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ABSTRACT. We describe several population models exposed to a mild life-
long sexually transmitted disease, i.e. without significant increased mortality
among infected individuals and providing no immunity/recovery. We then
modify these models to include groups isolated from sexual contact and analyze
their potential effect on the dynamics of the population. We are interested in
how the isolated class may curb the growth of the infected group while keeping
the healthy population at acceptable levels.

1. Introduction. The dynamics of a population depend on the relation between
reproduction and mortality. Short-term perturbations of these two factors are usu-
ally not significant for the long term trend of population growth or decline. One
factor that we analyze in this paper is the long-term effect on the population growth
caused by the segregation of portions of the general (reproductive) population into a
nonreproductive class that really consists of individuals of two very different kinds:
sexually active but non-procreating, such as infertile individuals, and sezually inac-
tive, consisting of individuals who by choice or medical reasons refrain from sexual
contact for life. The influence of the nonreproductive group on general population
dynamics has been analyzed for several exponential and logistic models in [5]. It has
been shown that the nonreproductive group can indeed alter the population trend
and may even make an exponentially increasing population stagnate or decline. A
similar result holds for logistic models.

In this paper we perform a similar analysis of models, also incorporating a sex-
ually transmitted disease that does not increase mortality. Besides the analogous
questions regarding the general trend of the population, it will be especially in-
teresting to see whether the segregation into the nonreproductive group of some
fraction of the infected class can change the disease persistence in the reproduc-
tive population. Even more important from an epidemiological perspective is to
determine whether the segregation can control or even eradicate the disease while
keeping a positive trend for the healthy reproductive population. An example of
such a disease is herpes simplex type 2 (HSV-2), which is incurable and yet mild.
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Typical real-life behavior of infected individuals is to refrain from sexual relations
during outbreaks when they are infectious, thus significantly reducing the transmis-
sion of the disease. However, we are not going to propose a model for herpes, since
we are ignoring vertical transmission, and the fact that most affected individuals
do not choose to stay childless for life. The models proposed here are intended
to address the issue of how much and in what form isolation from sexual contact
by some proportion of individuals may affect two important aspects of a real pop-
ulation with a sexually transmitted disease: its growth as a population and the
spread of the disease. The models will, therefore, be based on the assumption that
a proportion v of uninfected individuals and a proportion vy of infected individ-
uals segregate themselves into a group of sexually inactive individuals in which,
of course, there is no disease transmission, since the disease considered is sexually
transmitted. The first mathematical study of sexually transmitted diseases was
carried out in [1], where the underlying demographic model is the two-sex model of
Hadeler [4]. Homogeneous models for sexually transmitted diseases are analyzed in
[3] having underlying exponential demographic models. A survey on mathematical
modeling of STDs can be found in [2].

In this paper we shall analyze several exponential and logistic models with and
without segregated classes. We will model disease transmission using the propor-
tionate mixing law, and we shall not distinguish between females and males; rather,
we usually will consider three groups of individuals: reproductive healthy, repro-
ductive infected, and abstained or segregated (both healthy and infected).

The paper is structured as follows: Section 2 introduces an exponential demo-
graphic model without segregation into a nonreproductive group and analyzes the
long-term impact of segregation on population growth; Section 3 does the anal-
ogous with an exponential model with segregation. Sections 4 and 5 introduce
logistic demographic models, respectively without and with segregation into a non-
reproductive group. Finally, Section 6 presents some conclusions and describes
future research related to the present one.

2. Exponential model without nonreproductive class. We consider the sim-
ple Malthusian exponential model for the total population

P'(t)y=rP(t) with r=8—-pu (1)
where 3 and p are the natural birth and death rates, respectively. The solution is
P(t) = Pye™ where P, is the initial total population. (2)

We now model an infectious disease that does not cause any disease-induced
mortality. We also assume that there is no recovery from infection and that the
newborn individuals are all healthy; that is, there is no vertical transmission of the
infection. This is the classical S-I epidemic model. Let S(t) denote the size of the
class of healthy people and I(t) that of the infected. We shall denote by A the per
capita infection rate of the disease. The model is then described by the following
system:

S" =B(S+1)— A&k —us,
3)

I =xgh —ul

Note that P = S + I and by adding the above equations we obtain Malthus’
exponential model for the total population.
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The case r < 0 is not interesting since in that case the entire population declines
to zero. If r > 0 we know that P(t) — oo, and the question is then whether the
infected class size is important or negligible with respect to the entire population.
To answer this question we derive the dynamics for the proportion of infected

individuals in the population, y = &

5
The governing equation,

y' =\ =By -\, (4)
is of Bernoulli type and it can be solved explicitly, with solution

1
t)y=—— if A=p,
and
e(A=P)t
y(t) = otherwise.

ﬁ [e(’\—ﬂ)t — 1] + 1/y0
It is clear from this explicit solution that the following holds.

PROPOSITION 2.1. Assume that the Malthusian rate is positive, r > 0. Then, as
t — 0o, we have

ORI
Mgy =ty A
I
S I

To analyze the impact of the nonreproductive group, we shall assume in the
next section that the disease is successful in attaining a positive stable ratio in
the population; that is, A > 3, and we shall ask whether the introduction of the
transition rates into a third class of abstinence from sexual contact can cause disease
prevalence to decline without eliminating the healthy group.

3. Exponential model with nonreproductive class. We shall assume that
there is a constant removal rate v; from the uninfected reproductive group and vs
from the infected one. The first accounts for those individuals that will not have
sexual relations and thus cannot produce offspring nor spread disease. The second
accounts for those previously sexually active, infected individuals who refrain from
sexual contact because of their infection. We denote by A the size of the group of
individuals who abstain from sexual contact. The model is then described by the
following system:

Sl :ﬂ(S‘i’I)*)\‘Sﬁﬁ*‘LLS*VlS,

I' = g2t —ul —wl, (5)
A" =1 S+l — pA.
This model keeps the abstinent all together. Obviously, since the three groups are
disjoint, the total population size is now P(t) = S(t) + I(t) + A(¢).
This system does not admit positive steady states, except in the singular case

A=) (142 5= = o) (142 ) G - ),
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that leads to the continuum of positive equlibria

(5*71*’14*) _ (l:ﬁ_ﬂ_ V2:| 1*7 I*, [Vl(ﬂ_ﬂ - VQ) + V2:| I*>7 I* > 07
ptuv—p3 wp+rvi—pB)  p
provided min{vy,v2} < 8 — p < max{v1,va} (so that S* is a positive multiple of
).

It is easy to see that if 8 — p > max{vy, 12}, then P(t) — oo (since S + I then
grows exponentially at a rate no smaller than 8 — u — max{v,v2} > 0), while for
B—p < min{ry, vo} we have S(t), I(t) — 0 (since S+ then decreases exponentially
at a rate no smaller than f—p—min{vy, 2} < 0). In that case the whole population
disappears asymptotically if x4 > 0, while all of it abstains from sexual contact but
does not go extinct if 4 = 0 (which is, of course, impossible in real life).

If the natural growth rate, r = 8 — u, is between the two removal rates 14
and s, then it can be shown that the total population either grows exponentially
or declines to zero. As in the previous section, we derive the equations for the
proportions x = % and y = %.

2 =01 —-2z)(x+y) — Ay — vz,
(6)

/

Yy = vy — By(x +y) — vy

This system admits an extinction and a “disease-free” equilibrium,

(Tayys) = (1 — ﬂ,O).

B
The Jacobian of (6) is
_( 2r-(A+PBy+B—v ~(A+ Bz +
o = ( BT W)
Notice that
g0 = (P 5.

with eigenvalues are 3 — 11 and —vo, which means that if 3 < vy then the steady
state (0, 0) is locally stable and both the proportions of healthy and infected decline
to zero and, consequently, the entire population P(t) will go extinct.

We assume now that 8 > v1 and analyze the asymptotic stability of (z.,y.). We
can show that abstinent behavior may eliminate the infected class or the proportion
of infected individuals in the total population. Note that

—B+n A+
(2, y4) = ( 0 (A =0)( E%)_”Q >’

v

and its eigenvalues are —( + vy and (A — 3)(1 — ) — v2. Hence (z,y.) is locally
stable if

r Pzt
1_ =
B
Assuming now that
S(t) Tt 4 1(t) o,
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we can use the second equation of the original system (5) to compute the limiting

value of I(t): we have
I'(¢) v
— 1—— ) —u—
I(t) A( 3 ) g

which means that

I(t) — 0 provided that X < /f—’_ 512
Gl

Going back to the equation for S(t), we notice that

AS
14 — (B 4y — _ 22
S'(t) = (8= n—-r)SW®) + (8- F)1.
where the second term is negligible and, therefore, it follows that S(t) — oo if
5 —u >

By the same reasoning, it is clear that if A > (u + v2)/(1 — %), then I(t) grows
exponentially and thus the entire population grows to infinity.

In conclusion, we have established two additional thresholds for the infection
rate A (0 being the threshold contact rate for the disease to persist in the absence
of segregation),
ptve  B—vi+ue

11— v

B B
If X is between the first two, then we have a disease free equilibrium; if it is between

the second and the third thresholds, then the infected class grows exponentially to
infinity but its proportion in the total population tends to zero.

8 <

Notice also that the presence of segregation in the infected class is essential in
the sense that if v5 = 0, then the rightmost threshold is precisely (3, meaning that
there is no possible value for A\ to satisfy the stability of the disease-free steady
state of (6). We illustrate this by presenting the phase portrait of the system (6)
in Figures 1 and 2. The values of the parameteres are chosen for reference only.

Next we show the graphs of S, I and A in Figures 3 and 4 to illustrate the other
threshold for A that causes the infected class to decline to zero.

It is clear from the last figure that the proportion of infected declines to zero
although the size of the infected class itself grows exponentially.
The positive steady state of (6) is computed as follows: from the second equation
we get
- By + v2
A-8"
Substituting this relation into the first equation of (6), we obtain the following
quadratic that gives the value of y at equlibirium,

N By? — B (v1 — 1) + X (B—12) = AB(B+ 1)y +12[B(8—v1 +1v2) = AN(B—11)] = 0,

with solution

1
T 2x243

y [C+ (A= B)VA]

where

C=BA=B)A—r1)— 12N\ + %)
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FIGURE 1. Case 8 < A < 13171%”2_ B =005 pu=001 v =
0.02 1o =0.06 A=0.1
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FIGURE 2. Case 5171”;’2 <A B =005 p=00 1 =
0.02 v,=006 X=0.3

and
A= N(8—v2)? +2)03(8 +v2) (2 — 1) + (12 — 11)*.
If
\ < g —1 4! ;il- V2’

B
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FIGURE 4. Case {*g <A< ﬂ;ﬁilu;”‘z. B=0.05 pu=001 1=
0.02 v, =0.06 A=0.13

then the product of the roots of this quadratic is positive and their real parts are
either both negative or both positive. If they are negative, then there is no interior
steady state and (x,, y.) is the only nontrivial equilibrium. If they are positive, then
the system either admits complex conjugate roots and again the only nontrivial
equilibrium is (2, yx), or it has two positive equilibria, one of which is stable and
the other one unstable. In the last case, depending on the initial conditions, the
positive semi-orbits approach either the disease-free or the stable interior steady
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state. The next proposition establishes the conditions on the parameters that ensure
the uniqueness of the disease-free proportions.
|
1

ProrosITION 3.1. If A < % and at least one of the following conditions is
B

met:

(i) 1+ VBr2 — 19 < B < g,

V1 —V; —\/V 2

then (., y«) is the only nontrivial steady state of (6).

Bra—v2) (VB+Vvy)?

<AL (B=12)? ,

Proof. We can rewrite C' as
C =X (B—v2) — AB(B+v1) + (11 — ).

Since we know that v; < 3, then if 8 < vy, it is also clear that C' < 0. Suppose
now vy < (3. If we consider C' as a quadratic in A, we notice that the product and
the sum of its roots are positive and that

C(B) = —213* <0,
which implies that both of its roots are real and positive. Since we are in the case
B—r1+r

_u
16

B<A< and we know C(3) <0,

it follows that we need C (%) < 0 in order to ensure that C(A) < 0. We can

B
show by a straightforward calculation that the last condition is equivalent to

V1<ﬁ—\/ﬁV2+V2.

The last case that needs to be analyzed occurs when C > 0 but the roots are
complex conjugate. In other words, we need to establish a condition for A to be
negative. First notice that if 1 < v5 then A > 0. Hence it is necessary to assume
vo < v1. Just as before, we consider A a quadratic function of A. It is easy to see
that the discriminant of this quadratic is

433y (g — 11)% > 0.

This, together with the fact that the sum and the product of the roots of A are
positive, implies that both roots are real and positive. Hence A\ must lie between
these roots in order to have A < 0; that is,

B — 1) (VB — V1y)? B — 1) (VB + V1y)?
CETAE 2 <A< G0 2/

O

In the next picture we present the phase portrait of (6) when the conditions in
the above proposition are not satisfied. One can see the existence of two positive
steady states, of which one is unstable. We clearly see the unstable equilibrium on
the separatrix that divides the basin of attraction of the stable positive equilibrium
from that of the disease-free.

Getting back to our original equation in y, we have that the product of the roots
is negative if and only if
B—rit+rs

_u
16

A>
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FIGURE 5. Case of two positive steady states. 8 = 0.09 p =
0.01 v =0.08 v, =0.02 X=0.2148

In other words, if the disease-free steady state of (6) is unstable, the system admits
a unique interior equilibrium,

*_ﬂy*+y2 * 1
“a—5 Y Tog

Concerning the stability of the interior equilibrium we have the following:

[C+ (A= B)VAL

PROPOSITION 3.2. If the transmission rate is high enough,
B—v1+u

-

B

then (x*,y*) is globally stable and the disease is endemic.

A>

Proof. First note that all solutions of the system (6) that start positive stay positive
for all time. Then it follows that z(¢) < 1 for all time and thus y is bounded for
all time by (A — 8 + 12)/283. Second, we can rule out the possibility of periodic
solutions by applying Dulac’s criterion:

V(wlyF(x,y)> :_a% (a?—&-y-i-%) <0,

where F(z,y) is the vector field of (6). In conclusion, the unique steady state is
globally stable. O

Remark 3.1. If we rewrite (5) in the form
S’ :(ﬁ—u—ul—/\é)S—i—ﬁl,

A" =118+ vl — A,



514 D. MAXIN AND F.A. MILNER

we can see that the entire population declines to zero if
B—p—v1— Ay <0 and Az™—p—vy <O.

Obviously, this can happen if the mortality p is sufficiently large. Howewver, the
infection rate A\ can cause the same phenomenon, as is shown in Figure 6, where
we plotted the total population for different values of . This is quite surprising,
since there is no disease-induced mortality. The reason is that when there are
enough transfers from S to I, then the exponential growth rates may tend to a
negative value for both susceptible and infected groups if there is a sufficiently large
proportion of infected that abstain from sexual contact.

600
A=0.3
—\=0.5
500} O A=0.7
+ 2A=0.8
®x  A=0.9

400 .
0000000000000000000

300
+
*4y +

*xx ey
LI 4,
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L2
""""xxx,‘x
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0 | | | | | |
0 100 200 300 400 500 600 700

FIGURE 6. Case A > 2242 3 = 0.05 p = 001 v =
B
0.02 vy = 0.06

4. The logistic model without the nonreproductive class. If we are really
interested in the long-term behavior of the model, an exponential model for the
healthy population is not going to provide a good prediction. A more realistic
approach is to consider the classical logistic model [6] as the reference for the total
population P(t):

P
P't)y=r|l1——=|P
0=r[1-%|P
with carrying capacity K. We can describe our dynamical system using this model
as a basis, but including also an infectious disease, as follows:
S =p(S+1I)—ASI—[pu+b(S+1)S,

(8)
I' = ASI—[u+b(S+ ]I

If we sum the two equations in (8) we obtain the logistic equation for the total
population P =S + I:

P'=(B8—p—bP)P, P(0)=Py=5(0)+I(0),
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where the carrying capacity is K = bon with 8 > p >>b. The explicit solution

b
for P is

P(t) = K Pyebkt _ K .
PoetBt + K — Py (K/Py—1)e ?Kt +1
Of course,
tlirgo P(t)=K.

One can now replace S by P — I in the second equation of (8) obtaining another
Bernoulli-type ODE that gives I explicitly:

I'=[(A=bP—pulI—-\? 1(0)=1I>0.
Denote by ¢ the integrating factor of the above ODE. It follows that

A—b . Petft+ K- P
— p]do = 1 — ut.
/0 ] ;o 7 I
The solution I(¢) can then be written in the form
e(t)
I(t) = ) 9)

A Jy e?©do +1/1,

where

uh_y

Ke>=s
The following result summarizes the behavior of the logistic, nonsegregated, epi-
demic model: let Ry = % be the reproductive number of the epidemic.

A=b
e¢(t) _ (PoebKt + K — P0> b

PROPOSITION 4.1. If Rg > 1, then

lim I(t) =K — g otherwise tlim I(t)=0.

t—o0

Proof. Note that Rg > 1 < X\ > /K. Also, 3/K = 5"1
then Rg > 1< bK=0—pu> )\“—_bb. This shows that

1 t
e®® and also — + )\/ e?dp
Iy 0
are bounded below by an exponentially increasing function. Hence, using ’'Hopital’s
rule, (9) yields the limit

tli%loj(t) =K - g
When A < %, we notice that the only nontrivial steady state of (8) in the positive
quadrant is (S*,I*) = (K,0). Moreover, the solutions of the system are bounded

for all time t. Also, if F'(S, ) is the direction field of (8), then

v. {Sll (51)} ;1< bS — b — 3L )

which by Dulac’s criterion eliminates the possibility of periodic solutions. Hence
the disease-free steady state is globally stable, which concludes the proof. O
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5. The logistic model with a nonreproductive class. The corresponding
model including nonreproductive groups is given by the following system:

S =B(S+I)—ASI—[n+b(S+1+A)]S—1S,
I' =AST—[u+b(S+T+A)]I—wl, (10)

A =S+l —[p+bS+I1+A)]A.
The total population is now P = S + I + A, which satisfies

P'= (8- p—bP)P—BA, P(0)=Py=S(0)+1(0) + A®0),
and the system has the following three equilibrium points:

e trivial, (S,1,A) = (0,0,0);

o disease-free, (Sy, L, Ay) = ([}'(1 — %)70’[(%1);

o endemic, (§°,1°, A7) = (Mt (b U8 ) 2zt

)

where K = w = K- >0% (3> p+v. Here P*is aroot of the following
cubic equation:

(OP 4+ v2) (w2 = 1) = S0P+ i v = )+ bP)P

Obviously, a sufficient condition for the existence of a positive root is vy > vy,
since then the leading and constant coefficients of this cubic have opposite signs.
However, this condition is not necessary. For the special case v; = v,, we shall
find simple conditions that ensure the existence of a positive steady state P*. In
general, for a meaningful endemic equilibrium to exist, I* > 0, it is necessary that
B— = Vimaz < bP* < 8 — i — Umin (which also gives P* < K = 5%”, ie. A* > 0).
We can determine a condition to ensure the existence of such a root as follows.

Consider the polynomial
A
B(P) = 5P +bP)OP + i+ va = B) = (bP + o+ ) (2 = 1),

and then let us impose the condition that

h(M) x h(w) <0.

b b
This product is equal to

(11 — 1) IN(B — 1) (B — pp — v1) — bB(B — v1 + 12)]

b K
and we can see that this is negative provided that X\ satisfies the condition
B—vi+uo

YRR

b b
Let us consider now the dynamics of the model as the Malthusian rate r = 8 —p
increases from 0 to large values. First we remark that there is a threshold for the
Malthusian rate r = 3 — p to ensure that the total population does not go extinct
for lack of enough reproduction.
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PROPOSITION 5.1. IfbK = 8 — 1 < Vppin = min {vy, s}, then (S,1,A) is globally
stable. If bK < vy, then (S,1,A) is locally asymptotically stable, and if bK > vy,
then it is unstable.

Proof. Summing the first two equations of (10) we obtain the following upper bound
for S+ I
S(t) + I(t) < ebE—vmin)t,
which implies that P(t) — 0 if bK = 8 — p < Vpin = min {vq, 2} giving global
stability in this case.
Next, consider the Jacobian matrix associated with (10),

aill 6— (/\‘Fb)S —-bS
()\ - b)[ a2 —bl
v —bA ve —bA —u—b(S+I1+24)

Where a1 = ﬁ*ﬂ*l/l*/\ffg)(%Sj’IJrA) and age = —pu—vo+AS—b(S+2I+A).
Evaluating this Jacobian at (S, I, A) = (0,0,0) we obtain

—p+p -1 B 0
J = 0 —H— V2 0 )
141 Vo — K

whose characteristic polynomial is

—(p+p—B+1r+&(p+rve+€).

Therefore, if 8 — pu < v1 (equivalently, bK < v7), the disease-free steady state is
locally asymptotically stable, and it is unstable when 6 — u > 1. O

We see that, to ensure that the population remains at positive levels regardless
of the initial conditions, we must assume bK = 3 — u > v;. We have

PROPOSITION 5.2. IfbK = —p > vy, then (10) admits the disease-free equilibrium

(S, L., Ay). It is locally asymptotically stable if
B—v1+vs

-5 - %)

Proof. To show the local asymptotic stability of the disease-free steady state, we
evaluate the Jacobian matrix at (S, I, A) = (S,,0, A,):

B/IK <A< (11)

B—pn—v1 —b(A.+2S,) B—(A+b)S. —bS,
0 o 0
v1 — bA, vy — bA, —u — b(Ss +2A,)

Its eigenvalues are 0 = —p — v3 + AS. — b(Sx + A.) and those of the matrix

M_(ﬁ—,u—yl—b(A*—F?S*) —bS, )
o v —bA, —n—b(S«+2A,) J°
Since tr (M) = —pu—2(f—p—11) < 0 and det (M) > 0 if /K < A, it follows that
the disease-free equilibrium is locally asymptotically stable if the third eigenvalue
is negative, that is

AS, <5+1/2—I/1.
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Note that the right-hand side of condition (11) is greater than 8/K if 5 —p > v.
Thus, this local stability condition suggests that the nonreproductive groups can
cause the infected class to decline to zero while the healthy population remains sta-
ble at a positive level. The left-hand side condition on A ensures disease persistence
in the absence of segregation.

Concerning the endemic equilibrium, we do not have a proof of its stability.
However, our simulations seem to indicate that if bK' = f—pu > 14, it is also globally
stable whenever it exists. In the case of equal nonreproductive rates, v; = vy = v,
we can prove this fact.

PROPOSITION 5.3. If 1 = vo = v < 8 — p, the system (10) has a unique in-

terior steady state which is globally stable if X >

8 . -

5~ Moreover, if
(K=%)1-3%)

A<

Proof. Notice that by adding the first two equations in (10) and then adding all
three of them, one obtains a closed two-dimensional system in x = S + I and
y=P=S+1+A:

o = (0 —p—v—byz,
(12)
Y =Pr— (u+byy.

First notice that the solution of (12) is bounded for all time ¢. This is true because
the total population in the nonsegregated case is just the solution of the logistic
model (8)—therefore bounded—and it is a super-solution for the total population
of (10). Since the nonreproductive groups can only have a negative contribution to
the population growth in time, it follows that the solution of (12) is also bounded.
It is easy to see that Dulac’s criterion works as well for the system above:

1 1
\Y (F(x,y)) =—— (QM + 3by + ﬂx) <0,
Ty Ty Y
where F'(z,y) is the vector field of (12). Therefore, the steady state
ot =8+ I = (K—%) (1-2) and y*:P*:I_(:K—%
is the unique positive one and it is globally stable. Thus, knowing that
tlim [St)+I(t)] =2* and tlim P(t) = y*,
we turn to the system (10) and use the second equation to show that both S(¢) and
1(t) tend to a positive limit. To accomplish this, we again shall use a sub-solution

and super-solution of I. For every ¢ > 0, there exists a time ¢y such that for every
t > to we have

¥ —I(t)—e<S(t)<a*—I(t)+e and y* —e<P(t) <y* +e.
This leads to
IDa* —by* —p—v—A+b)e = A?<I' <IDx*—by* —p—v+ (A+b)e] — A2,
which is equivalent to

IID - O(e)] = AXI* < I' < I[D + O(e)] — AI?,
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where

D:A(K—%) <1—;> — B and O(e) = (A +Dd)e.

Solving these two ODEs we obtain
elD—O(e)]t elD+O(e)]t

<I(t) < :
7D—>\O(€) B[Dfo(e)]t + 01 #O(E)Q[D+O(6)]t + 02

First notice that if D > 0, then

tlirglo I(t) = (K - %) (1 - ;) - g and, consequently, tlg& S(t) = g
That is, the endemic equilibrium is globally stable. On the other hand, if
. g .
D<0 ie A<———~, then lim I(t)=0;
(K=%5)(1-3%) t=oo
that is, the disease-free equilibrium is globally stable. O

We present in Figures 7 and 8 below results from two numerical simulations
for the logistic model with and without segregation into a nonreproductive group.
The first example shows a logistic model in which the infection rate is sufficient to
guarantee the persistence of the disease while there is no segregation to diminish
the impact of infection. The second example, a segregated logistic model with the
nonreproductive rates chosen so that the infection rate A satisifies the condition
(13), shows the extinction of the infected class with the persistence of the segre-
gated. In both examples, we took the birth rate corresponding to the US 2000
census 3 = 0.01442. The other parameter values are chosen for reference only to
illustrate our result.

A=0.000076203

v 1:\)2:0
400
suscept.
O infected
350 q
300 1
250 1

100 !
0

L
500 1000 1500

FIGURE 7. Case 3/K < A, no segregation.
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A=0.000076203
v,=0.002 v,=0.008

400
susceptible
O infected
350 ) b
abstained
300 b
250 3

150 1

. __B-wnitvy
FIGURE 8. Case /K < A < ®-THa-3)°

Remark: If 11 # 1y, then the interior steady state is in general impossible to
compute explicitly. We conjecture that the system (10) has a similar behavior if
we impose the same conditions on A; namely

B B—vi+r

— <A< > .
K (K =50 - %)

(13)

6. Conclusions. We modified two basic models (the exponential Malthusian growth
and the logistic demographic models) to include an infected and a nonreproductive
class. We aimed to study the effect of the abstinence (nonreproductive) class on the
general evolution of the population and on the evolution of the disease in particular.
Therefore, we considered just a simple S-I type epidemic model, without recovery
and with no disease-induced increase in mortality, and we added to it a third class
of individuals, A, who abstain from sexual contact (thus being nonreproductive and
separated from the disease dynamics). Just as we might expect, the nonreproduc-
tive group can slow down or reverse the exponential growth of the total population.
We also found that under some conditions on the parameters, the nonreproductive
group can eliminate the disease while keeping the healthy population at positive
levels. One limitation of our models is the assumption that the nonreproductive
groups do not contact the disease which in turn would imply that they refrain from
sexual activity. This is, of course, not true in general.

When v1 = 0 our S — I — A model resembles the classical S — I — R epidemic
model with recovery rate vo but it has a substantial difference: individuals in R do
not reproduce. For vy > 0 our model resembles the S — I — R epidemic model with
vaccination, where 1y is the vaccination rate, but again with the same essential
difference concerning births.

For the exponential model we found first that when the Malthusian rate is less
than both isolation rates, the population goes asymptotically extinct for lack of
sufficient reproduction. We also found that when it is larger than both of them,
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the total population grows unboundedly, with the proportions of susceptible (unin-
fected) and infected individuals stabilizing. When the Malthusian growth rate lies
between the two isolation rates, then total population may grow or decline expo-
nentially to extinction. Assuming that the population grows exponentially in the
absence of disease (r > v1), there are two thresholds for the infection rate: being
below the lower one assures disease extinction, while being above the upper one
assures disease prevalence; when the infection rate is between the two thresholds
the number of infected grows exponentially but the proportion of them in the pop-
ulation decreases to zero. The somewhat unexpected result we found is that, even
though the disease does not increase mortality, it may lead to population extinction
in the case of a sufficiently large isolation rate of infected, if at the same time the
infection rate is large enough that it causes a depletion of the susceptibles.

For the logistic model, we find exactly the same result as for the exponential
model concerning the population going extinct for lack of sufficient reproduction.
However, in this case we also find that when the Malthusian rate r = 0 — p is
less than the isolation rate for the healthy group, the trivial steady state is lo-
cally asymptotically stable, and it is unstable when r exceeds that isolation rate.
Moreover, in such case there exists a unique disease-free equilibrium that is locally
asymptotically stable if the per capita infection rate lies in a certain interval that
guarantees enough contagion for the disease to persist in the absence of isolation of
infected individuals, but not large enough for it to persist in the presence of isola-
tion. When the latter condition is violated a unique endemic equilibrium exists, for
which we were not able to establish stability in general. However, in the case that
the isolation rates from the groups of healthy and infected individuals are equal,
we were able to show it is, in fact, globally stable.

We see an important difference between the long-term persistence of the disease
in the exponential and logistic cases. Since the demographic model of preference
for long-term projections is the logistic one, we see from our results that if the con-
tact rate between healthy and infected individuals is sufficiently large, the disease
cannot be eliminated just by isolating individuals without curtailing the normal
development of the population and leading it to extinction. This conclusion, of
course, may have an impact in the recommended action to contain such a disease.

A more accurate description of the problem analyzed here can be achieved by
using demographic two-sex models that include couple formation between one in-
fected and one healthy person as a source for the group of infected couples who
in turn, by separation or death of one partner, provide a source for the newly sin-
gle infected people (since infection of the partner is assumed instantaneous). The
resulting dynamical systems are much more complex since they involve more sub-
classes and interactions, as well as nonlinear (and possibly degenerate) marriage
functions. This research is presently underway and will be reported later. Other
ways to extend the models we presented to provide more realistic ones include mod-
eling treatment, recovery, and other transitions from one subclass to another (e.g.
from healthy isolated to healthy sexually active). We expect to begin that research
in the near future.
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