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Abstract. A simple operational model of heart rate variability is described,
accounting in particular for the respiratory sinus arrhythmia, and is fitted to
some interbeat interval sequences recorded from normal subjects at rest. The
model performance is evaluated using a test based on the nonlinear predic-
tion approach. Moreover, a short comparative account of two similar models
described in the literature is given.

1. Introduction. Understanding the origin of physiological rhythms and charac-
terising their interactions are fundamental issues of the current research in physiol-
ogy and nonlinear dynamics [10, 17]. In particular, this holds true for the heartbeat
and respiratory activity.

Now, although it is well known that these two systems are coupled, it is an open
issue as to how and how much they are phase-synchronised, and only recently some
evidence of their transient synchronisation has been brought forward [13, 14], and
new analytical tools have been devised to detect it locally [12].

To answer this and related questions, some operational models of the process
underlying cardiac activity have recently been proposed, which are quite simple,
but still can render its main dynamical features [4, 5, 11].

The model we propose, a stochastic integrate-and-fire model suitably modulated
to account for the respiratory sinus arrhythmia (RSA), effectively reproduces the
structure of the experimental data [4]. To evaluate the model performance, we also
devised a Q-test statistic, based on the concept of nonlinear prediction.

In the present paper the procedure for fitting the model to the experimental
datafiles has been improved, thus leading to better fits (corresponding to lower val-
ues of the test statistic), and the set of datafiles has been enlarged. Moreover, a
comparison between our proposed model and similar ones recently published [5, 11]
is outlined in section 4 (Discussion).

2. Materials and methods.
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Figure 1. Part of the tachogram of the M1 sequence of RR intervals

2.1. Experimental protocol. In an experimental session aimed at characterizing
the cognitive response of waking, healthy subjects, either hypnotizable or not, a
number of biological signals were recorded in sixteen young healthy volunteers (ages
18 to 28) during periods of relaxation and under different cognitive stimulations.
In particular, on the ECG signal recorded at 256 Hz the series of interbeat RR
intervals xi, i = 1, 2, ...., n, was measured. Figure 1 shows the tachogram of file
M1 (n = 400 RR intervals). In the first investigation, these data were analysed to
extract the embedded respiratory components [2]. The RR time series used in this
paper have been obtained from the ECGs recorded during five minutes of quiet,
sitting relaxation. Nine epochs from five subjects have been taken into account
as representative of the most ”regular” patterns: namely, those yielding a damped
oscillatory autocorrelation function and a distinct high frequency (HF) peak in the
spectrum. Most of them exhibit a clear respiratory modulation with about a four-
beat period. Moreover, many epochs yield consistent negative values (see the Table
1 below) for the skewness of the first differences yi = xi+1 − xi ; i.e. the quantity

γ =

∑

y3
i

(
∑

y2
i )3/2

. (1)

This nonlinear statistic, also called slope asymmetry or time asymmetry of the xi

sequence, captures the difference between the rise times (upward part) and fall times
(downward part) of the oscillations of the xi series. In other words, it measures the
extent to which the xi series looks different if reversed in time, and therefore it is
an indicator of some type of nonlinearity [6].

2.2. Model definition. The proposed model, which bears some resemblance to
that proposed 25 years ago for a generic biological oscillator [8, 9], consists of
a stochastic integrate-and-fire unit1 whose input signal—the so-called activity—is
held constant until the spike (heartbeat) is fired while the threshold s(t) oscillates
periodically exhibiting a time asymmetric profile (see also [4]). This oscillation,
of period T, expresses the respiratory modulation of RR intervals, while its slope

1In its deterministic version, this model integrates the input signal (which can be constant or
modulated, smooth or noisy) once the integral reaches a threshold value; then a spike is fired,
the integral is reset to zero, and the integration starts again. The spike firing corresponds to the
occurrence of a typical event of the heart activity cycle, for instance the R wave.
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skewness accounts for the negative value of most investigated time series. Although
its precise time-dependence is not critical, we have generally used the form

s(t) = s0 + m sin {α [ϕ(t) − π]} , (2)

where ϕ(t) = 2πt(modT )/T and |α| ≤ 1. Hence, while ϕ sweeps the (0, 2π)
interval again and again, the sin function argument sweeps the interval (−απ, απ).
So for |α| = 1 the threshold profile is sinusoidal, but it becomes more and more dis-
continuous and asymmetric as |α| decreases from 1 to, say, 0.5—note that negative
γ values correspond to positive values of α.
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Figure 2. Model operation: the dashed line represents the beating
threshold and the solid line the integral function. The parameters
have the values: s0 = 1, T = 4, m = 0.08, σ = 0.2, a1 = 0.5,
α = 0.7.

All of the remaining dynamics are accounted for by a stochastic component
introduced in the following way. The activity signal (i.e., the rate of rising of the
integral function), changes from one interval to another assuming the autocorrelated
stochastic values (corresponding to a discrete sampling of the Ornstein-Uhlenbeck
process)

ηi = a0 + a1ηi−1 + σξi, i = 1, 2, ..... (3)

In this equation the ξi innovations are uncorrelated and Gaussian-distributed
with zero mean and unit variance, a1 ∈ [0, 1), and a0 = 1 − a1; it is worth noting
that a1 gives the first coefficient of the exponential autocorrelation function of the
sequence {ηi}. The mean value of {ηi} is thus unity, and its variance is given by

ν =
〈

(ηi − 1)
2
〉

=
σ2

1 − a2
1

. (4)

Figure 2 illustrates the model operation.

2.3. Goodness of fit test. To optimize the data fit by the model proposed in
this paper, a measure of the goodness of fit is necessary. To this aim a kind of
t-test statistic has been drawn from the nonlinear prediction method, an efficient
tool of nonlinear time series analysis [3, 5, 16], whose rationale is that the analysed
time series possesses some—possibly nonlinear—determinism, which in turn is a
synonym of predictability; that is, the possibility of using the system knowledge to
predict its evolution. Let us define it operationally with reference to any given RR
interval series {xi}, i = 1, 2, .., n. First, an embedding space with a dimension of 4
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and unity lag time is built by means of the delay vectors xi = (xi−3, xi−2, xi−1, xi),
i = 4, 5, ..., n, which represent the system states—noteworthy, the four components
span about one respiration cycle. Then for each vector xi the nearest neighbour
xk not sharing any component with xi is determined within the embedding phase
space, and the one-step-ahead value xk+1 is adopted as the prediction for xi+1.
The difference δi = xk+1 − xi+1 is the prediction error. This is repeated for as
many delay vectors as possible and the normalised prediction error ǫ0 of the time
series is obtained by dividing the root mean square (r.m.s.) of errors δi by the
standard deviation of the time series (equal to the r.m.s. error of the rough predic-
tion afforded by the time series mean)2. This quantity, which usually is less than
unity, measures the predictability of the original series {xi}. At this point ten series
{

yj
i

}

, j = 1, ..., 10, with the same length as {xi}, are generated by the model al-

ways adopting a given set of parameter values, and the normalised prediction error
of the original series ǫj

m is computed using each model realisation as reference (or
learning) set. That means that the prediction for xi+1 is obtained, with a procedure
somewhat resembling that used in the mutual prediction method of analysis [15], by

determining in the embedding space of vectors y
j
i the nearest neighbour to xi (let’s

call it y
j
k) and then taking yj

k+1. Our goodness of fit statistic is defined as the ratio
Q = (ǫm− ǫ0)/∆ǫm, where ǫm and ∆ǫm are the average and the standard deviation
of the values ǫj

m, respectively. The lower the Q value, the better the description of
the data afforded by the model; in particular, for Q ≤ 1.96, the null hypothesis that
the model-generated interval sequences came from the same system as the original
RR sequence cannot be rejected (p = 0.05).

2.4. Fitting the model to the data. A simple operational procedure was used in
each case to determine the best parameter values of the model (i.e. those minimizing
the Q value). Namely, s0 was set at the mean RR interval of the original sequence,
T at the reciprocal of the respiratory peak frequency in the tachogram spectrum,
and m at twice the square root of the power in the respiratory peak of the spectrum.
For the other parameters the starting values α = 0.8, a1 = 0.85 and σ = 0.02 were
adopted, and then small adjustments were performed, bearing in mind that the SA
value increases (almost linearly) with (1−α), while σ and a1 gather the information
about the low-frequency components of the tachogram spectrum.

3. Results. Before showing how the proposed model can be fitted to the exper-
imental datafiles, let us summarize the characterization of its behaviour obtained
by generating many sequences of intervals, each corresponding to a different set of
values of the model parameters3. In fact, the model performance is determined by
six parameters: four concern the modulation of the firing threshold (i.e., T , s0, m
and α), while two are related to the input signal ηi (a1 and σ). In this preliminary
analysis of the model performance, T was set at 4 or about 4 and s0 at 1, while
the values 1 and 0.7 were adopted for α , and m and σ were set at 0.05 and 0.02,
respectively. We soon realized that to allow the model to reproduce the slow drift
of the running mean interval in the tachograms, thus getting a realistic broadening
of the respiratory peak in the corresponding spectra, the noise signal had to be

2It is usually ǫ0 < 1; also, the lower ǫ0 the higher the predictability, or determinism, of the
investigated series.

3Of course, the precise sequence obtained for each set of parameter values does depend on the
particular noise realisation and initial conditions, but its general features do not
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definitely autocorrelated, with parameter a1 set at values as high as 0.8-0.9. More-
over, for all investigated files, we drew the scatter plot of the first difference series
{yi}, also called the first-order variability diagram [1]; those obtained from M1, M2,
M3 and M8 datafiles exhibited a three-clouded structure [4, 7] to reproduce which
the model must be provided, in addition to a strongly autocorrelated noise, with
a time-asymmetric threshold modulation (with α ∼= 0.8). As an example, the left
panel of Figure 3 shows the variability diagram for file M1, while the right panel
reports the one obtained from the model-generated sequence of intervals.
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Figure 3. First-order variability diagrams of file M1 (left panel)
and a model-generated sequence (right panel).

Now let us examine how the model can generate sequences of intervals that
effectively mimic the experimental ones. To accomplish this, the model parameters
have to be set to such values that the generated sequences reproduce the dynamics
of the experimental ones as well as possible, thus lowering the Q statistic described
in the Methods section. The overall results are reported for each data file in the
Table below.

Table 1. Relevant features of the datafiles and parameter values
of the model fit to them

file γ Total HF s0 T m σ a1 α ǫ0 ǫm Q

×102 power power ×102
×102

×103
×103

M1 -2.6 1.58 0.71 0.961 3.9 5.2 1.74 0.9 0.82 0.685 0.728 1.52
M2 -2.5 2.09 0.72 0.992 3.95 5.3 2.7 0.82 0.79 0.716 0.79 1.44
M3 -2.3 2.2 0.82 0.998 3.95 5.7 2.75 0.81 0.82 0.795 0.827 0.74
M8 -3.2 2.05 0.68 0.945 3.9 5.2 1.9 0.92 0.8 0.704 0.74 1.06
I1 -2.3 1.04 0.54 0.964 3.92 4.6 2.12 0.75 0.83 0.837 0.847 0.29
L1 -2.4 0.72 0.105 0.971 4.55 2.0 1.33 0.92 0.85 0.761 0.787 0.91
G1 -0.3 1.03 0.29 0.756 3.1 3.4 3.25 0.76 0.95 0.968 0.993 0.61
P2 -0.5 1.44 0.31 0.866 4.25 3.5 2.18 0.90 0.95 0.782 0.794 0.52
P4 0.6 1.54 0.43 0.9 4.25 4.1 2.42 0.87 1.0 0.833 0.872 0.90



614 M. BARBI ET AL.

They show, in this order, the value, the total spectral power,the power in the HF
peak, then the model parameter values obtained by using the stated protocol, and
finally the Q value (together with ǫ0 and ǫm). The last values span a wide range:
from 0.29 to 1.52, corresponding, for the probability that the original sequence
and the model realisations come from the same system, to the values 0.77 and
0.13, respectively. Worthy of note, the figures reported in Table 1 do not change
appreciably by using, to calculate Q, an embedding dimension of 5. On the whole,
considering that the model is quite simple and mainly aimed at reproducing the
RSA dynamics, we believe its performance to be satisfactory.

4. Discussion. As shown above, the proposed model can fairly well fit all RR se-
quences taken into account, although with rather different values of its parameters,
in particular γ and the spectral powers (total and HF), as well as T and s0 (and
their ratio). We believe that the model could be fit as well to any regular recorded
sequence of some hundreds of RR intervals. Of course, the fit will not be perfect
in all respects; in particular, the low-frequency part of the spectrum will not be
reproduced in detail by the simulated sequencies. But this is expected from such a
simple operational model. Anyway, despite its evident limitations, the model can
help us to answer some debated issues in the study of physiological rhythms, such
as that of assessing, in the recorded activity, the possible phase synchronisation
between heartbeat and breathing rhythms (see [4]).

An issue worth investigating in the near future is the possibility of improving
the model without a major increase to its complexity. To this end, one should bear
in mind the two models of HRV proposed recently and having some similarity with
our model [5, 11]. In the first one [5], the input level of an integrate-and-fire device
is additively modulated by two sinusoidal oscillators, simulating the respiratory and
vasomotor influences, respectively. This model does not seem to fit the experimental
data satisfactorily, particularly not the power spectra of the RR series, even when
some Gaussian noise is added to the intervals. However, it would suggest us to
seek to directly add in our model a second oscillator (accounting for the vasomotor
input), even if a change-reduction-of the noisy component would be required at the
same time.

In the second model [11], the heartbeat is still described by an integrate-and-fire
system, but there the modulation accounting for RSA is on the firing threshold,
as in the model proposed by us. However in that model, which is purely deter-
ministic, a cardioventilatory coupling (CVC), the reverse influence of heartbeat on
respiration, is included. The authors claim that their model ”captures the essential
features of the interactions between human cardiac and respiratory systems, when
those interactions are simplified by anesthesia” and conclude that, although RSA
alone might cause synchronisation between heartbeat and respiration, CVC is the
dominant mechanism responsible for synchronising the two oscillators. Therefore
CVC should be included in our model, possibly in the same way as performed in
[11], but that would again require other changes, in particular to the noise compo-
nent design.

As a last remark, we note that our model is potential to get tachograms with time-
asymmetric respiratory modulation and thus γ values significantly non-vanishing,
proved to be important for fitting our experimental data (it is enough to observe the
correlation between the values of γ and those of α in Table 1). Hence, also consid-
ering that it is quite easy to calculate, we take the liberty of inviting physiologists
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to investigate whether a significant negative γ value measured on the experimental
data4 may encode for some interesting feature of the cardiorespiratory system.
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4The significance of the value can be assessed either by comparing it with the values obtained
on suitable surrogate data or by simple inspection of the first-order variability diagram obtained
from the data [4].


