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Abstract. We describe finite element simulations of limb growth based on
Stokes flow models with a nonzero divergence representing growth due to nu-
trients in the early stages of limb bud development. We introduce a “tissue
pressure” whose spatial derivatives yield the growth velocity in the limb and
our explicit time advancing algorithm for such tissue flows is described in de-
tail. The limb boundary is approached by spline functions to compute the
curvature and the unit outward normal vector. At each time step, a mixed-
hybrid finite element problem is solved, where the condition that the velocity
is strictly normal to the limb boundary is treated by a Lagrange multiplier
technique. Numerical results are presented.

1. Introduction. The subject of limb development has generated much recent
interest among biologists and physicists. The reasons for this interest are its im-
portance as an example of well defined organogenesis during embryological devel-
opment and that the biological and physical process underlying skeletogenesis are
still far from clear. Among the many open questions are those related to how the
overall limb shape develops. There exists a vast literature on the molecular biology
involved in limb development [19], [21], [26], [27], [4], but how this molecular biol-
ogy translates into patterning and growth is less clear. New experiments, however,
suggest that the time is now ripe to investigate computationally how overall limb
shape develops during vertebrate limb growth. As we are dealing with a complex
free boundary problem, we will need to develop new algorithmic approaches to bio-
logical fluid flows in nonconvex domains, and this paper contributes to this area of
biocomplexity. Such work is not only important from a conceptual viewpoint. The
work’s health implications are significant, because this research can be expected to
influence several pharmacutical and bioengineering technologies.

In section II we describe the basic biology required to understand how the over-
all limb develops its complex asymmetric form. This is a rich source of biocom-
plexity, for concurrent with the development of overall growth and form, internal
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spatiotemporal distributions of morphogens, activators, inhibitors and associated
gene products occur that both depend on and control limb growth and form.

In section III we describe the types of free boundary problems associated with
creeping flows in nonconvex growing domains that occur during organogenesis.
Specifically, in such developing domains, we need to solve for the growth veloc-
ity in the limb using a Stokes flow with a nonzero divergence representing local
nutrients generating the observed growth. We introduce a “tissue pressure” whose
gradient yields the growth velocity and calculate the resulting scalar field using bio-
logically plausible boundary conditions including expressions for the tissue pressure
at the limb boundary formulated in terms of the instantaneous limb curvature, and
the imposition on the internal epithelial surface of the limb the biologically plausi-
ble boundary condition that the tangential velocity field is zero. At the boundary
joining the limb with the main trunk of the vertebrate embryo, we impose a less
restrictive slip condition for the growth velocity. The growth rate of the limb is
then given by the normal velocity of the fluid at this moving boundary.

In section IV we describe in detail a new finite element algorithm for studying
such flows. Mathematically, several general frameworks for solving Stokes equations
in moving domain have been developed. These include the arbitrary Lagrangian
Eulerian together with the finite element method [16], the level set method [25], the
immersed boundary method [22], and the particle method [5], [17]. The approach
we develop here is an explicit time advancing scheme belongs to the framework
called “front-tracking methods.”

In section V we apply our algorithm to track the free boundary and internal
growth velocity field in both initially semicircular (in the very early vertebrate
embryo the limb bud is approximately semicircular, see Figure 1) and in nonconvex
domains. Finally we discuss our results in section VI.

2. Biology underlying vertebrate limb development. Studies of limb de-
velopment involve many interconnected questions, from what are the mechanisms
controlling overall limb shape to how internal structure in the growing limb bud
develops. There exists a large literature on the molecular biology involved in limb
development [19], [21], [26], [27], [4], but how this molecular biology translates into
growth and form is less clear. An examination of limb physiology shows that this
is a complex process. Clearly defined axes exist–proximal-distal, anterior-posterior,
and dorsal-ventral. Different sizes and shapes for the stylopod (one bone in the
upper arm or thigh), zeugopod (two bones in the forearm or calf) and autopod
(different numbers of nonidentical segmented digits) are observed in the tetrapod
limb. From a computational viewpoint, the situation is equally challenging. We
need to understand how the overall limb develops its complex asymmetric form
and, concurrent with this process, how internal asymmetric spatiotemporal distri-
butions of morphogens, activators, inhibitors and associated gene products result
in the skeletal limb forms created by evolution.

Recently there have been new insights into skeletal development. Much recent
evidence suggests that the early stages of skeletal pattern formation in the develop-
ing vertebrate limb depend on complex dynamics involving several growth factors
and differentiation of cells with receptors that allow response to these factors. We
have shown that this biology is indeed sufficient to generate the basic patterning
of the generic vertebrate limb [14]. Computational work in three dimensions [18]
[2] has both confirmed and extended this mechanism [14]. It incorporates a core
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set of cellular-biochemical processes known to occur in limb bud mesenchyme and
is capable of generating wrist and ankle spot-like elements [1] in addition to the
longer stripe-like bone elements.

But nearly all studies described above were carried out in growing rectangular or
parallelpiped domains. Real biological development, however, involves both growth
and changes of form of free-moving boundaries [29]. This is certainly the case of
the limb bud (see Figure 1).

Figure 1. A schematic drawing of the early stages of both exter-
nal and internal growth of the embryonic verebrate limb bud.

Therefore in this paper we describe tissue flows and their associated algorithmic
implementation that both help shape the embryonic limb and help convect internal
morphogens and gene products vital to the development of internal form. Because
we are concentrating on external epithelial domain grown and form, we suppose
it can be described mathematically as a free-moving boundary problem controlled
by internal Stokes flow attributable to internal tissue growth fed by a continuous
source of nutrients S(x). This boundary value problem is similar in some respects
to other two-fluid flow interfaces in Hele-Shaw cells with surface tension. Such flows
are known to give rise to nontrivial interfacial structure because of the existence of
the Mullins-Sekerka instability. More generally they fall into the general category
of creeping flows in the presence of moving boundaries. The fact that creeping
flows are involved can easily be seen by estimating the associated growth Reynolds
number. When the typical length scales in the developing limb are L ∼ 10−1cm,
while typical convective velocites induced by growth are V ∼ 10−6cm/sec, while
the kinematic viscosity of water ν ∼ 10−2cm2/sec, the resulting flows typically have
Reynolds numbers in the range Re = LV/ν ∼ 10−5. Because mesodermal cellular
flows will have effective viscosities significantly larger than water, the Reynolds
numbers will be even smaller [8]. Another similarity is that, at least in the first
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approximation, growth is two-dimensional. The developing limb fibres connect
the dorsal and ventral walls of the limb bud [3] leading to two-dimensional flows.
Also, the phenomenon of convergent extension [28], in which flattened cells tend
to develop in the two-dimensional plane defined by the proximal-distal (shoulder
to digit tip) and anterior-posterior (thumb to little finger) axes, will help justify a
growth description in terms of two-dimensional flows.

There are, however, several differences from the usually studied incompressible
Stokes flows. As mentioned above, growth due to mitosis and nutrients ensures
that material is constantly being added (and sometimes removed when cell death or
apoptosis occurs). In addition, the surface tension in the developing limb embryo
is heterogeneous, because the epithelial cell layer is weaker near the AER, and
consequently boundary conditions will result in a more complex boundary value
problem than those studied in Hele Shaw cells.

There exists a previous integration of the influence of growth on form in the
context of the avian limb bud [6]. There it was assumed that the flow was a Navier-
Stokes flow in the presence of homogeneous boundary conditions. In addition, the
growth was assumed to be strongly dependent on the local FGF concentration re-
leased by the apical ectodermal ridge (AER) near the tip of the limb bud. More
recent evidence suggests that mitosis and therefore growth are not strongly influ-
enced by the local FGF concentration, but rather the main influence of mitosis is
on cell differentiation.

The need to develop general methods for integrating creeping flows in biology
has motivated our search to develop finite element algorithms for creeping flows in
the context of avian limb development. We also believe that similar finite element
algorithms will be useful in the more general context of organogenesis.

3. Mathematical model.

3.1. The basic ingredients. We consider, therefore the following minimal model,
which incorporates the key features of this biological growth. Addition of material
occurs everywhere either at a constant rate S or more generally the rate of growth
can be assumed to be S(x, t) as addition of material could be both spatially varying
and have a temporal dependence because of genetic switching mechanisms. This
means that that the tissue flow in the limb will include a continuous distribution
of sources and therefore obey

∇ · v = S, (1)

where v is the fluid velocity.
We treat growth of the limb as due to a creeping flow, because of the very low

Reynolds numbers involved [8]. Therefore we can expect the flow to obey the Stokes
equation with volume source

−µ∆v +∇p = f +
µ

3
∇S, (2)

where p is a pseudopressure field defined by p = P − pair, where P is the pressure
of the fluid and µ is the viscosity of the fluid.

Finally we need boundary conditions. As it appears there is no flow of material
into the main body of the organism, we shall take slip boundary conditions at the
boundary of the limb connected to the main body

v · ν = 0, (3)
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where ν is the outer unit normal vector to the boundary, while the elastic properties
of the epithelial layer of cells forming the skin layer will result a pressure at the free
growing boundary that obeying

p(s) = P (s)− pair = γ(s)κ(s), (4)

where γ(s) is the effective surface tension of the limb at a point s on the free
boundary [9] while κ(s) is the limb curvature at point s.

The equation of the normal velocity of the free boundary is

Vn(s, t) = v(s, t) · ν. (5)

3.2. Detailed structure of the dynamics. We now describe in detail the struc-
ture of the creeping flow dynamics we wish to integrate. We study the evolution of
a bounded connected open domain Ω(t) of R2 with boundary ∂Ω(t) = Γ1(t)∪Γ2(t),
where Γ1(t) and Γ2(t) are two nonempty subsets of ∂Ω(t). Here t ≥ 0 is the time.
We assume that Γ1(t) is a nonclosed curve of class C2 and its ends evolve on the Oy
axis (see Figure 2). The boundary Γ2(t) is the segment which has the same ends as
Γ1(t). Let ν = (ν1, ν2) denote the unit outward normal vector and τ = (−ν2, ν1)
the unit tangential vector to the boundary.

(t) Ω

Γ

(t)

(t)

x

y

Γ2

1

τ

ν

Figure 2. Schematic illustration of the free boundary problem

In the moving domain Ω(t), we have to find the velocity v(·, t) = (v1(·, t), v2(·, t)) :
Ω(t) → R2, and the pressure p(·, t) : Ω(t) → R of the fluid, such that

−µ∆v +∇p = f +
µ

3
∇S, in Ω(t) (6)

∇ · v = S, in Ω(t) (7)
v · τ = 0, on Γ1(t) (8)

p = γκ, on Γ1(t) (9)
v · ν = 0, on Γ2(t) (10)

∂v2

∂x
− ∂v1

∂y
= 0, on Γ2(t) (11)

where µ > 0 is the viscosity of the fluid, f = (f1, f2) are the applied volume forces,
S > 0 is the rate of growth, γ > 0 is the effective surface tension and κ is the
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curvature of Γ1(t). We use the sign convention that convex domains have positive
curvature of the boundary.

Remark 1. In a previous work [20], we studied a similar problem, where the fluid
velocity was not necessarily normal to the boundary Γ1(t). In [15], Guermond and
Quartapelle suggest the importance to prescribe either the normal or the tangen-
tial component of the fluid velocity, to establish the stability of the finite element
approximations. In the present paper, the fluid velocity is supposed to be normal
to the boundary Γ1(t) (see equation (8)). Even if the assumption concerning the
fluid velocity on free boundary is not the most appropriate from the biological point
of view [7], this constraint is required by the boundary condition concerning the
pressure (9).

Equation (11) is a natural boundary condition associated with the essential
boundary condition (10).

The boundary Γ1(t) evolves according to the law

Vν = v · ν, (12)

where Vν is the normal velocity of Γ1(t).
The combination of (8) and (10) requires that the the boundaries Γ1(t) and Γ2(t)

are normal at the intersections, more precisely

ν|Γ1(t) · ν|Γ2(t) = 0, in the two corners (13)

where ν|Γ1(t) and ν|Γ2(t) are the outer unit normal vectors to Γ1(t) and Γ2(t),
respectively. Without this condition, the fluid velocity will not be continuous in
the two corners. This requirement is biologically plausible in terms of flow, though
of course the boundaries of real limb domains are not exactly normal to each other
in geometrically.

We know the initial domain

Ω(0) = Ω0. (14)

We consider the problem (6)–(14) of determining the evolution of Ω(t) and to
find the velocity v(x, y, t) and the pressure p(x, y, t) for t ∈ [0, T ], where T > 0 is a
given real constant.

4. The finite element algorithm. We develop a key algorithm to study such
creeping flows in the presence of moving boundary conditions.

To evaluate the curvature terms, the boundary is approached by cubic spline
interpolation, which gives a curve twice continuously differentiable. The curvature
is computed using the parametrization of the splines.

At each time step, a new mesh is generated, but the generation of the current
mesh is independent from the previous one.

To numerically solve these equations we use finite element methods. We intro-
duce for each t ∈ [0, T ] the following Hilbert spaces:

W(t) =
{
w = (w1, w2) ∈

(
H1 (Ω(t))

)2
; w1 = 0 on Γ2(t)

}
, (15)

Q(t) = L2 (Ω(t)) , (16)

Λ(t) = H1/2 (Γ1(t)) . (17)
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The weak form of the problem (6)–(11) is to find v(t) ∈ W(t), p(t) ∈ Q(t) and
ω(t) ∈ Λ(t) such that

a (v(t),w) + b (w, p(t)) + c (w, ω(t)) = ` (w) , ∀w ∈ W (t) (18)
b (v(t), q) = g (q) , ∀q ∈ Q(t) (19)
c (v(t), λ) = 0, ∀λ ∈ Λ(t), (20)

where

a (v,w) = µ

∫

Ω(t)

(
∂v2

∂x
− ∂v1

∂y

)(
∂w2

∂x
− ∂w1

∂y

)
dx

+µ

∫

Ω(t)

(∇ · v) (∇ ·w) dx (21)

b (w, q) = −
∫

Ω(t)

(∇ ·w) q dx (22)

c (w, λ) = µ

∫

Γ1(t)

(w1ν2 − w2ν1) λ ds (23)

` (w) =
∫

Ω(t)

(
f +

µ

3
∇S

)
·w dx + µ

∫

Γ1(t)

S (w · ν) ds

−
∫

Γ1(t)

γκ (w · ν) ds (24)

g (q) = −
∫

Ω(t)

S q dx. (25)

Remark 2. Some authors use the notations v × ν = v1ν2 − v2ν1 and ∇ × v =
∂v2
∂x − ∂v1

∂y for two-dimensional vectors. We have to note that, in this case, v × ν

and ∇× v are scalars, not two-dimensional vectors. The bilinear applications (21)
and (23) could be rewritten more concisely as

a (v,w) = µ

∫

Ω(t)

(∇× v) (∇×w) dx + µ

∫

Ω(t)

(∇ · v) (∇ ·w) dx

c (w, λ) = µ

∫

Γ1(t)

(w × ν)λ ds.

For the weak form of Stokes equations with Dirichlet boundary condition on the
velocity, the standard bilinear form is

a (v,w) = µ

∫

Ω(t)

∇v : ∇w dx.

The boundary condition on the pressure requires the use of the alternative bilinear
form (21).

From Green’s formula and the following identity
∫

Ω(t)

∇v : ∇w dx =
∫

Ω(t)

(
∂v2

∂x
− ∂v1

∂y

)(
∂w2

∂x
− ∂w1

∂y

)
dx

+
∫

Ω(t)

(∇ · v) (∇ ·w) dx +
∫

∂Ω(t)

(
∂v2

∂x
− ∂v1

∂y

)
(w1ν2 − w2ν1) ds

−
∫

∂Ω(t)

(∇ · v)(w · n) ds +
∫

∂Ω(t)

∂v
∂n

·w ds,
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we can prove that if v, p is a strong solution of (6)–(11), then v, p, ω = ∇× v is a
solution of (18)–(20).

The system (18)–(20) is a mixed-hybrid-like problem in that the trial spaces
W(t), Q(t) and Λ(t) are independent and some trial functions are defined on the
physical domain, while others are defined only on the boundary. The main ad-
vantage of this framework is the treatment of the constraints (7) and (8) by the
Lagrange multiplier technique, consequently, we are not forced to use finite elements
which verify (7) and (8).

The finite element approximation of Stokes equation with boundary condition
on the pressure was studied in [23],[24] and [12], but the condition (8) was treated
in a strong way.

We denote by ∆t the time step and by N = T/∆t the number of time steps.
We approximate Γ1(n∆t) by a polygonal line

Γn
1,h = [An

0 , An
1 , . . . , An

M ] ,

where the vertices An
i have the coordinates (xn

i , yn
i ) for i = 0, . . . , M . It is assumed

that xn
0 = xn

M = 0 for all n, which implies that An
0 and An

M evolve on the Oy axis.
We denote by Ωn

h the polygonal domain bounded by Γn
1,h and the segment

[An
M , An

0 ]. Let T n
h a triangular mesh of Ωn

h.
For the approximation of the fluid velocity v, we have used the triangular finite

elements P1 + bubble, also called MINI elements, introduced by Arnold, Brezzi and
Fortin (see the general reference [10]), for the fluid pressure p the triangular finite
elements P1 and for the Lagrange multiplier ω, the segment finite elements P1.

We denote by vn
h , pn

h, ωn
h the finite element approximations of v(n∆t), p(n∆t),

ω(n∆t), respectively.
Let νn

h denote the unit outward normal vector to the boundary Γn
1,h, which is

constant on each edge
[
An

i , An
i+1

]
.

To compute in (23) the integral term containing ν, we have used the approxi-
mation

∫

Γ1(t)

(w × ν)λ ds ≈
∫

Γn
1,h

(wn
h × νn

h) λn
h ds =

M−1∑

i=0

∫

[An
i ,An

i+1]
(wn

h × νn
h)λn

h ds.

In a similar way, we can approximate in (24) the term
∫
Γ1(t)

S (w · ν) ds.

4.1. Treatment of the curvature terms. The treatment of the curvature terms
requires particular care. We proceed as follows. Let {0 = ξ0 < ξ1 < · · · < ξM = L}
be a partition of an interval [0, L]. We will compute the interpolating cubic spline
functions Sn = {(x(ξ), y(ξ)) , ξ ∈ [0, L]} with the following properties:

• x(ξ) and y(ξ) are twice continuously differentiable on [0, L],
• x(ξ) and y(ξ) coincide on every subinterval [ξi, ξi+1], i = 0, . . . ,M − 1 with

polynomials of degree three,
• x(ξi) = xn

i and y(ξi) = yn
i for i = 0, . . . ,M and

• x′′(0) = x′′(L) = 0, y′(0) = y′(L) = 0.
For the numerical tests, we have chosen h = L/M , ξi = ih, for i = 0, . . . ,M and

L = 1.
We have for i = 0, . . . , M − 1

x(ξ) = mx
i

(ξi+1 − ξ)3

6h
+ mx

i+1

(ξ − ξi)
3

6h
+ ux

i (ξ − ξi) + vx
i , ∀ξ ∈ [ξi, ξi+1],
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where

ux
i =

(
xn

i+1 − xn
i

) 1
h
− (

mx
i+1 −mx

i

) h

6
vx

i = xn
i −mx

i

h2

6
.

We set mx
0 = mx

M = 0 and
(
mx

1 , . . . ,mx
M−1

)
is the solution of the linear system




4 1 0

1
. . . . . .
. . . . . . . . .

. . . . . . 1
0 1 4







mx
1
...
...
...

mx
M−1




=




6
h2 (xn

0 − 2xn
1 + xn

2 )
...

6
h2

(
xn

i−1 − 2xn
i + xn

i+1

)
...

6
h2

(
xn

M−2 − 2xn
M−1 + xn

M

)




.

For y(ξ), we have similar formulas. For i = 0, . . . , M − 1

y(ξ) = my
i

(ξi+1 − ξ)3

6h
+ my

i+1

(ξ − ξi)
3

6h
+ uy

i (ξ − ξi) + vy
i , ∀ξ ∈ [ξi, ξi+1]

where

uy
i =

(
yn

i+1 − yn
i

) 1
h
− (

my
i+1 −my

i

) h

6
vy

i = yn
i −my

i

h2

6
.

The linear system to solve is



2 1 0

1 4
. . .

. . . . . . . . .
. . . 4 1

0 1 2







my
0

...

...

...
my

M




=




6
h2 (yn

1 − yn
0 )

...
6
h2

(
yn

i−1 − 2yn
i + yn

i+1

)
...

6
h2

(
yn

M−1 − yn
M

)




.

The curve Sn has a continuous curvature given by

κ(ξ) =
x′(ξ)y′′(ξ)− x′′(ξ)y′(ξ)
(
(x′(ξ))2 + (y′(ξ))2

)3/2
. (26)

In the sequel, κn
i = κ(ξi) stands for the curvature in the vertex An

i using the spline
functions.

Do compute in (24) the integral term containing the curvature, we have used the
approximation

∫

Γ1(t)

γκ (w · ν) ds ≈
M−1∑

i=0

∫

[An
i ,An

i+1]
γκn

i (wh · νn
h) ds.

4.2. An explicit time-advancing scheme. From (12), a point on the boundary
Γ1(t) moves along the normal to the boundary with the velocity v · ν.

In a previous section, we introduced νn
h the unit outward normal vector to the

boundary Γn
1,h, constant on each edge

[
An

i , An
i+1

]
, which, however, is not well de-

fined on the vertices An
i .



348 C. M. MUREA AND H. G. E. HENTSCHEL

To compute the position of the vertices An+1
i of the polygonal line Γn+1

1,h , we will
use the normal to the spline function Sn given by

νn
S(ξ) =

1√
(x′(ξ))2 + (y′(ξ))2

(y′(ξ),−x′(ξ))T
.

More precisely, we set
(

xn+1
i

yn+1
i

)
=

(
xn

i

yn
i

)
+ ∆t νn

S(ξi) (vn
h(xn

i , yn
i ) · νn

S(ξi)) , (27)

which is the forward Euler’s scheme for the numerical approximation of (12).

Algorithm

Let A0
i of coordinates (x0

i , y
0
i ), i = 0, . . . , M be vertices of the polygonal line Γ0

1,h.

For each n from 0 to N − 1

Step 1: Generate T n
h a triangular mesh of Ωn

h. Knowing the boundary
points An

i , i = 0, . . . ,M , the mesh can be generated automatically,
using FreeFem++ [13].

Step 2: Compute the spline function
Sn = {(x(ξ), y(ξ)) , ξ ∈ [0, 1]} passing throw An

i , i = 0, . . . ,M . The
details were presented in section 4.1 “Treatment of the curvature
terms.”

Step 3: Compute κn
i = κ(ξi) the curvature at each vertex An

i , using
the formula (26).

Step 4: Find vn
h , pn

h, ωn
h the finite element solution of (18)–(20). After

the finite element discretization, the problem to solve is a symmetric
linear system, not positive-definite, of the form




A BT CT

B 0 0
C 0 0







Vn

Pn

Ωn


 =




Ln

Gn

0


 .

Step 5: Compute νn
S the unit outward normal vector to the spline

function Sn using the formula

νn
S(ξ) =

1√
(x′(ξ))2 + (y′(ξ))2

(y′(ξ),−x′(ξ))T
.

Step 6: Move the vertices of the boundary using the forward schema
(27).

5. Numerical tests. We have tested the algorithm presented in this paper for two
kind of geometrical shapes: a semicircle and a nonconvex domain. Both examples
were also discussed in [20] using Darcy’s law for the fluid flow, while the actual
model is based on the Stokes equations with volume source.
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5.1. The initial domain is a semicircle. First let us consider the academic case
in which the initial domain is a semicircle of ray R0. We assume that the rate of
growth S and the surface tension γ are constants, and we set the applied volume
forces f = (0, 0). Of course, these assumptions are not biologically reasonable, but
in this case, we know an exact solution of the free boundary problem (6)–(14).

If we set the parametric representation of Γ1(0) as{
x(θ) = R0 cos(θ), y(θ) = R0 sin(θ), θ ∈

[
−π

2
,
π

2

]}
,

the evolution of the boundary Γ1(t) is described by{
x(θ) = R0 e

St
2 cos(θ), y(θ) = R0 e

St
2 sin(θ), θ ∈

[
−π

2
,
π

2

]}
.

The velocity and the pressure have the form

v (x, y, t) = (S x/2, S y/2), p (x, y, t) =
γ

R0 e
St
2

.

The algorithm was implemented using the language FreeFem++ [13], and the
numerical results were displayed using gnuplot [11].

The simulation was performed for R0 = 1, µ = 1, f = (0, 0), S = 2, γ = 1,
T = 0.5. The time step is ∆t = 0.005, while the number of time steps is N = 100.
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Figure 3. Spline approximation of the initial boundary (left),
after 50 time steps (middle) and after 100 time steps (right)

At the time instant t = 0.5, the domain Ω(t) might be a semicircle of ray
e0.5 ≈ 1.648721. Numerically, at the time instant t = N∆t = 0.5, we obtain a
semicircle-like domain where the ends of the polygonal line Γn

1,h have the coordi-
nates (0,−1.63703) and (0, 1.64173) (see Figure 3).

The number of the segments of the polygonal line Γn
1,h is M = 32, and the

number of edges on the vertical boundary [An
M , An

0 ] is 20 for all n.
The initial mesh has 200 vertices, 346 triangles, and after 100 time steps we use

a mesh of 207 vertices, 360 triangles (see Figure 4).
The computed velocity (see Figure 5) is radial as the theoretical solution.

5.2. A nonconvex initial domain. Let now consider a case when the initial
domain is nonconvex. The boundary Γ1(0) has two flat parts (one on the bottom
and on the top), and three semicircles of rays r1 = 0.6, r2 = 0.2 and r3 = 0.2,
respectively.

The simulation was performed for: µ = 1, f = (0, 0), S = 2, γ = 0.5, ∆t = 0.0001
and N = 1800.
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Figure 4. The initial mesh (left) and the mesh after 100 time
steps (right).
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Figure 5. The initial velocity (left) and after 100 time steps
(right). The scaling factor is 0.2.

The number of segments of the polygonal line Γn
1,h is M = 48 and the number

of edges on the vertical boundary [An
M , An

0 ] is 20 for all n.
The initial mesh has 302 vertices and 534 triangles (see Figure 6). In [20], the

flat parts of the boundary Γ1(0) do not move; consequently, the growth is only in
the Ox direction. As we see in Figures 8 and 7, the domain growths also appear
along the Oy axis.

In view of Figure 8, we can suppose that the domain will evolve to a domain
with a cut, while in [20] the same domain seems to evolve to a convex domain.

Using the same time step ∆t = 0.0001, we have performed more than 1800
iterations, while in [20] we have obtained a self-intersecting moving boundary after
182 iterations.
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Figure 6. The initial mesh (left) and the mesh after 1800 time
steps (right).
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Figure 7. The velocity at different time steps. The scaling factor
is 0.2.

6. Discussion. The finite element algorithm described above contains the basic
ingredients required for the study of the development of biological form as a con-
sequence of growth via creeping flows due to nutrient addition to a closed bounded
domain surrounded by epithelial cell walls. Perhaps the most interesting results of
these simulations can be seen in Figure 7. The internal growth velocity field has
clearly developed a nontrivial spatial and temporal structure that will affect not
only the external shape of the limb bud but also internal processes, such as the
spatiotemporal distribution of gene products, and consequently the development of
internal structure.

Our approach of course represents a minimal model, in that it incorporates many
crucial biological processes but at the same time leaves out many critical elements
that need to be considered in future algorithms. Such critical elements include
internal domains created by skeletal elements that can both channel and hinder
fluid flow. Also there exist a core set of cellular-biochemical processes known to
occur in limb bud mesenchyme that will further sculpt the developing form of the
organism. For example, nonuniformly distributed gene products, such as Sonic
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Figure 8. Spline approximation of the boundary at different time steps

hedgehog, Hox and Wnt proteins, may alter the spatiotemporal distribution of
nutrient release S(x, t) and consequently growth and form with time. This could
lead to both positive and negative feedback phenomena with important biological
consequences for development.

Finally, of course, explicit three-dimensional simulations need to be undertaken
to investigate how spatially varying surface tension caused by heterogeneous epithe-
lial properties affects growth and form. This is more complex algorithmically, since
in the two-dimensional case powerful tools exist that can automatically generate
moving meshes when the parametric description of the boundary is provided. We
are now studying the three-dimensional version of these algorithms and are espe-
cially interested in how heterogeneous properties of the epithelial layer will affect
growth and form.

We believe, however, that all such considerations can be incorporated into de-
velopments of the basic algorithm proposed here and need to be studied further.
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