.16)

and the n̄ nullclines
Ca = Cmin, Ca = C1, Ca = C2, n̄ = n̄min, n̄ = n̄max.

A schematic depicting the steady states at the intersections of these nullclines is
shown in Figure 2. For most values of I∗ss, the system has two steady states,
(Ca∗, n̄max) and (Ca∗, n̄min). By using the Jacobian to perform a linearization
about these fixed points, it is easy to show that for Cmin < C∗ < C1 and for C∗ >
C2, the steady state (Ca∗, n̄max) is a saddle node and the steady state (Ca∗, n̄min)
is a nodal sink. On the other hand, for C1 < C∗ < C2, (Ca∗, n̄max) is a nodal
sink and (Ca∗, n̄min) is a saddle node. When I∗ss takes on values such that Ca∗ ∈
{Cmin, C1, C2}, the Ca nullcline will coincide with one of the n̄ nullclines, resulting
in an infinite number of stable steady states. These results are summarized in Figure
3. Note that in the full model, initial conditions are constrained so that n̄(0) ∈
[nmin, nmax], Rss ∈ [Rmin, Rmax], and Ca(0) > Cmin. Therefore, we conclude that
when the the calcium level in the spine head is in the range between C1 and C2, Rss

and n̄ will increase to attain their maximum values Rmax and n̄max respectively.
Otherwise, they will decreases slowly toward their minimum values Rmin and n̄min.

Figure 2. Schematic of the possible steady states for the slower
subsystem and their dependence on parameter I∗ss.

3. Simulation results. To improve computational efficiency we perform simu-
lations using a spectral collocation method for the spatial discretization. Thus,
simulation results are computed at spatial locations

Xi = − L/2
cos(π/n)

cos(iπ/n) + L/2
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Figure 3. Schematic of the bifurcation diagram depicting the sta-
bility of all possible steady states for the slower subsystem as a
function of I∗ss.

where n = 32. For more details see Baer et al. [1].
Initially, we use simulations to explore how the model responds to local activity

of different frequencies. Figure 4 demonstrates the effects of changes in Ca on the
spine structure and density. For these simulation results, the initial stem resistance
of all spines is 300 MΩ, and the initial value for the spine density is 35 spines
per unit of electrotonic length. The parameter values are described in Table 1.
∆X = 0.2, so that the dendritic branch receives synaptic input on all spines in
a small area at one end of the branch. Spines are activated repetitively at a set
frequency, and each resulting post-synaptic action potential or spike results in an
increase in Ca. For the 2 Hz stimulus (every 500 ms) shown in Panel A, the activity
in the spine head is low, resulting in little accumulation of calcium. The calcium
level stays below the lower threshold value (C1 = 30), so there is a slow decrease in
spine density. The shape of the curve demonstrating changes in Rss is identical to
that of the solution for n̄; for example, when n̄ decreases, there is also a decrease
in Rss. Thus, low-frequency stimulation also corresponds to shrinkage of existing
spine. At the location depicted in Figure 4 (X ≈ 0.1) both n̄ and Rss eventually
approach their minimal values. For the 50 Hz stimulus (every 20 ms), the high
level of activity in the spine head causes calcium to accumulate as shown in Panel
B. The Ca level crosses the lower threshold, resulting in an increase in n̄ and Rss

that corresponds to elongation of existing spines and formation of new spines. At
location X ≈ 0.1, both n̄ and Rss eventually approach their maximal values.

Now consider the local effects of the different levels of activity that result from
synaptic inputs of additional frequencies, as demonstrated in Figure 5. Initial con-
ditions and parameters are the same as those for the simulations depicted in Figure
4. Again, we consider the output at location X ≈ 0.1 in the middle of the input
region. Solution curves are labeled on the right with the frequency of the associated
stimulus. As shown in Figure 4, the 2 Hz stimulus results in a slow decrease in
spine density (n̄ = 34.75 at time t = 2500ms) at the synaptic input site. However,
the 10 Hz stimulus results in an accumulation of Ca that remains in the region
30 < Ca < 300, so that the spine density increases. As mentioned above, increases
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Figure 4. Simulation results for a 2 Hz (Panel A) and a 50 Hz
(Panel B) stimulus lasting for 2500 ms for initial values of n̄ = 35
(≈ 2 spines/10µm) and Rss = 300 MΩ. Results are shown for the
middle of the input site at X ≈ 0.1.

in spine density are accompanied by increases in Rss that represent spine elonga-
tion. These changes are more pronounced for the 50 Hz stimulus (n̄ = 61.6 at
time t = 2500 ms). For the 100 Hz stimulus where spines in the input region are
activated every 10 ms, Ca quickly accumulates to a level that exceeds the upper
threshold for high-frequency pruning, C2 = 300. Pruning and spine shrinkage occur
which lead to a decrease in activity and subsequent decay of Ca. When the Ca
concentration falls below the upper threshold, the spine density (and Rss) begin to
increase, leading to a return to activity in the spine head and accumulation of Ca.
This process repeats, displaying a damped oscillation.

To further demonstrate the different effects of low-frequency and high-frequency
stimuli that lead to pruning, consider the changes in spine density outside the region
of synaptic input. Figure 6 demonstrates the changes along the dendritic branch
for the 2 Hz stimulus discussed above (and shown in Figures 4 and 5). For the
2 Hz stimulus, the extremely low levels of activity slowly lead to a loss of spines
and spine shrinkage along the length of the dendritic branch as shown in Figure
6. At all locations, both n̄ and Rss eventually approach their minimal values.
However, for the 100 Hz stimulus, the rapid accumulation of calcium in the region
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Figure 5. Simulation results for stimuli of four different frequen-
cies lasting for 2500 ms. Initial values and parameters are the same
as for Figure 4. Results are shown for the middle of the synaptic in-
put region at X ≈ 0.1. Top panel shows values of Ca, and bottom
panel shows values for n̄. Labels on the right side of both panels
indicate the stimulus frequency associated with each curve. Spines
are periodically activated at 2 Hz (every 500 ms), 10 Hz (every
100 ms), 50 Hz (every 20 ms) or 100 Hz (every 10 ms). Dashed
lines indicate values of C1 (lower) and C2 (upper).

of synaptic input causes the spine density in that region to decrease quickly, leading
to a decrease in the output of the branch as shown in Figure 5. At nearby locations
along the dendritic cable, for example at X ≈ 2.0, the decrease in activity ensures
that the accumulated calcium stays below the critical level of C2 = 300 so that the
spine density continues to increase and the spines continue to elongate as shown in
Figure 7. As in [27], we find that for some frequencies (e.g. 10 Hz) there are some
locations where the calcium settles into a steady-state oscillation that averages one
of the critical values such as C1 = 30. In this case, Rss and n̄ approach values other
than Rmax or Rmin.

A burst of high-frequency stimulation can reduce the dendritic output when
spines shorten and spine density decreases, as shown in Figure 8. In this figure, a
low-frequency input of 10 Hz is followed, at t = 500 ms, by a high-frequency 125 Hz
input. During the high-frequency input, Ca accumulation (Panel C) leads to spine
pruning (Panel E) and spine shortening (Panel D). This causes action potential
generation to fail in the input region due to too few channels (low n̄) and increased
dendritic load (low Rss). Outside of the input region, there is the expected decrease
in dendritic output as shown in Panel B. This decrease in output continues when
the stimulus switches back to a low-frequency input at time t = 1500 ms. However,
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time (ms)
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spine 
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Figure 6. Simulation results for 2 Hz stimulus lasting for 2500
ms. Initial values and parameters are the same as for Figures 4
and 5. Changes in n̄ are shown at all positions along the dendritic
branch (X = 0 to X = 3).

spine 

density

time (ms)
position

Figure 7. Simulation results for 100 Hz stimulus lasting for 2500
ms. Initial values and parameters are the same as for Figures 4
and 5. Changes in n̄ are shown at all positions along the dendritic
branch (X = 0 to X = 3).

eventually action potential generation and propagation resume since Ca > 30 nM
and Rss and n̄ are increasing.
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Figure 8. Simulation results for a 10 Hz stimulus lasting 500 ms
followed by a 125 Hz stimulus for 1000 ms with a 10 Hz stimulus
for the remainder of the simulation. Initial values and parameters
are the same as for Figures 4 through 7, except that the initial
value of Rss = 750 MΩ. A: Vsh is shown at location X ≈ 0.1.
B: Vd is shown for X ≈ 2.0. C: During the 125 Hz stimulus,
Ca accumulates and exceeds the threshold for spine pruning and
shrinking indicated by the dashed line. D and E: Both n̄ and Rss

decrease during periods when Ca > 300 nM . Note the decrease in
the peak membrane potential in the spine head and the decrease in
dendritic output after spine pruning and shortening in the region
of synaptic input.

Clearly, these results depend critically on the values of C1 and C2. Figure 9
shows simulation results for a 40 Hz stimulus lasting 2500 ms for a higher value
of C1 (C1 = 100 nM). Other initial values and parameters are the same as for
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Figure 9. Simulation results for a 40 Hz stimulus lasting 2500
ms. Initial values and parameters are the same as for Figures 4
through 7 except that the initial spine density is 50 spines per
unit electrotonic length, and C1 = 100. In the region of synaptic
input (X ≈ 0.1), Ca accumulates and C1 < Ca < C2 so that
Rss and n̄ increase as shown in Panel B. However, away from the
input site (X ≈ 2.0), Ca < C1 so that Rss and n̄ decrease causing
propagation failure.

Figures 4 through 7, except that the initial spine density is 50 spines per unit
electrotonic length. In the region of synaptic input (X ≈ 0.1), Ca accumulates and
C1 < Ca < C2 (Panel A), so that Rss and n̄ increase (Panel B). However, even with
a high initial spine density, there are regions away from the input site (X ≈ 2.0)
where Ca < C1 (Panel A), forcing Rss and n̄ to decrease (Panel B), which promotes
propagation failure.

4. Discussion. In these simulations, we investigated how localized synaptic ac-
tivity might lead to activity-dependent changes in spine density and stem length
and the subsequent effects on neighboring unstimulated spines and the output of
the dendritic branch. We showed that for low-frequency stimuli like those asso-
ciated with LTD, the model exhibits localized reductions in spine density as well
as decreases in spine stem length. In contrast, high-frequency stimuli like those
associated with LTP result in increases in spine density and spine stem length over
most of the branch. For excitotoxicity, such as extremely high levels of activity due
to seizures, the model exhibits reductions in spine density and stem length in the
region of synaptic input. This can lead to a dramatic decrease in the output of
the dendritic branch. However, these high levels of activity result in higher levels
of calcium throughout the dendritic branch, so that nearby regions can exhibit an
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increase in spine density and stem length if the calcium level in that region is below
C2. Verzi et al. [27] obtain the same result for high spine stem resistances. How-
ever, in their stem restructuring model with constant spine density, high-frequency
stimuli have minimal effects on dendritic output for high spine densities and low
spine stem resistance. Because the model presented here links calcium levels to
both spine density and spine structure, the decrease in dendritic branch output for
high-frequency stimuli is independent of the initial conditions for n̄ and Rss.

As discussed in [27], one important question is whether there are frequencies
that give rise to an equilibrium value of Rss that is different from Rmax and Rmin.
For this model, stimulus frequencies that lead to an equilibrium value for Rss also
lead to an equilibrium value for n̄. These steady states suggest the possibility that
under some circumstances, average spine lengths and densities reflect the average
frequencies of synaptic input.

Earlier continuum models link changes in spine density to activity through Iss

[27, 1]. In contrast, our model relies on the local calcium concentration, which in
turn depends on activity. This allows us to include concepts from [24] that describe
associations between calcium levels and structural changes based on experimental
data. One major difference between the model presented here and earlier continuum
modeling studies is the addition of spine pruning and shrinkage for low-frequency
inputs. This leads to the observation that for some inputs, the C1 threshold deter-
mines whether activity remains local to the activation region or propagates. The
next step in these modeling studies will be to incorporate more realistic calcium
dynamics, including calcium buffering and calcium-induced calcium release from
internal stores, which has been demonstrated experimentally [8].
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