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Abstract. We consider a model for a disease with two competing strains
and vaccination. The vaccine provides complete protection against one of the
strains (strain 2) but only partial protection against the other (strain 1). The
partial protection leads to existence of subthreshold equilibria of strain 1. If
the first strain mutates into the second, there are subthreshold coexistence
equilibria when both vaccine-dependent reproduction numbers are below one.
Thus, a vaccine that is specific toward the second strain and that, in absence
of other strains, should be able to eliminate the second strain by reducing its
reproduction number below one, cannot do so because it provides only partial
protection to another strain that mutates into the second strain.
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1. Introduction. Many diseases are caused by more than one antigenically differ-
ent variant of the causative agent. Such variants are referred to as different strains
of a microorganism. The number of strains that give rise to the same disease de-
pends on the mutability of the parasite. For some highly mutable viruses, such as
the hepatitis C virus (HCV), more than 100 strains of the virus have been identified
so far, classified into six genotypes. Bacterial pneumonia is caused by more than
ninety different serotypes of Streptococcus pneumoniae, some of which are much
more common than others. Influenza type A viruses mutate continuously. These
changes in the virus are called antigenic drifts. Although an infection with one
strain of influenza type A leads to life-long immunity, the antigenic drift produces
new virus strains to which the host has only partial immunity or no immunity at
all, leaving the host vulnerable to reinfection with the disease.
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1.1. Multi-strain disease interactions. The dynamics of the pathogen-host in-
teractions involving multiple strains and the implications for the dynamics of the
disease have fascinated researchers for a long time. Bremermann and Thieme [5]
justify a competitive exclusion principle for the interactions of multiple strains by
considering a multistrain SIR ODE model with possible acquired immunity to all
strains and demographic renewal. In particular, they show that the strain with
the largest reproduction number (R0) will outperform and eliminate the remaining
strains in the system, provided that the growth of the host is limited by the car-
rying capacity of the environment. Castillo-Chavez, Huang and Li also establish
that competitive exclusion is the norm in a two-sex SI model of gonorrhea with
demographic renewal and two strains [10].

Many diseases, however, are represented by several or a multitude of strains
which appear to coexist in nature. Dengue fever has four different serotypes, of-
ten coexisting in the same geographical region. Infection with one of the serotypes
gives permanent immunity, but the same host remains vulnerable to infections with
the remaining serotypes. Some particular sequences of infections with these four
serotypes are believed to lead to the deadly dengue hemorrhagic fever. The com-
petitive exclusion and coexistence of two of the four dengue serotypes is discussed
in [15]. Feng and Velasco-Hernándes [15] consider the possibility of infecting an
already infected individual with the other strain (a process called super-infection).
They present numerical evidence that coexistence of the two strains is possible. A
model of consecutive infections with two dengue fever serotypes is considered in
[12] where it is also established that the two strains can coexist.

In fact, both the super-infection in [15] and the cross-immunity in [12] are known
mechanisms that lead to coexistence of strains. Super-infection has been found ear-
lier to lead to coexistence in a two-strain model in [26, 35] and to more complex
dynamics in multi-strain models in [38]. Cross-immunity has been discussed mainly
in relation to influenza and several articles report the presence of coexistence equi-
libria in this case [7, 8, 2, 28]. Like super-infection, coinfection, which is defined
as the simultaneous infection of the same host with two different parasites or two
different strains of the same parasite, also leads to coexistence of the strains on
the population level [36]. Under the same conditions as the ones considered in [5],
the competitive exclusion principle will no longer be valid if the host population
is allowed to grow exponentially in time. Apparently, in an exponentially growing
host population, there is enough “room” for two strains to coexist [31, 1]. Parasite
polymorphism is obtained also via density dependent host death rate [3].

In this paper we consider another mechanism known to generate coexistence,
namely mutation [4]. By mutation of the strains on the population level, we un-
derstand a process of substitution on the personal level of one of the strains by the
other. In particular, we assume that if in a host infected by the first strain a small
amount of the second strain is produced, then it takes over the host as a result of
intra-host competition. Consequently, the same host is then infected by the second
strain. We call the combined effect of these two processes mutation and denote the
rate at which that happens by ρ. Li, Zhiu et al. [27] investigate an epidemic model
of mutating pathogens in a recent article and find a unique coexistence equilibrium
which may lose stability. In fact, mutation enters several other articles as a mech-
anism that promotes coexistence. In [6, 14] incomplete treatment of individuals
infected with tuberculosis (TB) leads to emergence of a drug-resistant strain of the
disease. The authors conclude that natural TB strains will not coexist under their
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models, but a natural and a drug-resistant strain which is in fact a mutant of the
natural strain will coexist under appropriate conditions. In [14] the natural strain
can dominate only in the absence of mutation; if mutation is present, there are only
two possible outcomes: either the two strains are both present in the population or
the drug-resistant strain dominates. We obtain similar results in this article.

1.2. Vaccination in multi-strain diseases. Vaccination is a widespread method
for disease prevention and control. It produces better results against diseases gen-
erated by pathogens of low mutability. One of the most successful vaccination
campaigns is the campaign for the eradication of smallpox. The World Health Or-
ganization declared the disease eliminated in 1980. Measles has been essentially
also eradicated in developed countries, and vaccination against mumps and chicken
pox gives promising results, since the causative agents of these diseases show little
tendency to vary antigenically. Because poliomyelitis is caused by three antigenic
types that do not change significantly, vaccination against each one is necessary
but produces promising results. On the other hand, vaccination against highly mu-
table viruses is either not very efficient or not at all possible at the present time.
Vaccination against bacterial pneumonia, whose causative agent is represented by
more than ninety serotypes, is carried out with vaccines containing agents of up to
twenty-three of the most common serotypes.

Vaccines against highly mutable viruses such as HIV and HCV at this time are
unavailable. Providing adequate immunity against influenza has been a particu-
larly challenging task. Because the virus continuously mutates and generates new
strains, any immunity furnished by a vaccine or by infection is short-lived, and in
the next flu season the same host faces a new set of strains. Thus, annual vaccina-
tions are necessary and the vaccines are updated every season. They are typically
trivalent and consist of two type A strains and one type B strain. For the US,
the Centers for Disease Control and Prevention (CDC) estimates early in the year
what strains are likely to be most distributed in the following flu season and makes
a recommendation for the composition of the vaccine. The decision about which
strains to include in the vaccine is based on methods for predicting the evolution
of influenza A [25, 22] as well as global surveillance. We model this epidemiological
situation when the present virus, which is only partially targeted by the vaccine,
mutates into a strain to which the vaccine is specific.

The influence of vaccination on the evolution of strain interactions in multistrain
diseases has been investigated through models in several articles [37, 17, 35, 39, 40].
McLean [37] supports the view that because vaccination provides weaker immunity
compared to infection, it creates a favorable environment for the emergence of
vaccine-resistant strains. T. Porco and S. Blower investigate [39] how the mode of
action of potential HIV vaccine influences the coexistence of two HIV subtypes. In
particular, they find that if the vaccine provides full protection against subtype one
for a given fraction of the vaccinated individuals and complete protection against
subtype two for a fraction of those protected against subtype one, then coexistence
of the subtypes is possible. On the other hand, if the vaccine acts only by de-
creasing the infectivity in vaccinated individuals infected with either subtype, then
coexistence is not possible. In [40] the authors assume that the vaccine reduces the
susceptibility of the vaccinated individuals, and they establish that coexistence is
possible. In both articles, vaccination is applied before individuals enter the system.

Lipsitch [29] considers the interplay of two serotypes of bacteria subjected to
serotype-specific or bivalent vaccine. He applies his theoretical results to shed light
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on existing data on serotype replacement in Haemophilus influenzae. The ability
of the vaccines to target only specific strains of the causative agent has generated
significant concern in epidemiology, because this could increase the incidence of the
disease from other strains not represented in the vaccine. This has not occurred
with the use of H. influenzae type b vaccines but has occurred in trials of pneu-
mococcal vaccines. In [30] these different outcomes are investigated with the use of
mathematical models.

1.3. Multiple and subthreshold coexistence equilibria. In simple epidemic
models, typically when the reproduction number is below one, only the disease-free
equilibrium exists. This equilibrium is locally and globally stable, which implies
that the disease will disappear from the population. Recommendations for disease
control can be made based on that observation. In particular, measures which act
to reduce the reproduction number below one will lead to the disease disappearance.

Recently, it has been observed in theoretical considerations that nontrivial equi-
libria can be present even when the reproduction number of the disease is smaller
than one. One way for this situation to occur is through a phenomenon called
backward bifurcation. In the case of backward bifurcation, the endemic equilibrium
which bifurcates from the disease-free equilibrium at the critical value one of the
reproduction number exists for values of the reproduction number smaller than
one. In fact, for values of the reproduction number between some minimal value
R∗, called the minimal transition value, and one there are two or more endemic
equilibria. In [34] it is established that there is typically an even number of equilib-
ria with alternating stability so that the one with the lowest number of infectives
is unstable. If backward bifurcation occurs, it is not sufficient to reduce the re-
production number below one to eradicate the disease; instead, it is necessary to
reduce it below a much lower value—the minimal transition value. Although this
phenomenon is not as readily observed in data as oscillations, it plays a significant
role in the dynamics of the disease and in our ability to combat it effectively.

In recent years, the presence of backward bifurcation in epidemic models has led
to significant interest. In many cases backward bifurcation seems to be caused by
the presence of several classes with different susceptibilities to the disease. Thus
this phenomenon often occurs in multigroup models [20, 11]. As a special case,
it can also be observed when the population is divided into never infected and
previously infected individuals [16] and in educated and uneducated individuals
[19]. In addition, backward bifurcation appears when super-infection is present
[13]. Most of these models consider homogeneous populations with respect to age
structure and, as a result, the corresponding models consist of ordinary differen-
tial equations. However, recently the heterogeneity of the host in age structure,
both chronological [9, 33] and disease-induced [34], has also been found to lead to
subthreshold equilibria.

One of the significant consequences of the backward bifurcation is the presence
of multiple stable equilibria, which in turn leads to the fact that initial conditions
determine the equilibrium to which solutions may tend. This gives the opportunity,
even in systems with time-independent coefficients, for various outcomes in the
long-term development of the disease.

Backward bifurcation is also very typical for models involving partially effective
vaccination as vaccination creates a class of susceptible individuals (namely the vac-
cinated individuals) with lower susceptibility to the disease compared to the regular
susceptible class. Several articles report the existence of subthreshold equilibria in
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the presence of vaccination [18, 23, 24], but in those cases only one strain of the
disease is considered. On the other hand, two-strain models with or without vac-
cination are associated with two dominance equilibria, one for each strain present,
and a unique coexistence equilibrium.

The impact of vaccination as a mechanism capable of generating multiple sub-
threshold equilibria on the dynamics of a disease in the context of multiple strain
interactions has not been investigated so far. We address that impact in this article.

1.4. Organization of this article. We introduce our two-strain model with vac-
cination and mutation in Section 2. The model consists of three ordinary differential
equations and one partial differential equation structured by the time spent in the
corresponding class. The differential equation for the total population size is given
by the simplest population model of logistic growth. We also introduce several
parameters which appear often in our discussion.

In Section 3 we discuss the existence of steady states. In the first subsection
we consider the case when there is no mutation ρ = 0. We provide the vaccine-
dependent reproduction number of strain 1 in absence of mutation R◦1(ψ), where ψ
is the per-capita vaccination rate. We include the vaccine-dependent reproduction
number of strain 2 R2(ψ), which is independent of mutation. We establish that if
R2(ψ) > 1, there is always the equilibrium E∗2 , which corresponds to dominance
of the second strain. If R◦1(ψ) > 1, there is always the equilibrium E∗1 , which
corresponds to dominance of the first strain. If R◦1(ψ) < 1, there might be none or
two equilibria E∗11, E∗12. We introduce the invasion reproduction numbers of strain 1
and strain 2, defined as the number of secondary cases one infectious individual with
strain i will produce during the time it is infectious in a population where strain
j is at equilibrium. We show that if each strain can invade the stable dominance
equilibrium of the other there exists a unique coexistence equilibrium E◦∗∗. In the
second subsection we introduce the reproduction number of strain 1 in the presence
of mutation R1(ψ). We establish that if R1(ψ) < 1, there might be none or two
coexistence equilibria: E∗∗21 , E∗∗22 ; and if R1(ψ) > 1, there might be up to three
coexistence equilibria.

Section 4 is devoted to the local stability of equilibria. In Subsection 4.1 we
investigate the stability of the disease-free equilibrium where we obtain the typical
result: if both reproduction numbers are below one it is locally asymptotically
stable, if any of the reproduction numbers is above one—it is unstable. Subsection
4.2 investigates the local stability of the equilibrium E∗2 and establishes that it is
locally stable if R1(ψ) < R2(ψ) and unstable otherwise. Subsection 4.3 investigates
the stability of equilibria which exist when there is no mutation. It establishes that
the equilibrium E∗11 is always unstable whenever it exists.

Section 5 summarizes our observations and their relation to disease control and
prevention. Some of the more technical derivations and proofs are presented in the
Appendix.

2. A two-strain model with vaccination. In this section we introduce a two-
strain epidemic model. We consider a population whose total population size at
time t is denoted by N(t). The dynamics of the total population in the absence of a
disease is described by the simplest demographic model which accounts for a limited
population size; namely, we assume constant birth/recruitment of individuals in the
population, denoted by Λ, and constant per-capita natural death rate, denoted by
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µ:
N ′(t) = Λ− µN(t).

This equation has the globally stable steady state

N =
Λ
µ

, (2.1)

and we assume that this state has been attained so that the total population stays
constant at all times.

Now we assume that a disease is spreading in the population. The presence of the
disease divides the population into nonintersecting subclasses. The individuals who
are healthy but can contract the disease and have not been previously vaccinated
form the class of susceptible individuals whose size at time t is denoted by S(t).
Individuals who are healthy but have been vaccinated against the causative agent
of the disease form the vaccinated class. The size of the total population in the
vaccinated class is denoted by V (t). The per-capita vaccination rate is denoted by
ψ. It is assumed that the vaccine protection does not wane.

J
N

β1Ι[ ]ψ

µ

µ

µ

µ

δ[β  Ι]1

α

Λ

θ, t )(i

J (t)

V (t)

S (t)

χ γ(θ)

ρ(θ)(1−χ) γ(θ)

−β2

Figure 1. Flow-chart of the two-strain model: The term [β1I]

stands for 1
N

∫ ∞

0

β1(θ)i(θ, t) dθ

We assume that two genetically distinct forms of the causative agent of the
disease are present and can infect the individuals in the population: we call the
first form strain 1 and the second form strain 2. Individuals who are infected with
strain 1 form the class whose size is denoted by I(t). The individuals in this class
are stratified according to their time-since-infection θ, and their density is given
by i(θ, t). Individuals who are infected with strain 2 form the class whose size
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is denoted by J(t). We assume there are no individuals who are simultaneously
infected by both strain 1 and strain 2, that is, we assume there is no coinfection.
However, strain 1 can mutate into strain 2 at a rate ρ(θ). A completely susceptible
individual can come into contact with an infective individual and become infected.
If the infective individual is a carrier of strain 1 the susceptible individual also
becomes infected with strain 1, at a rate β1(θ). Such an individual progresses to the
infectious class but enters it with age-since-infection equal to zero. If the infective
individual is a carrier of strain 2, the susceptible individual becomes infected with
strain 2, at a rate β2. The newly infected individual moves to the J-class.

The susceptible individuals are not the only ones who are healthy and can become
sick after coming into contact. We assume that the vaccine is tailored to protect
against strain 2 and it is completely effective against it. We call strain 2 vaccine-
sensitive strain or simply the vaccine strain. However, the vaccine is only partially
effective against strain 1. For its ability to elude the immune response promoted
by the vaccine, we call strain 1 vaccine-evasive strain. A vaccinated individual can
become infected after being in contact with an individual infected with strain 1 at
a rate β1(θ)δ, where δ reflects vaccine imperfection with respect to strain 1. The
vaccine is perfect if δ = 0 and no vaccinated individual can be infected. On the
other hand, if δ = 1 the vaccine plays no protective role. We assume 0 ≤ δ ≤ 1.

The removal rate from the class i(θ, t) is given by the function γ(θ). The total
rate at which individuals recover from the class i(θ, t) is given by the quantity

∫ ∞

0

γ(θ)i(θ, t)dθ.

A proportion χ of those who recover do so to the vaccinated class, to account for
the individuals who entered the class i(θ, t) already vaccinated. We assume that
0 ≤ χ ≤ 1. A proportion (1−χ) recover to the susceptible class. The recovery rate
from the class J is α. Since only susceptible individuals can get infected with the
second strain, they recover to the susceptible class only.

The model takes the following form (see Figure 1):

S′(t) = Λ− S

N

∫ ∞

0

β1(θ)i(θ, t)dθ − β2
SJ

N
− (µ + ψ)S + (1− χ)

∫ ∞

0

γ(θ)i(θ, t)dθ

+αJ
(∂t + ∂θ)i(θ, t) = −(γ(θ) + ρ(θ) + µ)i(θ, t)

i(0, t) =
S

N

∫ ∞

0

β1(θ)i(θ, t)dθ + δ
V

N

∫ ∞

0

β1(θ)i(θ, t)dθ

J ′(t) = β2
SJ

N
− (µ + α)J +

∫ ∞

0

ρ(θ)i(θ, t)dθ

V ′(t) = ψS − δ
V

N

∫ ∞

0

β1(θ)i(θ, t)dθ + χ

∫ ∞

0

γ(θ)i(θ, t)dθ − µV.

(2.2)
The parameters of the model and their meanings are listed in Table 1. We re-
mark that this model with strain 2 and the age-since-infection structure removed
is exactly the model considered in [18].

We assume that all parameters are nonnegative and µ > 0. We also assume that

β1(θ), ρ(θ), γ(θ) ∈ L∞(0,∞) with γ̄ = sup
θ∈(0,∞)

γ(θ), β̄1 = sup
θ∈(0,∞)

β1(θ),

ρ̄ = sup
θ∈(0,∞)

ρ(θ).
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Table 1. List of Parameters

Notation Meaning
Λ birth/recruitment rate into the population
µ per-capita natural death rate

β1(θ) effective per-capita infection rate by strain 1
β2 effective per-capita infection rate by strain 2
ψ per-capita vaccination rate

γ(θ) per-capita recovery rate from the class i(θ, t)
α per-capita recovery rate from the class J
χ proportion of recoveries to the vaccinated class, given recovery from strain 1

1− δ efficiency of vaccine
ρ(θ) per-capita mutation rate of strain 1 into strain 2

To ensure well-posedness we endow the system (2.2) with initial conditions:
S(0) = S0, i(θ, 0) = i0(θ), J(0) = J0, V (0) = V0, where S0, J0, and V0 are given
nonnegative constants, while i0(θ) is a given nonnegative, integrable function. The
initial conditions must satisfy the relation (see (2.1))

N = S0 +
∫ ∞

0

i0(θ)dθ + J0 + V0,

so that the system is consistent with the assumption on the total population and

N = S(t) +
∫ ∞

0

i(θ, t)dθ + J(t) + V (t). (2.3)

The system (2.2) with the initial conditions is well-posed, that is, independently
of what nonnegative initial conditions are taken, the model has a unique nonneg-
ative solution which depends continuously on the initial data. This result can be
established with standard techniques.

The following notations will be used throughout the paper. The quantities

π0(θ) = e−
∫ θ
0 γ(ξ)dξ π(θ) = e−

∫ θ
0 γ(ξ)dξe−

∫ θ
0 ρ(ξ)dξ

give the proportion of individuals remaining in the infectious class of strain 1 until
progression age θ in the cases when ρ(θ) = 0 and when ρ(θ) 6= 0 respectively, given
that the individuals have survived till that age. Next we define

Γ◦ =
∫ ∞

0

γ(θ)π0(θ)e−µθdθ Γ =
∫ ∞

0

γ(θ)π(θ)e−µθdθ. (2.4)

It is easy to see that 0 ≤ Γ ≤ Γ◦ < 1 (see identity (2.7)). The parameters Γ and Γ◦

give the proportion of individuals leaving the infectious period of strain 1 through
recovery in the cases without and with mutation respectively. The proportion of
individuals leaving the infectious class of strain 1 through mutation of the strain
with which they are infected is given by

φ =
∫ ∞

0

ρ(θ)π(θ)e−µθdθ. (2.5)

The proportion of individuals who die while infectious with strain 1 is given by µ∆◦

in the case of no mutation, and by µ∆ in the case with mutation where ∆◦ and ∆
denote the integrals

∆◦ =
∫ ∞

0

π0(θ)e−µθdθ ∆ =
∫ ∞

0

π(θ)e−µθdθ. (2.6)
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Naturally, the sum of the proportions of surviving the infectious with strain 1 period
and dying while in it is equal to one:

Γ + φ + µ∆ = 1. (2.7)

In fact, this equality can be justified rigorously by integrating by parts the integral
in Γ. Finally, we introduce the following notation

B◦
1 =

∫ ∞

0

β1(θ)π0(θ)e−µθdθ B1 =
∫ ∞

0

β1(θ)π(θ)e−µθdθ. (2.8)

In the next section we discuss the equilibria of the model.

3. Steady states. Using (2.1) and the notation

s∗ =
S∗

N
, i∗(θ) =

i∗(θ)
N

, j∗ =
J∗

N
, v∗ =

V ∗

N

where S∗, i∗(θ), J∗, V ∗ is a time-independent solution of (2.2), we obtain the fol-
lowing system for the equilibria which consists of four algebraic equations and one
ordinary differential equation:

0 = µ− s∗
∫ ∞

0

β1(θ)i∗(θ)dθ − β2s
∗j∗ − (µ + ψ)s∗ + (1− χ)

∫ ∞

0

γ(θ)i∗(θ)dθ + αj∗

d

dθ
i∗(θ) = −(γ(θ) + ρ(θ) + µ)i∗(θ)

i(0) = s∗
∫ ∞

0

β1(θ)i∗(θ) dθ + δv∗
∫ ∞

0

β1(θ)i∗(θ) dθ

0 = β2s
∗j∗ − (µ + α)j∗ +

∫ ∞

0

ρ(θ)i∗(θ) dθ

0 = ψs∗ − δv∗
∫ ∞

0

β1(θ)i∗(θ) dθ + χ

∫ ∞

0

γ(θ)i∗(θ)dθ − µv∗.

(3.1)
From the equation for the total population size (2.3), we get also the following

algebraic condition:

s∗ +
∫ ∞

0

i∗(θ)dθ + j∗ + v∗ = 1. (3.2)

That is also a consequence of (3.1).
The point E∗ = (s∗, i∗(θ), j∗, v∗) gives an equilibrium solution of the system (2.2)

if and only if s∗, i∗(θ), j∗, v∗ are non-negative and solve the system (3.1).
The equilibrium which is always present is the disease-free equilibrium, that is,

an equilibrium in which there are no infected individuals:

E0 = (s0, 0, 0, v0)

where
s0 =

µ

µ + ψ
(3.3)

is the proportion of susceptible individuals in the disease-free population and

v0 =
ψ

µ + ψ

is the proportion of vaccinated individuals in the disease-free population.
To find endemic equilibria (that is, equilibria in which the number of infectives

is not zero), we solve the second equation in (3.1), with i(0) given by the third
equation, getting

i∗(θ) = i(0)π(θ)e−µθ, (3.4)
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then substitute the solution in the remaining equations to obtain a system of non-
linear algebraic equations:

0 = µ−B1s
∗i∗ − β2s

∗j∗ − (µ + ψ)s∗ + (1− χ)Γi∗ + αj∗

i∗ = B1s
∗i∗ + δB1v

∗i∗

0 = β2s
∗j∗ − (µ + α)j∗ + φi∗

0 = ψs∗ − δB1i
∗v∗ + χΓi∗ − µv∗

(3.5)

where i∗ denotes i(0). From the last equation in the system (3.5) we express v∗ in
terms of i∗ and s∗ as

v∗ =
ψs∗ + χΓi∗

δB1i∗ + µ
. (3.6)

Solving for s∗ in the first equation we have

s∗ =
µ + (1− χ)Γi∗ + αj∗

B1i∗ + β2j∗ + µ + ψ
. (3.7)

Observe that s∗ thus defined is positive and smaller than one if B1 > (1−χ)Γ and
β2 > α.

3.1. Nontrivial equilibria in absence of mutation: The case ρ(θ) = 0. In
this section we analyze the case in which there is no mutation (ρ(θ) = 0), so that
the two strains are not directly connected but, nevertheless, they compete through
susceptibles. In this case system (3.5) becomes

0 = µ−B◦
1s∗i∗ − β2s

∗j∗ − (µ + ψ)s∗ + (1− χ)Γ◦i∗ + αj∗

i∗ = B◦
1s∗i∗ + δB◦

1v∗i∗

0 = β2s
∗j∗ − (µ + α)j∗

0 = ψs∗ − δB◦
1 i∗v∗ + χΓ◦i∗ − µv∗.

(3.8)

The existence and stability of endemic equilibria depends on two parameters—
the reproduction number of each strain. The reproduction number of strain 1 in the
absence of mutation is given by (see the proof of Proposition 4.1 for derivation as
well as the interpretation below)

R◦1(ψ) =
B◦

1(µ + δψ)
µ + ψ

,

and in the absence of vaccination it is R◦1 = R◦1(0) = B◦
1 . Concerning the interpre-

tation of the reproduction number, we notice that the quantity R◦1 = B◦
1 gives the

number of secondary infections that strain 1 will generate in a completely suscep-
tible population. However, in the absence of the disease, our population consists
of both susceptible and vaccinated individuals. The proportion of individuals who
are susceptible is µ

µ+ψ (see (3.3)). Thus, the first term in R◦1(ψ), given by B◦1µ
(µ+ψ) ,

gives the number of secondary infections of susceptibles an infected individual can
produce in a disease-free population. The number δB◦

1 gives the number of sec-
ondary infections an infected individual can produce in a vaccinated population;

ψ
µ+ψ is the proportion of vaccinated individuals in a disease-free population. Thus,

the second term in R◦1(ψ), given by δB◦1ψ
(µ+ψ) , gives the number of secondary infec-

tions of vaccinated individuals an infected individual can produce in a disease-free
population.

The reproduction number of the second strain is given by

R2(ψ) =
β2µ

(µ + α)(µ + ψ)
(3.9)
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and in the absence of vaccination it is R2 = R2(0) = β2
µ+α . We note that the

reproduction number of the vaccine-sensitive strain is not influenced by the presence
or absence of mutation because mutation does not lead to infections of healthy
individuals with the second strain and hence has no impact on the number of
secondary infections an individual infected with strain 2 can produce in a population
of susceptible and vaccinated individuals. Since the second strain does not infect
vaccinated individuals, its reproduction number consists of a term that corresponds
to the first term in R◦1(ψ) only. Since 1

µ+α is the mean time spent infected with
strain 2, the expression β2

µ+α gives the number of secondary infections the vaccine-
sensitive strain can produce in a entirely susceptible population, and µ

µ+ψ is the
proportion of susceptibles in a disease-free population.

It can be seen that both R◦1(ψ) and R2(ψ) are decreasing functions of ψ, which is
the expected effectiveness of a vaccination campaign. Because the vaccine protects
completely against the vaccine-sensitive strain, its reproduction number can be
made very small if the vaccination rate is sufficiently large. On the other hand, the
vaccine is only partially protective against the vaccine-elusive strain. Thus, even
very large levels of vaccination cannot reduce the reproduction number of the first
strain below some threshold value

R◦1(∞) = δB◦
1 .

We recall that B◦
1 = R◦1. Vaccination acts to decrease the reproduction numbers of

the strains, but it often does so by a different amount. As a result, it can switch the
relationship between them. This observation is the source of the concern expressed
in the literature that although vaccination might lead to the effective control of some
strains, it might also lead to the proliferation of others. We notice this phenomenon
occurring in this model too. In particular, if in the absence of vaccination the second
strain dominates the first one (that is, R◦1 < R2), then there is a vaccination level
ψ∗ given by

ψ∗ =
µ

δ

(R2

R◦1
− 1

)

such that
R◦1(ψ) < R2(ψ) for ψ < ψ∗

but
R2(ψ) < R◦1(ψ) for ψ > ψ∗.

The relation between the reproduction numbers is not changed by vaccination if
R2 < R◦1. In this case we also have R2(ψ) < R◦1(ψ) for all ψ.

First we investigate the existence of dominance equilibria. It is easy to see that
in addition to the disease-free equilibrium E0, a unique equilibrium corresponding
to nonzero levels of infected with the vaccine-sensitive strain J is also feasible:

Proposition 3.1. If R2(ψ) > 1, then the equilibrium

E∗2 =
(

1
R2

, 0, 1− 1
R2(ψ)

,
ψ

µR2

)

exists.

In addition, one or more nontrivial equilibria corresponding to nonzero values of
the vaccine-evasive strain may exist. We consider the system (3.8) with j∗ = 0.
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From the first equation we get for s∗ (see (3.7))

s∗ =
µ + (1− χ)Γ◦i∗

B◦
1 i∗ + µ + ψ

. (3.10)

In the second equation we can first cancel i∗, substitute the value for v∗ from
(3.6) to get

s∗ =
δB◦

1 i∗ + µ− χΓ◦δB◦
1 i∗

B◦
1(δB◦

1 i∗ + µ + δψ)
. (3.11)

We determine i∗ so that the two expressions for s∗ are equal. Thus, the equilibrium
value for i is a solution for the equation

δB◦
1 i∗ + µ− χΓ◦δB◦

1 i∗

B◦
1(δB◦

1 i∗ + µ + δψ)
=

µ + (1− χ)Γ◦i∗

B◦
1 i∗ + µ + ψ

. (3.12)

In particular, we have the following result similar to the one above.

Proposition 3.2. If R◦1(ψ) > 1, then the equilibrium

E∗10 = (s∗0, i
∗
0(θ), 0, v∗0)

exists where i∗0(θ) is determined from formula (3.4) with i(0) given by the unique
positive solution of the equation (3.12), s∗0 is determined from formula (3.11), and
v∗0 is obtained from (3.6).

Proof. To see the existence and uniqueness denote by

f1(i) =
δB◦

1 i + µ− χΓ◦δB◦
1 i

B◦
1(δB◦

1 i + µ + δψ)
and

g1(i) =
µ + (1− χ)Γ◦i
B◦

1 i + µ + ψ
.

Equation f1(i) = g1(i) is actually equivalent to a quadratic equation and so it has
at most two solutions. Since

f1(0) =
µ

B◦
1(µ + δψ)

and g1(0) =
µ

µ + ψ
,

then R◦1(ψ) > 1 implies that f1(0) < g1(0). On the other hand, limi→∞ f1(i) =
(1−χΓ◦)/B◦

1 and limi→∞ g1(i) = (1−χ)Γ◦/B◦
1 . Consequently, Γ◦ < 1 implies that

limi→∞ f1(i) > limi→∞ g1(i). Hence, equation (3.12) has at least one solution, and
the number of the intersections of the two functions is odd. Therefore, the equation
has exactly one positive solution i∗.

♦
If R◦1(ψ) < 1, there may be no equilibria with the vaccine-evasive strain present

or, under some additional conditions on the parameters of the model, there may
be two equilibria. The existence of these two equilibria depends on the occurrence
of backward (subcritical) bifurcation at the critical value i = 0 (R◦1(ψ) = 1). Since
the reproduction number R◦1 = B◦

1 , we choose for a bifurcation parameter B◦
1 . We

rewrite equation (3.12) in a more convenient form:

[δB◦
1 i + µ− χΓ◦δB◦

1 i][B◦
1 i + µ + ψ] = B◦

1(δB◦
1 i + µ + δψ)[µ + (1− χ)Γ◦i]. (3.13)

The equation above defines B◦
1 as a function of i; that is, B◦

1 = B◦
1(i). The

bifurcation in B◦
1 at the critical value i = 0 is backward if and only if dB◦1

di (0) < 0.
Using implicit differentiation in the equation above we obtain

dB◦
1

di
(0) =

B◦
1(0)[δ(1− χΓ◦)(µ + ψ) + µ−B◦

1(0)δµ− (µ + δψ)(1− χ)Γ◦]
µ(µ + δψ)
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where B◦
1(0) is the value of B◦

1 at the critical value i = 0:

B◦
1(0) =

µ + ψ

µ + δψ
.

Thus, if dB◦1
di (0) < 0, existence of the two subthreshold equilibria occurs for values

of B◦
1 in some nonempty interval with right end-point B◦

1(0). We have the following
proposition

Proposition 3.3. If

δ(1− χΓ◦)(µ + ψ) + µ <
(µ + ψ)δµ

µ + δψ
+ (µ + δψ)(1− χ)Γ◦, (3.14)

then there exists a constant R◦inf ∈ [0, 1) such that for

R◦inf < R◦1(ψ) < 1

the equilibria

E∗11 = (s∗1, i
∗
1(θ), 0, v∗1) and E∗12 = (s∗2, i

∗
2(θ), 0, v∗2)

exist. The value of i∗k(θ) is computed from formula (3.4) with i(0) = i∗k where i∗1
and i∗2 are the two positive solutions of the equation (3.12), s∗k is determined from
formula (3.11), while v∗k is obtained from formula (3.6). If inequality (3.14) is not
satisfied, then no such equilibria exist for R◦1(ψ) < 1.

Backward bifurcation will be feasible if the inequality (3.14) is satisfied for some
values of the parameters. It is not hard to see that the parameter space for which
this inequality is true is not empty. If, in particular, we take Γ◦ = 0.9 (or γ(θ) =
0.9 (time)−1), µ = 0.1 (time)−1, χ = 0.0, δ = 0.1, ψ = 1 (time)−1, then the
inequality will be valid with the left-hand side having value 0.21 while the right-
hand side having value 0.235.

Inequality (3.14) is a necessary and sufficient condition for existence of back-
ward bifurcation. It reveals the mechanisms in the model (2.2) which promote this
phenomenon and those which obstruct it. Inspection of (3.14) shows that if χ = 1
(that is, if there is no recovery to the susceptible class), there will be no backward
bifurcation. Vaccination itself is the chief mechanism responsible for the presence
of subcritical bifurcation in this model ψ 6= 0. Indeed, in the case when ψ = 0
inequality (3.14) becomes

δ(1− χΓ◦)µ + µ < δµ + µ(1− χ)Γ◦,

which after canceling µ and rearranging the terms becomes

1 < Γ◦(1 + δχ− χ),

which is clearly impossible because the right-hand side is smaller than one. Some
specific components of the vaccination process are involved. In particular, if δ = 0,
the inequality (3.14) cannot be satisfied. Consequently, if the vaccine is perfect with
respect to both strains, the disease will not be able to establish itself for R◦1 < 1.

To summarize, vaccination, and particularly vaccine imperfection is the main
mechanism for supporting the presence of the disease even when the reproduction
number is below one.

Finally, we consider the coexistence endemic states. As it turns out, under
some conditions on the parameters there exists a unique state with i∗ > 0 and
j∗ > 0. To address the question of coexistence equilibrium, we define several
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invasion reproduction numbers. First, define the invasion reproduction number of
strain 1 in the case of no mutation ρ = 0 (see proof of Proposition 4.2 for derivation):

R̂◦1 =
R◦1(ψ)
R2(ψ)

. (3.15)

The invasion reproduction number of strain 1 gives the number of secondary cases
that one infected individual with strain 1 can infect in a population where strain 2
is at equilibrium E∗2 . We note that the condition R̂◦1 > 1 is a condition that strain 1
can invade the equilibrium of strain 2.

Strain 2 might be invading one of three equilibria of strain 1 E∗1k for k=0,1,2. One
invasion reproduction number of strain 2 corresponds to each of these equilibria of
strain 1. Define the invasion reproduction numbers of strain 2 in the case of no
mutation ρ = 0:

R̂◦2(E∗1k) =
R2

R◦1
δB◦

1 i∗k + µ− χi∗kΓ◦δB◦
1

δB◦
1 i∗k + µ + δψ

(3.16)

where i∗k is i(0) from equation (3.4), which gives the proportion of infected with
strain 1 (i∗k(θ)) in the corresponding equilibrium E∗1k. We note that the condition
R̂◦2(E∗1k) > 1 says that strain 2 can invade the corresponding equilibrium of strain 1.

The following result establishes the existence of coexistence equilibrium in the
case of no mutation. We note that the conditions in the proposition below are
only sufficient and there may be coexistence even if some of them are not satisfied.
Furthermore, as the proof shows, there is no coexistence without vaccination ψ = 0
in the region R◦1 > R2 > 1. At the same time positive vaccination levels lead to
coexistence if each strain can invade the stable equilibrium of the other and R2 > 1.
In Figure 2 we illustrate the coexistence in the absence of mutation. The simulation
in Figure 2 suggests that the coexistence equilibrium is stable.

Proposition 3.4. Assume and R2 > 1. There are two cases:
Case 1: R◦1(ψ) > 1. Assume R̂◦1 > 1 and R̂◦2(E∗10) > 1. Then there is a unique

coexistence equilibrium E◦∗∗.
Case 2: R◦1(ψ) < 1. Assume R̂◦2(E∗12) > 1. Then there is a unique coexistence

equilibrium E◦∗∗ if and only if R̂◦2(E∗11) < 1.

Proof. We denote the coexistence equilibrium by E◦∗∗ = (ŝ, î(θ), ĵ, v̂) where î(θ) =
i(0)π0e

−µθ with i(0) = î. We show that î exists, so that system (3.8) is satisfied.
From the third equation in system (3.8), we have ŝ = 1

R2
< 1. From the second

equation in (3.8), after canceling î we have

1 = ŝB◦
1 + δv̂B◦

1 .

The expression for v̂ from (3.6) becomes

v̂ =
ψŝ + χîΓ◦

δB◦
1 î + µ

.

Substituting v̂ above we have that ŝ is given by the expression in (3.11) with î in
place of i∗. Thus î is a solution of the following equation

δB◦
1 i + µ− χiΓ◦δB◦

1

B◦
1(δB◦

1 i + µ + δψ)
=

1
R2

. (3.17)

The left-hand side of this equation is a function of i, denoted as before with f1(i).
One can see that f1(i) is a monotone function of i. Thus, this equation has at most
one solution. Consequently, the coexistence equilibrium, if it exists, is unique.
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Figure 2. The left figure illustrates that the number in-
fected with strain 1 I(t) and the number infected with strain 2
J(t) may tend toward a coexistence equilibrium when ρ = 0, and
ψ = 0.5. The right figure illustrates that if ψ = 0, strain 2 elim-
inates strain 1. The remaining parameters used for these figures
are β1 = 6, β2 = 4.5, γ = 0.8, µ = 0.1, χ = 0.0, δ = 0.04,
α = 0.5, Λ = 5. The units of Λ are (number of people)/(unit
of time); χ and δ are dimensionless. The remaining parameters
have units given by (unit of time)−1. The corresponding reproduc-
tion numbers are dimensionless and are given by R◦1(ψ) = 1.333
and R2(ψ) = 1.25. The reproduction numbers in the absence of
vaccination are R◦1 = 6.66667 and R2 = 7.5.

Case 1: To see the existence in this case, notice that R̂◦1 > 1 implies that

1
R◦1(ψ)

<
1

R2(ψ)
,

which, in turn implies that

µ

B◦
1(µ + δψ)

<
1
R2

;

that is, f1(0) < 1/R2. This, in particular, leads to the fact that equation (3.17) has
no solution if f1(i) is decreasing. We note here that when there is no vaccination
ψ = 0, it follows that f1(i) is decreasing and there is no coexistence in the region
R◦1 > R2 > 1.
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Now, by assumption R̂◦2(E∗10) > 1 we have
δB◦

1 i∗0 + µ− χi∗0Γ
◦δB◦

1

B◦
1(δB◦

1 i∗0 + µ + δψ)
>

1
R2

.

Consequently, there exists î in the interval (0, i∗0) such that equality (3.17) is satis-
fied. To finish the proof for Case 1, notice that since î < i∗0 we have f1(̂i) < g1(̂i),
where g1 is the function in the proof of Proposition 3.2. Then, from the first
equation in (3.8), we have

(β2ŝ− α)ĵ = (B◦
1 î + µ + ψ)(g1(̂i)− ŝ) > (B◦

1 î + µ + ψ)(f1(̂i)− ŝ) = 0.

That establishes the existence of coexistence equilibrium in Case 1, given that
β2ŝ− α = µ > 0.

Case 2: In this case, assumption R̂◦2(E∗12) > 1 gives
δB◦

1 i∗2 + µ− χi∗2Γ
◦δB◦

1

B◦
1(δB◦

1 i∗2 + µ + δψ)
>

1
R2

.

On the other hand, assumption R̂◦2(E∗11) < 1 gives
δB◦

1 i∗1 + µ− χi∗1Γ
◦δB◦

1

B◦
1(δB◦

1 i∗1 + µ + δψ)
<

1
R2

.

That implies that there exists a solution î of equation (3.17) that lies in the interval
(i∗1, i

∗
2) where i∗1 gives the equilibrium E∗11 and i∗2 gives the equilibrium E∗12. Conse-

quently in this case f1(̂i) < g1(̂i) and ĵ > 0. If R̂◦2(E∗11) > 1 and R̂◦1 > 1, then î is
in the interval (0, i∗1) and f1(̂i) > g1(̂i). Consequently, ĵ < 0. This concludes the
proof.

♦
3.2. Nontrivial equilibria in presence of mutation: The case ρ(θ) 6= 0. In
this case, the vaccine-elusive strain mutates into the vaccine-sensitive strain, and
there are coexistence equilibria such that the possible ultimate outcomes are either
coexistence of the two strains or competitive dominance of the second strain. It is
interesting that genetic changes alone can give the competitive advantage to the
vaccine-sensitive strain. The existence and stability of nontrivial equilibria again
depend on two reproduction numbers of the strains. The reproduction number of
strain 1 in presence of mutation is given by

R1(ψ) =
B1(µ + δψ)

(µ + ψ)
,

and, in the absence of vaccination, it is R1 = R1(0) = B1. The interpretation
of the reproductive number is similar to the one before. The quantity R1 = B1

gives the number secondary infections that strain 1 will generate in a completely
susceptible population in the absence of vaccination.

As before, R1(ψ) is a decreasing function of ψ whose minimal value is

R1(∞) = δB1.

We note that the reproduction number of the second strain remains unchanged
and is given by (3.9). Finally, if in the absence of vaccination the second strain
has larger reproduction number than the first (that is, R1 < R2), then there is a
vaccination level

ψ∗ =
µ

δ

(R2

R1
− 1

)



SUBTHRESHOLD COEXISTENCE OF STRAINS 303

such that we have R1(ψ) < R2(ψ), for ψ < ψ∗ and R2(ψ) < R1(ψ) for ψ > ψ∗.
If in the absence of vaccination the first strain has a larger reproduction number
than the second, that is R2 < R1, then this relation is preserved for all vaccination
levels: R2(ψ) < R1(ψ).

Besides the disease-free equilibrium E0, a unique equilibrium corresponding to
nonzero levels of infected with the vaccine-sensitive strain J is also feasible:

Proposition 3.5. If R2(ψ) > 1 then the equilibrium

E∗2 =
(

1
R2

, 0, 1− 1
R2(ψ)

,
ψ

µR2

)

exists.

We note that there is no endemic state corresponding to the absence of strain 2,
but one or more coexistence equilibria may exist. The existence of coexistence
equilibria depends on the invasion reproduction number of the first strain when
ρ(θ) 6= 0:

R̂1 =
R1(ψ)
R2(ψ)

Since in the case ρ(θ) 6= 0 there is only one dominance equilibrium E∗2 , there is
also only one invasion reproduction number. To find the coexistence equilibria, we
consider the system (3.5). From the second equation of (3.5), where we use the
value of v∗ from (3.6), we express s∗ as a function of i∗:

s∗ =
δB1i

∗ + µ− χi∗ΓδB1

B1(δB1i∗ + µ + δψ)
. (3.18)

From the third equation in (3.5), we express j∗ in terms of i∗: j∗ = ξ(i∗)i∗ where
ξ is a function of i∗

ξ(i∗) =
φ

µ + α− β2s∗
=

φ

(µ + α)[1− ω(i∗)]
(3.19)

where the function ω(i) is defined as

ω(i) = R2s
∗.

We notice that ξ(i) is a monotone function of i, but it could be increasing or
decreasing. We have

ξ(0) =
φR1(ψ)

(µ + α)[R1(ψ)−R2(ψ)]
. (3.20)

The function ξ(i) is defined and positive at i∗ (and therefore j∗ is defined and
nonnegative) if and only if ω(i∗) < 1; that is, if and only if the following inequality
is satisfied:

δB1i
∗ + µ− χi∗ΓδB1

B1(δB1i∗ + µ + δψ)
<

1
R2

(3.21)

for the corresponding i∗. From here a condition for the absence of coexistence
equilibria can be derived:

Proposition 3.6. If δψ > χΓ(µ + δψ) and R̂1 ≤ 1, then there are no coexistence
equilibria.
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Proof. Denote by f(i∗) the left-hand side of inequality (3.21). ConditionR1(ψ) ≤
R2(ψ) means

B1(µ + δψ)
µ

≤ β2

µ + α

and, consequently that 1/R2 ≤ f(0). In addition, inequality δψ > χΓ(µ + δψ)
implies that f(i) is increasing. Hence, (3.21) is not satisfied by any i∗.

♦
On the other hand, we note that if R2 ≤ R1, the inequality (3.21) is satisfied

for all i∗ (we recall that B1 = R1) so that the function ξ(i) is defined and positive
at any i∗. Another sufficient condition for inequality (3.21) to be satisfied is given
by the following hypothesis:



R̂1 > 1 if δψ ≤ χΓ(µ + δψ)
R1

R2
> 1− χΓ if δψ > χΓ(µ + δψ).

(3.22)

In fact, by an argument similar to the one in Proposition 3.6, if this condition is
satisfied, then inequality (3.21) is valid for every i.

From (3.7) we get a second expression for s∗ in terms of i∗, using the fact that
j∗ = ξ(i∗)i∗:

s∗ =
µ + (1− χ)Γi∗ + αξ(i∗)i∗

B1i∗ + β2ξ(i∗)i∗ + µ + ψ
. (3.23)

We determine i∗ so that the two expressions for s∗ are equal. Thus, the equilib-
rium value for i is a solution for the equation

δB1i
∗ + µ− χi∗ΓδB1

B1(δB1i∗ + µ + δψ)
=

µ + (1− χ)Γi∗ + αξ(i∗)i∗

B1i∗ + β2ξ(i∗)i∗ + µ + ψ
. (3.24)

Establishing the existence of coexistence equilibria can be done under weaker and
more natural conditions than (3.22). In the proposition below, we assume that the
invasion reproduction number of the first strain R̂1 > 1. We notice that if we know
that (3.22) is satisfied, that implies that R̂1 > 1 and the proposition is still valid.

Proposition 3.7. If R1(ψ) > 1 and R̂1 > 1 are satisfied, then there exists at least
one and up to three coexistence equilibria

E∗∗k = (sk, ik(θ), jk, vk)

where each ik, a positive solution of the equation (3.24), gives i(0) in ik(θ) de-
termined by (3.4), sk is determined from formula (3.18), jk = ξ(ik)ik, and vk is
determined from (3.6) with i∗ = ik. If, in addition, all equilibria are simple, that
is f ′2(ik) 6= g′2(ik), then there is an odd number of them.

Proof. To see the existence of equilibria denote by

f2(i) =
δB1i + µ− χiΓδB1

B1(δB1i + µ + δψ)

and

g2(i) =
µ + (1− χ)Γi + αξ(i)i
B1i + β2ξ(i)i + µ + ψ

.

Since f2(0) = µ
B1(µ+ψ) and g2(0) = µ

µ+ψ , thenR1(ψ) > 1 implies that f2(0) < g2(0).
If we rewrite the equation f2(i) = g2(i) in the powers of i, we will obtain a cubic
equation in i which has at most three solutions. We consider the following cases:
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Case 1: R2(1− χΓ) > R1. This inequality implies that

lim
i→∞

f2(i) =
1− χΓ

B1
>

1
R2

.

On the other hand, R̂1 > 1 implies that f2(0) < 1/R2. Consequently, the equation
f2(i) = 1/R2 has a solution. Denote that solution by î∗. We have f2(î∗) = 1/R2.
Then both functions f2 and g2 are defined and continuous on the interval (0, î∗). We
note that R̂1 > 1 implies that ξ(0) > 0. In addition, limi→î∗− g2(i) = α

β2
=: g2(î∗).

Thus, f2(î∗) > g2(î∗). Consequently, there is a solution of the equation f2(i) = g2(i)
in the interval (0, î∗).

Case 2: R2(1− χΓ) ≤ R1. This inequality implies that

lim
i→∞

f2(i) =
1− χΓ

B1
≤ 1
R2

.

Consequently, inequality (3.21) is satisfied for all i, because f2(i) is a monotone
function and f2(0) < 1

R2
. This implies that both functions f2 and g2 are defined

and continuous on the interval (0,∞). We have again that f2(0) < g2(0). So, we
show that as i →∞ the limits of the two functions satisfy the opposite inequality.
First, we note that

lim
i→∞

w(i) =
R2(1− χΓ)

R1
= w(∞).

Then,

lim
i→∞

ξ(i) =
φR1

(α + µ)[R1 −R2(1− χΓ)]
= ξ(∞).

This gives the following limit for g2:

lim
i→∞

g2(i) =
(1− χ)Γ + αξ(∞)

B1 + β2ξ(∞)
.

Consequently, to show that limi→∞ f2(i) > limi→∞ g2(i), we have to show the
inequality:

(1− χ)Γ + αξ(∞)
B1 + β2ξ(∞)

<
1− χΓ

B1
. (3.25)

Replacing ξ(∞), canceling B1 from both sides and rearranging terms, we arrive at
the following inequality, which has to be established:

(1−χ)Γ(α+µ)[R1−R2(1−χΓ)]+αφR1 < (1−χΓ)(α+µ)[R1−R2(1−χΓ)]+(1−χΓ)β2φ.

Adding µφR1 to left-hand side we get a stricter inequality:

(1− χ)Γ(α + µ)[R1 −R2(1− χΓ)] + (α + µ)φR1 <

(1− χΓ)(α + µ)[R1 −R2(1− χΓ)] + (1− χΓ)β2φ.

Canceling a common term from both sides,

Γ(α+µ)[R1−R2(1−χΓ)]+(α+µ)φR1 < (α+µ)[R1−R2(1−χΓ)]+(1−χΓ)β2φ.

Moving the αφ-term inside the brackets and using identity (2.7) in the left-hand
side, it becomes

(α + µ)[R1 − µ∆R1 −R2(1− χΓ)Γ] < (α + µ)[R1 −R2(1− χΓ)] + (1− χΓ)β2φ

Canceling the (α+µ)R1 term and moving the remaining term to the left-hand side
while moving the µ∆-term to the right-hand side we obtain

(α + µ)(1− χΓ)R2(1− Γ) < (1− χΓ)β2φ + (α + µ)µ∆R1.
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Dividing by (α + µ) and moving the first term from the right-hand side to the
left-hand side we have

(1− χΓ)R2(1− Γ− φ) < µ∆R1.

Again by (2.7)
(1− χΓ)R2µ∆ < µ∆R1.

Dividing by µ∆ we arrive at a true inequality (compare with the inequality in Case
2)

(1− χΓ)R2 < R1.

Therefore, the initial inequality (3.25) is also true.
In both cases the number of the intersections of the two functions is odd. This

completes the proof.
♦
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Figure 3. This figure shows that the number infected with
strain 1 I(t) and the number infected with strain 2 J(t) tend to-
wards coexistence equilibrium even though both vaccine-dependent
reproduction numbers are below one. The parameters used for this
figure are ρ = 0.01, γ = 0.8, µ = 0.1, χ = 0.0, δ = 0.1, ψ = 1,
α = 1.0, Λ = 5, β1 = 5 and β2 = 9. Again Λ has units (number of
people)/(unit of time), χ and δ are dimensionless, and the remain-
ing parameters have units (unit of time)−1. The corresponding
reproduction numbers are R1(ψ) = 0.999 and R2(ψ) = 0.7438.
We note that for ψ = 0 and all other parameters held the same,
R1 = 5.4945 and R2 = 8.1818. In this case strain two eliminates
strain 1.

If R1(ψ) < 1 there may be no coexistence equilibria or, under some additional
condition on the parameters of the model, there may be two coexistence equilibria.
The existence of these two coexistence equilibria depends on the occurrence of
backward (subcritical) bifurcation at the critical value i = 0 (R1(ψ) = 1). We again
choose for a bifurcation parameter B1. As before, we cross-multiply in equation
(3.24) to obtain:

[δB1i+µ−χiΓδB1][B1i+β2ξ(i)i+µ+ψ] = [µ+(1−χ)Γi+αξ(i)i][B1(δB1i+µ+δψ)].
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This equation defines B1 as a function of i, that is, B1 = B1(i). The bifurcation in
B1 at the critical value i = 0 is backward if and only if B′

1(0) < 0. Using implicit
differentiation in equation above, setting i = 0 and solving for B′

1(0) we obtain

B′
1(0) =

B◦
1 [(1− χΓ)δ(µ + ψ) + µ(1 + β2η(0))− (µ + δψ)[(1− χ)Γ + αη(0)B◦

1 ]−B◦
1µδ]

µ(µ + δψ)
where B◦

1 is the value of B1 at the critical value i = 0:

B◦
1 =

µ + ψ

µ + δψ

and

η(0) =
φ(µ + δψ)

(µ + α)(µ + ψ)[1−R2(ψ)]
.

We have the following proposition for the existence of the two subthreshold equi-
libria:

Proposition 3.8. If

(1− χΓ)δ(µ + ψ) + µ(1 + β2η(0)) < (µ + δψ)[(1− χ)Γ + αη(0)B◦
1 ] + B◦

1µδ (3.26)

then there exists a parameter Rinf ∈ [0, 1) such that, if

Rinf < R1(ψ) < 1 and R̂1 > 1,

then the equilibria

E∗∗21 = (s∗1, i
∗
1(θ), j

∗
1 , v∗1) and E∗∗22 = (s∗2, i

∗
2(θ), j

∗
2 , v∗2)

exist. The values of i∗1(θ) and i∗2(θ) in E∗∗21 and E∗∗22 are given by (3.4), with i(0)
given respectively by the the two positive solutions i∗1 and i∗2 of equation (3.24); the
corresponding s∗k are determined from formula (3.18), and v∗k are given by (3.6)
with i∗ given by i∗1 or i∗2.

If (3.26) is not satisfied, then there are no such equilibria for R1(ψ) < 1.

Inequality (3.26) is nontrivial. In particular, it is satisfied for the parameters in
Figure 3. The presence of stable subthreshold coexistence equilibria is illustrated in
Figure 3, where coexistence is possible when both reproduction numbers are below
one.

In the next section we investigate the local stability of equilibria.

4. Local stability of equilibria. To investigate the local stability behavior of
equilibria, we look at the linearized right-hand side of system (2.2). This operation
is the analogue of taking the Jacobian in ordinary differential equation models. In
particular, we consider an equilibrium (S∗, i∗(θ), J∗, V ∗) of system (2.2) and we set

S = S∗ + x̄, i(θ, t) = i∗(θ) + ȳ(θ, t), J = J∗ + z̄, V = V ∗ + w̄, N = N∗ + n̄

where we denote by (x̄, ȳ(θ), z̄, w̄) the deviations from such an equilibrium, and by
n̄ the deviation for the total population size. Then we can linearize the nonlin-
ear terms and determine the eigenvalues of the linearized problem by looking for
solutions of the form

x̄ = eλtx, ȳ = eλty(θ), z̄ = eλtz, w̄ = eλtw, n̄ = eλtn.



308 MAIA MARTCHEVA, MIMMO IANNELLI, XUE-ZHI LI

We note that (2.1) implies that

n = x +
∫ ∞

0

y(θ) dθ + z + w.

We obtain the following linear eigenvalue problem:

λx = −s∗
∫ ∞

0

β1(θ)y(θ) dθ −B1i
∗x− β2s

∗z − β2j
∗x− (µ + ψ)x

+(1− χ)
∫ ∞

0

γ(θ)y(θ)dθ + αz

λy + yθ = −(γ(θ) + ρ(θ) + µ)y

y(0) = s∗
∫ ∞

0

β1(θ)y(θ) dθ + B1i
∗x + v∗δ

∫ ∞

0

β1(θ)y(θ) dθ + δB1i
∗w

λz = β2s
∗z + β2j

∗x− (µ + α)z +
∫ ∞

0

ρ(θ)y(θ)dθ

λw = ψx− v∗δ
∫ ∞

0

β1(θ)y(θ) dθ − δB1i
∗w + χ

∫ ∞

0

γ(θ)y(θ)dθ − µw

(4.1)

where i∗ above is i(0) from (3.4) in the corresponding equilibrium. We introduce
the following notation, which will be useful in this section:

B̂1(λ) =
∫ ∞

0

β1(θ)e−(λ+µ)θπ(θ)dθ Γ̂(λ) =
∫ ∞

0

γ(θ)e−(λ+µ)θπ(θ)dθ

and

φ̂(λ) =
∫ ∞

0

ρ(θ)e−(λ+µ)θπ(θ)dθ ∆̂(λ) =
∫ ∞

0

e−(λ+µ)θπ(θ)dθ.

These two quantities satisfy a relation similar to the relation between φ, Γ and ∆:

Γ̂(λ) + φ̂(λ) + (λ + µ)∆̂(λ) = 1. (4.2)

This equality can be established through integration by parts. Then, solving the
ordinary differential equation

y(θ) = y(0)e−(λ+µ)θπ(θ)

and substituting it in the remaining equations, we obtain the following linear eigen-
value system for the real variables x, y, z, and w, where y is a shorthand notation
for y(0):

λx = −s∗yB̂1(λ)−B1i
∗x− β2s

∗z − β2j
∗x− (µ + ψ)x + (1− χ)yΓ̂(λ) + αz

y = s∗yB̂1(λ) + B1i
∗x + δv∗yB̂1(λ) + δB1i

∗w
λz = β2s

∗z + β2j
∗x− (µ + α)z + yφ̂(λ)

λw = ψx− δv∗yB̂1(λ)− δB1i
∗w + χyΓ̂(λ)− µw.

(4.3)
Our aim in the following subsections is to examine the eigenvalues of this prob-

lem in correspondence with each equilibrium that has been proved to exist in the
previous sections.

4.1. Local stability of the disease-free equilibrium. Where the infection-free
equilibrium is concerned, we have i∗(θ) = 0, j∗ = 0. Since the existence of this
equilibrium is not influenced by the presence or the absence of mutation, we consider
both cases simultaneously; that is, for a general ρ. In this case, the linear eigenvalue
problem (4.3) above takes the form
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λx = −s0yB̂1(λ)− β2s
0z − (µ + ψ)x + (1− χ)yΓ̂(λ) + αz

y = s0yB̂1(λ) + δv0yB̂1(λ)
λz = β2s

0z − (µ + α)z + yφ̂(λ)
λw = ψx− δv0yB̂1(λ) + χyΓ̂(λ)− µw.

(4.4)

This system has a nonzero solution if the determinant is zero. Such a condition
soon gives the eigenvalues λ = −(µ + ψ) and λ = −µ, which are clearly negative.
Moreover the remaining eigenvalues of this problem are the roots either of the
following characteristic equation

1 = (s0 + δv0)B̂1(λ) (4.5)

or of the following one
λ + µ + α = β2s

0. (4.6)
Thus we have

Proposition 4.1. If R1(ψ) < 1 and R2(ψ) < 1, then the disease-free equilibrium
E0 is locally asymptotically stable. If R1(ψ) > 1 or R2(ψ) > 1, then the disease-free
equilibrium E0 is unstable.

Proof. We can rewrite the first characteristic equation (4.5) as

G1(λ) = 1 where G1(λ) =
(µ + δψ)B̂1(λ)

µ + ψ
. (4.7)

We first note that G1(0) = R1(ψ). Hence, G1(0) > 1 if R1(ψ) > 1. In addition,
G1(λ) is a decreasing function of λ for λ real with G1(λ) → 0 as λ →∞. Hence there
is a positive real λ∗ which solves equation (4.7), and the disease-free equilibrium
E0 is unstable. If R1(ψ) < 1, then for λ with <λ ≥ 0 we have

|G1(λ)| ≤ G1(<λ) ≤ G1(0) = R1(ψ) < 1.

Thus equation (4.7) has no solutions with nonnegative real part. The second char-
acteristic equation can be explicitly solved for λ:

λ = (µ + α)(R2(ψ)− 1).

The corresponding eigenvalue is clearly negative if and only if R2(ψ) < 1. Con-
sequently, if R1(ψ) < 1 and R2(ψ) < 1, then the eigenvalue problem (4.4) has
eigenvalues with only negative real parts, and the disease-free equilibrium is locally
asymptotically stable. If R1(ψ) > 1, the first characteristic equation (4.5) has a
positive real solution. If R2(ψ) > 1, the corresponding solution of the second char-
acteristic equation is positive. In these two cases the disease-free equilibrium is
unstable.

♦
4.2. Local stability of the vaccine-sensitive strain equilibrium E∗2 . Now we
consider the stability of the vaccine-sensitive strain equilibrium E∗2 . In this case
also, the existence of the equilibrium does not depend on the mutation parameter,
and we can treat the cases ρ = 0 and ρ 6= 0 simultaneously. We recall that in
either case the equilibrium with only the vaccine-sensitive strain present E∗2 exists
whenever R2(ψ) > 1. Next we show that it is locally stable whenever it exists and
R1(ψ) < R2(ψ); that is, when the invasion number R̂1 is less than 1.

Proposition 4.2. Let R2(ψ) > 1. Then the equilibrium E∗2 is locally asymptotically
stable if R̂1 < 1 and unstable if R̂1 > 1.
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Proof. We consider the linear eigenvalue problem (4.3) with i∗ = 0 and with s∗,
j∗, v∗ given by the coordinates of E∗2 . The system becomes

λx = −s∗yB̂1(λ)− β2s
∗z − β2j

∗x− (µ + ψ)x + (1− χ)yΓ̂(λ) + αz

y = s∗yB̂1(λ) + δv∗yB̂1(λ)
λz = β2s

∗z + β2j
∗x− (µ + α)z + yφ̂(λ)

λw = ψx− δv∗yB̂1(λ) + χyΓ̂(λ)− µw.

(4.8)

For this system to have a nonzero solution, we need the determinant to be zero.
From that condition we get that one eigenvalue is λ = −µ and all remaining eigen-
values of the problem are provided by the following two characteristic equations

(λ + β2j
∗ + µ + ψ)(λ + µ + α) = β2s

∗(λ + µ + ψ) + αβ2j
∗ (4.9)

(s∗ + δv∗)B̂1(λ) = 1. (4.10)

We consider first (4.9). We notice that we can cancel αβ2j
∗ from both sides of

this equation, thus obtaining

(λ + µ + ψ)(λ + µ + α) + β2j
∗(λ + µ) = β2s

∗(λ + µ + ψ).

Furthermore, observing that β2s
∗ = µ + α we can simplify this equation to the

following quadratic equation in λ:

λ2 + (µ + ψ + β2j
∗)λ + µβ2j

∗ = 0,

whose solutions have negative real parts or are negative numbers.
Consequently, the equation (4.9) has no solutions with <λ ≥ 0. Now we turn

our attention to equation (4.10). We rewrite it in the form

G3(λ) = 1 where G3(λ) = (s∗ + δv∗)B̂1(λ).

First, we notice that

G3(0) =
(

1
R2

+
δψ

µR2

)
B̂1(0) =

µ + δψ

µR2
B1 =

R1(ψ)
R2(ψ)

.

Second, G3(λ) is a decreasing function of λ for λ real and positive. In addition,
G3(λ) → 0 as λ →∞. Consequently, if

G3(0) =
R1(ψ)
R2(ψ)

> 1,

there exists a real positive solution of the equation, and the equilibrium E∗2 is
unstable. Third, if R1(ψ) < R2(ψ), for λ with <λ ≥ 0, we have

|G3(λ)| ≤ G3(<λ) ≤ G3(0) =
R1(ψ)
R2(ψ)

< 1,

and therefore the equation G3(λ) = 1 has no solutions with <λ ≥ 0. It follows that
the vaccine-sensitive strain equilibrium is locally stable.

♦
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4.3. Local stability of the vaccine-elusive strain equilibria E∗1k with k =
0, 1, 2 in the absence of mutation. In this subsection, we consider the topic
of stability of equilibria which have solely the vaccine-elusive strain present and
no vaccine-sensitive strain. These equilibria exist only when there is no mutation
(ρ = 0). From the previous subsection, it follows that in this case there is also
an E∗2 equilibrium which exists when R2(ψ) > 1 and is stable if R◦1(ψ) < R2(ψ).
The first step in analyzing the stability of an E∗1k equilibrium is to compose the
characteristic equation. We set j∗ = 0 in the system getting

λx = −s∗yB̂◦
1(λ)−B◦

1 i∗x− β2s
∗z − (µ + ψ)x + (1− χ)yΓ̂◦(λ) + αz

y = s∗yB̂◦
1(λ) + B◦

1 i∗x + δv∗yB̂◦
1(λ) + δB◦

1 i∗w
λz = β2s

∗z − (µ + α)z
λw = ψx− δv∗yB̂◦

1(λ)− δB◦
1 i∗w + χyΓ̂◦(λ)− µw

(4.11)

where s∗, i∗, v∗ are the coordinates of any equilibrium E∗1k (k = 0, 1, 2). For sake of
simplicity, we actually omit the subscript k, but will introduce it again whenever
necessary. For the same reason, we will call E∗ any one of the equilibria E∗1k, if it
is not necessary to specify further. One of the eigenvalues of this linear eigenvalue
problem is obtained from the third equation, using (3.11):

λ = (µ + α)
(
R2

δB◦
1 i∗ + µ− χΓ◦δB◦

1 i∗

B◦
1(δB◦

1 i∗ + µ + δψ)
− 1

)
,

which is negative if and only if

R2

R◦1
δB◦

1 i∗ + µ− χΓ◦δB◦
1 i∗

(δB◦
1 i∗ + µ + δψ)

< 1 (4.12)

or equivalently, if and only if R̂◦2(E∗) < 1 (see (3.16)); that is, if and only if strain 2
cannot invade strain 1’s equilibrium in question. Thus we have a sufficient condition
for instability:

Proposition 4.3. If the equilibrium E∗1k exists and R̂◦2(E∗1k) > 1, then it is unstable.

We use the system (4.11) to derive the explicit form the the characteristic equa-
tion

Q(λ; i∗) = 1

in the Appendix. The proof of the stability or instability of the equilibria E∗1k has
several steps. An important role in that proof is played by equality (3.13). We
consider the left-hand side and the right-hand side as functions of i. Define

f3(i) = [δB◦
1 i + µ− χΓ◦δB◦

1 i][B◦
1 i + µ + ψ]

and
g3(i) = B◦

1(δB◦
1 i + µ + δψ)[µ + (1− χ)Γ◦i].

The first important observation establishes a connection between the value of Q
at λ = 0 and the relationship between the slopes of f3 and g3 at a solution of the
equation (3.13). This result is stated in Theorem 4.1 below.

Theorem 4.1. Let i∗ be a solution of (3.13). The following are valid.
1. If f ′3(i

∗) > g′3(i
∗) then Q(0; i∗) < 1;

2. If f ′3(i
∗) = g′3(i

∗) then Q(0; i∗) = 1;
3. If f ′3(i

∗) < g′3(i
∗) then Q(0; i∗) > 1.
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We give the proof of Theorem 4.1 in the Appendix.
The second important observation is that if we consider Q as a function of λ

with λ being real, then

Q(λ; i∗) → 0 as λ →∞.

This observation indicates that if E∗ is an equilibrium for which Q(0; i∗) > 1, then
E∗ is unstable because its characteristic equation Q(λ; i∗) = 1 has a real positive
solution. The implications of this result on the stability of equilibrium E∗11 are
stated rigorously below.

Proposition 4.4. Let R◦1(ψ) < 1. Then E∗11 is unstable whenever it exists.

Proof. If R◦1(ψ) < 1, then f3(0) > g3(0). Consequently, since i∗1 is the first
intersection point of the functions f3 and g3, we have f ′3(i

∗
1) < g′3(i

∗
1), and part

three of Theorem 4.1 implies that Q(0, i∗1) > 1.
♦

Third, equilibria E∗ for which Q(0; i∗) < 1 have the potential to be stable. They
are indeed stable for some parameter values, but for others they may lose stability
and sustained oscillations may be possible. These are a result of recovery [21] or
presence of time-since-infection structure in the infectious class [32].

5. Discussion. We formulate an epidemic model to investigate the complexities
of the effect of vaccination on a multistrain disease in the presence of mutation.
The model discussed in this article includes vaccination which is applied after re-
cruitment into the population, and the vaccine protection is assumed not to wane.

Disease control measures, such as partially effective vaccines, have been associ-
ated with existence of endemic equilibria when the vaccine-dependent reproduction
number R(ψ) < 1 and ψ > 0 which, however, do not persist when R(0) < 1. Al-
though such measures do not make the disease more likely to persist, they make
the disease eradication more complicated then merely reducing R(ψ) below one.
Another drawback associated with vaccination observed in mathematical models
and medical practice is strain (serotype) replacement in multistrain diseases (see
[21] and the references therein).

In this paper we focus on the ability of vaccination to generate subthreshold
persistence of the disease and the consequences that this has when multiple strains
are present. It is known from one-strain models [18] that the vaccine imperfection
that allows some vaccinated individuals to be infected with the disease serves as
the main mechanism causing subthreshold endemic equilibria. In our case, vaccine
imperfection with respect to the vaccine-evasive strain also leads to subthreshold
endemic equilibria of this strain in the absence of mutation (ρ(θ) = 0). At the
same time, since the vaccine is assumed perfect with respect to the vaccine strain,
it should be possible to eliminate the vaccine strain if the vaccine-dependent repro-
duction number R2(ψ) is reduced below one, and the vaccine-evasive strain is not
present. In the case of no mutation, we also find a unique coexistence equilibrium
which occurs superthreshold (R◦1(ψ) > 1 and R2(ψ) > 1) or when exactly one of
the reproduction numbers is below one; that is, when R◦1(ψ) < 1 and R2(ψ) > 1
or when R◦1(ψ) > 1 and R2(ψ) < 1. We call the last two types of coexistence
equilibria weakly subthreshold coexistence equilibria.

In the case when the vaccine-evasive strain mutates (ρ(θ) 6= 0) into the vaccine
strain, we observe that the weakly subthreshold endemic equilibria are preserved
(see Figure 4). Furthermore, there are multiple coexistence equilibria, some of
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which occur when both reproduction numbers are below one: R1(ψ) < 1 and even if
R2(ψ) < 1. We call such equilibria strongly subthreshold equilibria. Thus, although
the vaccine is designed to provide 100% protection with the respect to the second
strain, the second strain will persist if R1(ψ) < 1 and even if R2(ψ) < 1 (see Figure
3). The presence of strongly subthreshold coexistence equilibria has significant
implications for disease control, because reducing both reproduction numbers below
one will not eradicate either strain or the disease. Thus, a vaccine that is specific
and perfect to the vaccine-strain and has the potential to eliminate it by reducing
its reproduction number below one if the vaccine-elusive strain is not present may
not necessarily do so if the vaccine strain is a mutant of another strain to which
the vaccine is only partially effective. In summary, the partial effectiveness of the
vaccine enables (in some cases) the backward bifurcation, which in turn enables the
vaccine-evasive strain to persist when R1(ψ) < 1, which in turn enables the vaccine
target strain to persist when it should not. Actually, we suspect that mutation
is only one of a whole range of mechanisms that generate coexistence leading to
a reduction of the vaccine’s effectiveness with respect to the second strain as a
result of the vaccine’s partial effectiveness with respect to the first strain. Many of
the well known coexistence mechanisms, such as cross-immunity, coinfection, and
super-infection, may have similar consequences.
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Figure 4. This figure shows that the number infected with
strain 1 I(t) and the number infected with strain 2 J(t) tend toward
a coexistence equilibrium, even though the vaccine-dependent re-
production number of the first strain is above one while the vaccine-
dependent reproduction number of the second strain is below one.
The parameters used for this figure are ρ = 0.1, α = 1.0, γ = 0.8,
µ = 0.1, χ = 0.0, δ = 0.1, ψ = 1.0, Λ = 5, β1 = 6.5 and β2 = 9.
The unites for Λ are (number of people)/(unit of time), δ and χ
are dimensionless, and the units for the remaining parameters are
(unit of time)−1. The corresponding reproduction numbers are
R1(ψ) = 1.1818 and R2(ψ) = 0.7438.

The main implication of this work is that through mutation (ρ(θ) 6= 0) the sub-
threshold existence of strain 1, generated by the vaccine’s partial effectiveness to
this strain, translates into subthreshold existence of strain 2 to which the vaccine
is fully effective. Another effect of vaccination that we observe in this paper is its
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ability to lead to and enhance pathogen polymorphism in multistrain diseases. In
particular, we establish that in the absence of mutation ρ(θ) = 0, nonzero vaccina-
tion levels ψ > 0 lead to coexistence of the two strains under certain conditions,
while coexistence is ruled out for that region of the parameter space when ψ = 0.
Thus, effectively, vaccination leads to coexistence. In fact, the role of vaccination as
a coexistence mechanism can be derived from the considerations of the first model
in [37].
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Appendix A. Derivation of the characteristic equation: Here we use elimination
to compose the characteristic equation. First, we express x from the first equation
in (4.11) (with z = 0):

x =
−s∗B̂◦

1(λ)y + (1− χ)Γ̂◦(λ)y
D3(λ; i∗)

(A.1)

where
D3(λ; i∗) = λ + B◦

1 i∗ + µ + ψ. (A.2)
We can write equation (A.1) in the form x = H(λ; i∗)y with H given as

H(λ; i∗) =
−s∗B̂◦

1(λ) + (1− χ)Γ̂◦(λ)
D3(λ; i∗)

.

From the last equation in (4.11), we express w in terms of x and y

w =
ψx− δv∗B̂◦

1(λ)y + χΓ̂◦(λ)y
D1(λ; i∗)

(A.3)

where
D1(λ; i∗) = λ + B◦

1δi∗ + µ.

We replace x with H(λ; i∗)y to express w in terms of y only. Thus, we obtain
w = P (λ; i∗)y where

P (λ; i∗) =
ψH(λ; i∗)− δv∗B̂◦

1(λ) + χΓ̂◦(λ)
D1(λ; i∗)

.

Substituting into the equation for y and canceling y we obtain the characteristic
equation

Q(λ; i∗) = 1
where

Q(λ; i∗) = s∗B̂◦
1(λ) + δv∗B̂◦

1(λ) + B◦
1 i∗H(λ; i∗) + δB◦

1 i∗P (λ; i∗). (A.4)

We note that, in the expression for Q(λ; i∗), i∗ is a solution of equation (3.12), s∗

is given by (3.11) and v∗ by (3.6).

Proof of Theorem 4.1. We will prove the first point. The remaining items are
established in identical way. We begin by making some useful observations.

Q(0; i∗) = s∗B◦
1 + δv∗B◦

1 + B◦
1 i∗H(0; i∗) + δB◦

1 i∗P (0; i∗). (A.5)
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From the second equation in system (3.8) we have that

s∗B◦
1 + δv∗B◦

1 = 1.

It remains to be shown that f ′3(i
∗) > g′3(i

∗) implies that

H(0; i∗) + δP (0; i∗) < 0.

Substituting the expression for P (0; i∗) we have

H(0; i∗) + δP (0; i∗) =
δB◦

1 i∗ + µ + δψ

δB◦
1 i∗ + µ

H(0; i∗) +
−δ2v∗B◦

1 + δχΓ◦

δB◦
1 i∗ + µ

.

Multiplying this expression by δB◦
1 i∗ + µ, a positive term, we obtain an expression

of the same sign. Replacing H(0; i∗) we have

(δB◦
1 i∗ + µ + δψ)

−s∗B◦
1 + (1− χ)Γ◦

B◦
1 i∗ + µ + ψ

− δ2v∗B◦
1 + δχΓ◦.

Dividing through in the fraction and replacing s∗ from (3.11) as well as v∗ from
(3.6) we get

− (1− χΓ◦)B◦
1 i∗ + µ

B◦
1 i∗ + µ + ψ

+
(δB◦

1 i∗ + µ + δψ)(1− χ)Γ◦

B◦
1 i∗ + µ + ψ

− δ2B◦
1

ψs∗ + χΓ◦i∗

δB◦
1 i∗ + µ

+ δχΓ◦.

(A.6)
Inequality f ′3(i

∗) > g′3(i
∗) is in fact equivalent to the following inequality

(1− χ)Γ◦(δB◦
1 i∗ + µ + δψ)− [(1− χΓ◦)δB◦

1 i∗ + µ] <

δ(1− χΓ◦)(B◦
1 i∗ + µ + ψ)− δB◦

1(µ + (1− χ)Γ◦i∗).

The left-hand side of this inequality is exactly the numerator of the first two frac-
tions in expression (A.6). Consequently, it can be replaced with the right-hand side
of the inequality above. In addition, dividing through and replacing the second
fraction with s∗ given by (3.10) the expression (A.6) becomes smaller than

< (1− χΓ◦)δ − δB◦
1s∗

(
1 +

δψ

δB◦
1 i∗ + µ

)
− δ2B◦

1

χΓ◦i∗

δB◦
1 i∗ + µ

+ δχΓ◦.

Collecting the first, third and fourth term above, and replacing s∗ with the corre-
sponding expression from (3.11) in the second term we get

δ

(
1− δB◦

1χΓ◦i∗

δB◦
1 i∗ + µ

)
− δ

(1− χΓ◦)B◦
1 i∗ + µ

δB◦
1 i∗ + µ

= 0.

This completes the proof.
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