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Abstract. At the outset of an influenza pandemic, early estimates of the
number of secondary cases generated by a primary influenza case (reproduction
number, R) and its associated uncertainty can help determine the intensity of
interventions necessary for control. Using a compartmental model and hospital
notification data of the first two waves of the Spanish flu pandemic in Geneva,
Switzerland in 1918, we estimate the reproduction number from the early
phase of the pandemic waves. For the spring and fall pandemic waves, we
estimate reproduction numbers of 1.57 (95% CI: 1.45, 1.70) and 3.10 (2.81,
3.39), respectively, from the initial epidemic phase comprising the first 10
epidemic days of the corresponding wave. Estimates of the variance of our
point estimates of R were computed via a parametric bootstrap. We compare
these estimates with others obtained using different observation windows to
provide insight into how early into an epidemic the reproduction number can
be estimated.

1. Introduction. The presence of the highly pathogenic A/(H5N1) influenza virus
in avian populations in several regions of the world could lead to the next influenza
pandemic. Pandemics are worldwide epidemics that affect a significant fraction of
the population in terms of morbidity and mortality rates. The 1918 influenza pan-
demic (Spanish flu) was the most devastating of recent history with an estimated
death toll of 20 million to 50 million deaths worldwide [1].
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In an influenza pandemic, public health officials must balance the costs asso-
ciated with interventions, while containing the outbreak. The average number of
secondary cases generated by a primary infectious case (reproduction number, R)
provides a measure of the transmissibility of the infectious agent that can be used
to help set appropriate priorities for the interventions. When the population is en-
tirely susceptible at the beginning of an epidemic, the basic reproduction number
(R0) [2, 3] provides a measure of the transmissibility of an infectious disease. An
epidemic is expected to occur whenever R0 > 1, while an outbreak is unlikely to
occur with R0 < 1. For influenza and other recurrent infectious diseases, fraction p
of the population is often protected against the infectious agent because of previous
exposures to influenza and vaccination campaigns. In this context, a measure of
transmissibility is referred to as the reproduction number (R) and under the as-
sumption of a well-mixed population is related to R0 by R = (1− p)R0.

As the epidemic progresses, the effective susceptible population is depleted and
the reproduction number decays. Significant reductions in the reproduction number
can result from the use of public health interventions that can reduce the trans-
mission rate over time (e.g., quarantine of suspected cases, isolation of infectious
individuals) and the effective susceptible population (e.g., vaccination, prophylaxis
with antiviral medications). The goal of public health interventions is to reduce
the reproduction number quickly, at minimum cost.

Estimating the reproduction number directly from contact-tracing data (e.g., [4])
is not always feasible, especially for rapidly disseminating diseases such as influenza.
Estimation of the reproduction number by fitting epidemic models to the cumula-
tive tally of cases is probably the most widespread approach (examples of recent
work include [5, 6]). A common approach to estimating the reproduction number is
first to fit the initial exponential growth rate characteristic of many rapidly dissem-
inating infectious diseases in human populations. This estimate of the initial expo-
nential growth rate can be used to approximate the reproduction number through
a formula derived from the linearization of the deterministic epidemic model (e.g.,
[2, 7, 8, 9]). Other recent methods for estimating the reproduction number include
a removal method based on the chain binomial model [10] and approaches that
estimate a time-varying reproduction number as the epidemic develops [11, 12, 20].
A recent review on the estimation of the reproduction number from epidemiological
data is given by Heffernan et al. (2005) [13].

At the beginning of a developing epidemic, public health officials must make
decisions about the types and intensity of interventions necessary for epidemic con-
trol. Such decisions can be guided by estimates of the reproduction number and the
variance (uncertainty) of these estimates. A relevant question is how sensitive these
estimates are to the number of days of epidemic curve data used in the estimation
process, both in terms of bias and standard errors. For example, certain model
assumptions may hold during the initial epidemic phase but not for the whole epi-
demic period. Therefore, sensitivity analyses to assess the robustness of estimates
of the reproduction number should be part of any contingency plan. This paper
is an extension of previous work [6] to address these questions in the context of
the Spanish flu pandemic in Geneva, Switzerland using a compartmental epidemic
model (Figure 1).

2. MATERIALS AND METHODS.
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Figure 1. Flow chart of the state progression of individuals
among the different epidemiological classes as modeled by Equa-
tions (1).

2.1. Historical background. The 1918-1919 influenza pandemic known as the
“Spanish flu” was caused by the influenza virus A (H1N1). In the Canton of Geneva,
Switzerland, the Spanish flu affected more than 50% of the population, and the
mortality rate was highest in males in the age group 21-40 years [14]. The Canton
of Geneva is located in the western side of Switzerland, surrounded in its majority
by France, and covers an area of 282 km2. In Geneva, the spring wave occurred
from July through September 1918 while the fall wave spanned October through
December 1918 and was deadlier than the spring wave. Control measures included
school and church closures, prohibition of public events and visits to hospitals, and
mandatory spraying of disinfectants on the streets. There is no evidence of the
effectiveness of the control measures, because disruptions in the sanitary, medical,
private, and public sectors were common [14, 15]. This was reflected in the social
climate of insecurity, fear, and doubts among the population about the effectiveness
of the control strategies. Other modern interventions, including influenza vaccines
and antiviral medications were not yet available.

2.2. Epidemic model. We use a compartmental epidemic model (Figure 1) pre-
viously developed for studying the transmissibility and the effect of hypothetical
interventions for the 1918 influenza pandemic in Geneva, Switzerland [6]. Indi-
viduals are classified as susceptible (Si), exposed (Ei), clinically ill and infectious
(Ii), asymptomatic and partially infectious (Ai), hospitalized and reported (Ji),
recovered (Ri), and dead (Di) where i = 1,2 indexes the spring and fall pandemic
waves, respectively. The population is considered to be completely susceptible to
the spring wave of infection. Individuals that recover during the spring wave are
assumed protected to the fall wave [16], and the numbers of susceptible, recovered,
and dead individuals at the end of the spring wave are set to be the corresponding
initial conditions to model the fall wave. Susceptible individuals in contact with
the virus progress to the latent class at the rate βi(Ii(t) + Ji(t) + qiAi(t))/Ni(t),
where βi is the transmission rate for wave i, and 0 < qi < 1 is a reduction factor in
the transmissibility of the asymptomatic class (Ai).

Because there is no evidence of the effectiveness of interventions and because
disruptions in the sanitary and medical sectors were common [15], hospitalized
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individuals (Ji) are assumed infectious. Overworked doctors had to impose restric-
tions on reception hours, and many of them died from influenza [15]. As a result,
announcements were issued in newspapers to call for volunteers to help in overbur-
dened hospitals [15].

The total population size at time t for wave i is given by Ni(t) = Si(t)+Ei(t)+
Ii(t)+Ai(t)+Ji(t)+Ri(t). This formulation allows for the total population size to
change over time as a result of influenza-related deaths and demographic changes.

We assume the migration rate of people in and out of the population, including
the birth and death rates, to have common rate µ. Assuming homogeneous mixing
of the population, the fraction (Ii(t)+Ji(t)+ qiAi(t))/Ni(t) is the probability that
a random contact would be with an infectious individual. A proportion 0 < ρi < 1
of latent individuals progresses to the clinically infectious class (Ii) at the rate ki

while the rest (1− ρi) progress to the asymptomatic partially infectious class (Ai)
at the same rate ki. Asymptomatic cases progress to the recovered class at the rate
γ1i

. Clinically infectious individuals (class Ii) are hospitalized (reported) at the
rate αi or recover without being diagnosed (e.g., mild infections, hospital refusals
[15]) at the rate γ1i . Hospitalized individuals (reported) recover at the same rate
as individuals in the Ii class and hence γ2i = 1/(1/γ1i − 1/αi) to account for the
residence time in the Ji class or die at rate δi. The mortality rates were adjusted
according to the case fatality proportion (CFP) such that δi = CFP

1−CFP (µ+γ2i) (see
Figure 1).

The transmission process (for each influenza wave) can be modeled using the
system of nonlinear differential equations:





Ṡi(t) = µNi(t)− βiSi(t)(Ii(t) + Ji(t) + qiAi(t))/Ni(t)− µSi(t)
Ėi(t) = βiSi(t)(Ii(t) + Ji(t) + qiAi(t))/Ni(t)− (ki + µ)Ei(t)
Ȧi(t) = ki(1− ρi)Ei − (γ1i + µ)Ai(t)
İi(t) = kiρiEi(t)− (αi + γ1i + µ)Ii(t)
J̇i(t) = αiIi(t)− (γ2i + δi + µ)Ji(t)
Ṙi(t) = γ1i(Ai(t) + Ii(t)) + γ2iJi(t)− µRi(t)
Ḋi(t) = δiJi(t)
Ċi(t) = αiIi(t)

(1)

where the index i = 1, 2 denotes the spring and fall waves of infection, respec-
tively. The dot denotes the time derivatives. The cumulative number of hospital
notifications, our observed data, is given by Ci(t).

2.3. The reproduction number and clinical reporting proportion. An ex-
pression of the reproduction number for the above epidemic model can be obtained
using standard methods in mathematical epidemiology [6]. The reproduction num-
ber is given by:

Ri =
βiki

ki + µ

{
ρi

(
1

γ1i + αi + µ
+

αi

(γ1i + αi + µ)(γ2i + δi + µ)

)
+(1−ρi)

(
qi

γ1i + µ

)}

(2)
where i = 1, 2 indicates the reproduction numbers for the spring and fall influenza
waves of infection, respectively. Notice that R1 can be considered to be a basic re-
production number because the population was mostly naive to the influenza virus
at the beginning of the pandemic. Also, it can be seen from the above expression
that the reproduction number is the sum of the contributions to infection from three
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Figure 2. Daily number of hospital notifications in Geneva,
Switzerland during the 1918-1919 influenza pandemic [14] and the
monthly numbers of notifications for all of Switzerland for the same
period [28, 29].

different classes of infectious individuals: infectious but not hospitalized, infectious
and hospitalized, and those asymptomatic but partially infectious. Estimates of Ri

are obtained by substituting the model parameter estimates into (2).
The clinical reporting proportion is the fraction of clinical cases, Oi, that are re-

ported in hospitals over the total number of clinical cases which can be estimated by:

Oi =
αi

αi + γ1i + µ
(3)

2.4. Data sources. In 1917, life expectancy in the Canton of Geneva was about
60 years [17] with a population size of 174 673, which is about 42% of today’s
population (Dubois J. E-mail communication. Office Cantonal de la Statistique-
Genève. July 11, 2005). Daily epidemic data for the Canton of Geneva was obtained
from the mandatory notifications registry in Switzerland during the period 01 July
1918 to 28 February 1919 (Figure 2). While misdiagnosis may be common during
seasonal epidemics of influenza because of the limited reliability of clinical diagnosis
(nonspecific symptoms), clinical diagnosis for the case of pandemic influenza should
have been more reliable because of the severity of symptoms, particularly during
the fall wave [15]. We make the simplistic assumption that errors in the data
occur at random and are as likely to overstate as to understate the true number of
hospitalized flu cases.

The overall case fatality of the Spanish flu in Geneva was 4.2% [14]. It is well
documented that the case fatality of the fall wave was much higher than that of
the spring wave [14]. Since we do not have the separate case fatality proportions
for the spring and fall waves of infection of the 1918 influenza pandemic in Geneva,
we used the case fatality for the spring (0.7%) and fall (3.25%) waves of the 1918
influenza pandemic in UK as reported by Gani et al. [18].

2.5. Parameter estimation. The migration, birth, and natural death rates were
fixed to a common value µ̂ = 1/(60 ∗ 365) days−1, and the latent period was fixed
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to 1/k̂1 = 1/k̂2 = 1.9 days as in previous studies [19]. For each of the two influenza
waves, we estimated seven parameters: The transmission rate βi, the recovery rate
γi, the diagnostic rate αi, the relative infectiousness of asymptomatic cases qi,
the proportion of clinical cases ρi, and the initial numbers of exposed Ei(0) and
infectious Ii(0) individuals using least squares fitting of C(t,Θi) in Model (1) (Θi

is the vector of fitting parameters for wave i) to the initial phase of the cumulative
number of hospital notifications of influenza. With regard to other initial conditions,
at the beginning of the spring wave, the initial number of diagnosed individuals
(J1(0)) was set according to the first number of reported cases in the time-series
data, and the rest of the population was assumed to be completely susceptible to
pandemic influenza. All other initial conditions for other epidemiological states were
initialized to zero. The numbers of susceptible, recovered, and dead individuals at
the end of the spring wave are set to be the corresponding initial conditions to model
the fall wave. Similarly, for the fall wave the initial number of diagnosed individuals
was set according to the first number of reported cases from the epidemic data of
the fall wave. The advantage of using the cumulative over the daily number of
new cases for estimation is that the former smoothes out known reporting delays
on weekends and national holidays. For the least squares fitting procedure, we
used the Levenberg-Marquardt method with line-search implemented in MATLAB
(The Mathworks, Inc.) by the routine lsqcurvefit in the optimization toolbox.
For notation purposes, R̂

(t)
i and Ô

(t)
i denote estimates of the reproduction number

and the clinical reporting proportion, respectively, for the i-th pandemic wave and
using the first t epidemic days of the cumulative number of influenza notifications.
A summary of parameter definitions and baseline values are given in Table 1.

2.6. Parameter uncertainty. Confidence intervals for the model parameter es-
timates, the reproduction number, and the clinical reporting proportion were con-
structed via a simulation study to generate sets of realizations of the best-fit curve
C(t) using the parametric bootstrap [21]. Each realization of the cumulative num-
ber of case notifications Cj(t) (j = 1, 2, . . ., m) is generated as follows: for each
observation C(t) for t = 2, 3, . . ., n days generate a new observation C

′
j(t) for

t ≥ 2 (C
′
j(1) = C(1)) that is sampled from a Poisson distribution with mean:

C(t)−C(t−1) (the daily increment in C(t) from day t−1 today t). Sampling from
a Poisson distribution where the mean equals the variance is appropriate since we
only have information about the number of cases over the course of the epidemic.
Knowing more information about the variability in the number of cases would al-
low us to model the variance as well using, for example, the negative binomial
distribution. The corresponding realization of the cumulative number of influenza
notifications is given by Cj(t) =

∑t
h=1 C

′
j(t) where t = 1, 2, 3, . . ., n. The repro-

duction number was then estimated from each of 1000 simulated epidemic curves.
The distribution of estimated reproduction numbers can be used to construct 95%
confidence intervals. Fitting a complex model (with 7 fitting parameters in our
case) comes at the cost of increased variance for these estimates. The worst case
would occur when the model parameters cannot be uniquely determined from the
data leading to unbounded variances of the estimated parameters. This simula-
tion study allowed us to explore the identifiability of model parameters. Lack of
identifiability can be recognized when large perturbations in the model parameters
generate small changes in the model output [22]. Our results indicate that our
parameter estimates are stable to perturbations around the model output.
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Table 1. Parameter definitions and baseline estimates obtained
from the initial epidemic phase comprising the first 10 epidemic
days of the corresponding wave using system (1) during the 1918
influenza pandemic in Geneva, Switzerland. The standard devi-
ation of the model parameter estimates were obtained from our
simulation study using the parametric bootstrap that consisted of
1000 realizations as explained in the parameter estimation section.

Spring Wave Fall Wave
Parameter Definition Source Estimate S. D. Estimate S. D.
β Transmission rate

(days−1)
Estimated 2.79 0.30 8.59 0.37

γ1 Recovery rate

(days−1)

Estimated 0.55 0.03 0.58 0.03

α Diagnostic rate

(days−1)

Estimated 0.60 0.09 0.62 0.08

q Relative infec-
tiousness of the
asymptomatic
class

Estimated 0.04 0.07 0.01 0.04

ρ Proportion of
clinical infections
([0,1])

Estimated 0.57 0.09 0.39 0.04

k Rate of progres-
sion to infectious
(days−1)

[19] 1/1.9 – 1/1.9 –

µ Birth and nat-
ural death rate
(days−1)

[17] 1/(60 ∗ 365) – 1/(60 ∗ 365) –

E(0) Initial number of
exposed individu-
als

Estimated 86.44 17.92 101.42 5.91

I(0) Initial number
of infectious
individuals

Estimated 36.36 7.3 60.72 3.62

3. RESULTS. We analyzed the first two pandemic waves of the Spanish flu pan-
demic in Geneva, Switzerland. Figure 2 shows the daily number of hospital no-
tifications of influenza along with the monthly numbers of notifications in all of
Switzerland for comparison.

3.1. Spring wave. The transmissibility of the infection for the spring influenza
wave was significantly lower than that of the fall wave [6]. For the spring herald
pandemic wave in Geneva, our estimates of the reproduction number and the clin-
ical reporting proportion using the first 10 or 15 epidemic days of the epidemic
growth phase are consistent with estimates obtained using the epidemic data of
the whole pandemic wave (Table 2, Figure 3). In fact, the confidence intervals for
R̂10

1 , R̂15
1 , and R̂all

1 overlap with each other (Table 2). Specifically, we estimated
a reproduction number of R̂10

1 = 1.57 (95% CI: 1.45, 1.70) and R̂15
1 = 1.42 (1.37,

1.48) from the initial epidemic phase comprising the first 10 and 15 epidemic days,
respectively. Compare these values to the estimate of R̂all

1 = 1.49 (1.45, 1.53) ob-
tained by fitting the model to the whole epidemic wave [6]. Figure 4 shows the
distribution of estimated model parameters using a parametric bootstrap for our
two observational windows are consistent with one another. Regarding the clinical
reporting proportion (see Equation 3), the estimate obtained by fitting the model to
the whole spring wave was found to be only slightly higher than estimates obtained
from the initial epidemic phase (Table 2). Moreover, the resulting distributions of
the clinical reporting proportion from the parametric bootstrap are skewed to the
right (Figure 3).
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Table 2. Estimates of the reproduction number and the clinical
reporting percentage using increasing amounts of epidemic data of
the initial phase of the spring and fall waves of the Spanish Flu
Pandemic in Geneva, Switzerland.

spring wave fall wave

Epidemic
days

R̂1 R̂1 95% CI Ô1 Ô1 95% CI R̂2 R̂2 95% CI Ô2 Ô2 95% CI

10 days 1.57 (1.45,1.70) 51.6 (46.7, 56.6) 3.10 (2.81, 3.39) 51.4 (46.3, 56.5)
15 days 1.42 (1.37, 1.48) 51.6 (48.0, 55.1) 2.72 (2.59, 2.86) 51.7 (47.6, 55.8)
20 days n.a. n.a. n.a. n.a. 3.29 (2.97, 3.62) 60.3 (50.4, 70.2)
25 days n.a. n.a. n.a. n.a. 3.97 (3.40, 4.54) 86.2 (78.3, 94.1)
30 days n.a. n.a. n.a. n.a. 3.62 (3.40, 3.84) 83.0 (79.9, 86.1)
35 days n.a. n.a. n.a. n.a. 3.75 (3.55, 3.95) 84.4 (80.7, 88.0)
All days 1.49 (1.45, 1.53) 59.7 (55.7, 63.7) 3.75 (3.57, 3.93) 83.0 (79.0, 87.0)

n.a., not applicable. Confidence intervals (CI) were estimated from a simulation study using the parametric
bootstrap that consisted of 1000 realizations as explained in the parameter uncertainty section.
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Figure 3. Model fits (log-lin scale) and the resulting distributions
of the reproduction number and the proportion of the clinical re-
porting obtained after fitting the epidemic model to the initial
phase of the spring wave using 10 and 15 epidemic days of the
Spanish flu pandemic in Geneva, Switzerland. (top) The data are
the dots, the solid line is the model best fit, and the lighter blue
bands are 1000 realizations of the model fit to the data obtained
through parametric bootstrapping as explained in the text. (mid-
dle) The distribution of the reproduction number and (bottom)
the distribution of the clinical reporting proportion obtained from
the simulation study with 1000 realizations.
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Figure 4. Histograms of the model parameter estimates for the
spring wave of the Spanish flu pandemic in Geneva, Switzerland
using 10 and 15 epidemic days of the initial phase of the pandemic
wave used in the estimation procedure.

3.2. Fall wave. The high transmissibility of the fall pandemic wave can be ob-
served from the start of the pandemic wave. The estimate of the reproduction
number obtained from the initial rise of the cumulative number of hospital notifi-
cations comprising 10 epidemic days for the most deadly, fall wave [14] was 3.10
(95% CI: 2.81, 3.39). The reproduction number for the fall wave remained fairly
stable with an increasing observational window used in the estimation (Table 2,
Figure 5), albeit a significantly larger reproduction number of 3.29 (2.97, 3.62) was
observed when fitting the model to the initial 20 epidemic days of data. Similarly,
a significant increase in the clinical reporting proportion was observed after fitting
the model to the initial 25 days of epidemic data, changing from Ô20

2 = 60.3 (50.4,
70.2) to Ô25

2 = 86.2 (78.3, 94.1). We found that the moderate variation in the repro-
duction number and the clinical reporting proportion can be explained as a result of
a moderate systematic deviation of the model best fit to the epidemic data around
epidemic day 9 (Figure 5). Such deviation of the model to the data becomes more
significant as the epidemic model is fit to more than 20 days of epidemic data, as
indicated by the snake shape of the residual plot (Figure 6), which can explain our
larger estimate of the reproduction number when using the entire epidemic curve.
A similar observation has been made for the case of the Spanish flu pandemic in
the city of San Francisco, California [20]. The same significant variations can be
observed in the model parameter estimates (Figure 7). In contrast to the spring
pandemic wave, the distributions of the clinical reporting proportion for the fall
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Figure 5. Model fits (log-lin scale) and the resulting distributions
of the reproduction number and the proportion of the clinical re-
porting obtained after fitting the epidemic model to the initial
phase of the second (fall) wave using 15, 20, 25, and 30 epidemic
days of the Spanish Flu Pandemic in Geneva, Switzerland. (top)
The data are the dots, the solid line is the model best fit, and
the lighter blue bands are 1000 realizations of the model fit to the
data obtained through parametric bootstrapping as explained in
the text. (middle) The distribution of the reproduction number
and (bottom) the distribution of the clinical reporting proportion
obtained from the simulation study with 1000 realizations.

pandemic wave were found to be more symmetric except for the distribution using
fifteen epidemic days (Figure 5).

4. DISCUSSION. Uncertainty bounds associated to (point) estimates of the re-
production number are critical in the decision-making process regarding the types
and intensity of interventions necessary for epidemic control. In general the amount
of uncertainty associated to estimates of the reproduction number will depend on
the methods used, the amount and temporal scale of the data, and the epidemiol-
ogy of the disease (e.g, length of the incubation and infectious periods, means of
transmission). We used a parametric bootstrap approach to generate estimates of
the variance of the reproduction number. The reproduction number was estimated
using least-square fitting techniques from the initial phase of the first two waves of
the Spanish flu pandemic in Geneva, Switzerland. We estimated the reproduction
number with relatively small uncertainty after fitting the epidemic model to the
initial epidemic take-off comprising 10 and 15 epidemic days of data for the spring
wave, and 10, 15, 20, 25, 30, 35 epidemic days for the fall more severe wave. We
were able to explain a moderate variation in the reproduction number of the fall
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Figure 6. Scaled residual plots of the epidemic model best fit to
the cumulative number of influenza notifications of the fall wave
using 10, 15, 20, 25, 30, and 35 days of epidemic data. A moder-
ate systematic deviation is observed around epidemic day 9. The
residuals are scaled by the standard deviation of the distribution
of residuals. These residuals are within ± 2 standard deviations
(95% confidence level).

wave as a result of a moderate systematic deviation of the model to the data around
epidemic day 9 (Figures 5 and 6). This can be the result of our modeling approach
based on an autonomous system where the transmission rate, the diagnostic rate,
and other epidemiological parameters are assumed to remain constant throughout
the epidemic.

Our estimates of the reproduction number agree with previous estimates for the
Spanish flu pandemic in other regions of the world [19, 18, 6, 20, 23, 24]. For
example, the reproduction number has been estimated to be in the range 2-3 in
US cities using mortality data for the fall wave of the Spanish flu pandemic in the
largest cities in the United States. Using influenza morbidity data from the city of
San Francisco, California, Chowell et al. [20] estimated R in the range 2-3 using
four different estimation approaches. Gani et al. [18] estimated a basic reproduc-
tion number of 2 for the spring wave and 1.55 for the fall wave. Also, Rvachev
and Longini [25] estimated a reproduction number of 1.9 for the influenza H3N2
pandemic of 1968 in Hong Kong. For comparison with seasonal flu, analyses of the
A/H2N2 and A/H3N2 virus circulation have provided estimates of the reproduction
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Figure 7. Model parameter estimates and their corresponding
95% confidence intervals (bars) for the fall wave of the Spanish flu
pandemic in Geneva, Switzerland as a function of the number of
days of the initial phase of the pandemic wave used in the estima-
tion procedure.

number in the range from 1.43 in England and Wales during 1971-1972 to 2.61 in
Greater London during 1960-1961 [26], and approximately 1.5 during the 1984-85
influenza season in France [27].

Our epidemic model maintains the minimal complexity necessary to estimate
the reproduction number and the clinical reporting proportion using hospital noti-
fication data. Despite the simplifying assumptions on spatial homogeneity and the
random mixing assumption (each individual has the same probability of infecting
or being infected by any of the other individuals in the population), our epidemic
model was able to fit well the epidemic course of the first two waves of the Spanish
flu pandemic in Geneva, Switzerland. While estimates of the reproduction number
remained fairly stable with respect to the assumption on social mixing, the indi-
vidual model parameters were sensitive to the number of epidemic days used in the
estimation (Figure 7). Therefore, the interpretation of model parameter estimates
need to be addressed with caution because biases in model parameters could be
introduced due to simplifying assumptions.
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Here we fit the model separately to the spring and fall waves of infection, but
the underlying processes that led to the multiple peaks of infection during 1918
flu pandemic were not elucidated. Possible contributing mechanisms to this phe-
nomena include changes in population behavior and/or in the pathogenicity of the
influenza virus. This is an open question for future research.

In summary, for the 1918 pandemic scenario in Geneva, Switzerland, estimates
of the reproduction number obtained through least-square fitting of the model to
increasing observational window during the initial epidemic rise were found to be
in good agreement with each other. Nevertheless, control measures could generate
significant changes in the effective proportion of susceptible individuals and the
per capita transmission rate leading to a reduction in the reproduction number.
The estimation of the reproduction number through least squares fitting from the
initial growth phase of the epidemic curve has the potential of informing early into
an epidemic the intensity of interventions necessary to contain a rising epidemic.
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