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Abstract. This paper considers the coevolution of phenotypes in a commu-
nity comprising the populations of predators and prey. The evolutionary dy-
namics is constructed from a stochastic process of mutation and selection. We
investigate the ecological and evolutionary conditions that allow for continu-
ously stable strategy and evolutionary branching. It is shown that branching
in the prey can induce secondary branching in the predators. Furthermore,
it is shown that the evolutionary dynamics admits a stable limit cycle. The
evolutionary cycle is a likely outcome of the process, which requires higher
evolutionary speed of prey than of predators. It is also found that different
evolutionary rates and conversion efficiencies can influence the lengths of evo-
lutionary cycles.

1. Introduction. Understanding the origin of new species remains one of the core
problems in evolutionary biology. Evolution takes place in an ecological setting
that typically involves interactions with other organisms. Prey-predator interac-
tions are ubiquitous in nature [3]. Sometimes the ecological interactions between
predator and prey species can be strong enough for the predator to be a major
component of the environment in which the prey is evolving, and vice versa. Such
interactions have therefore motivated a variety of theoretical models of phenotypic
coevolution in prey-predator communities (see, for example, [1]). Of some interest
has been the question of whether the phenotypes of predator and prey evolve to
an asymptotic equilibrium state, such as an evolutionary stable strategy [21], when
the system evolves to a steady state on an ecological timescale. An alternative
could be that their interactions prevent the attainment of an equilibrium point and
that there is a continuous evolutionary change of their phenotypes. Following Van
Valen’s Red Queen hypothesis [29], the latter behavior has become known as the
Red Queen dynamics. For example, natural selection by the prey on the predator
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favors predator phenotypes best able to consume the prey, whereas selection by
the predator on the prey favors prey phenotypes least likely to be killed, which
may lead to a cyclic type of “arms race” (see Dawkins and Krebs [7]). Bakker [2]
documented changes in mammalian herbivores and carnivores during the Paleocene
to the Mid Eocene that could be of the kind suggested by Dawkins and Krebs [7].
Those taxa characteristics of open habitats, where pursuit and flight are critical
features of predation, show similar speed-enhancing changes in limb morphology.
Dieckmann et al. [8] investigated the coevolution of phenotypes in a community
comprising a population of predator and prey. They constructed an evolutionary
dynamics from a stochastic process of mutation and selection and concluded that
the evolutionary system eventually attains one of the three different evolutionary
states: (i) the predator goes extinct; (ii) coevolution leads to constant phenotypes
in predator and prey and (iii) the phenotypes in both species undergo coupled and
sustained oscillations on a limit cycle corresponding to the Red Queen dynam-
ics. The ecological model they considered was the Lotka-Volterra predator-prey
model. However, they did not study the evolutionary branching which occurs when
frequency-dependent selection splits a phenotypically monomorphic population into
two distinct phenotype clusters and did not consider the saturating effect in the
predator-prey interactions. In addition, the stability of evolutionary cycle was not
explicitly analyzed. However, the stability of evolutionary cycle is important in
determining the evolutionary states to which the prey and predator evolve.

The purpose of this paper is to investigate the ecological and evolutionary con-
ditions that allow for continuously stable strategy and evolutionary branching. We
show that the branching in the prey can induce the secondary branching in the
predator. Secondly, we show that the evolutionary dynamics admits a stable limit
cycle. The population model we consider is the well known Rosenzweig-MacArthur
prey-predator model with the functional response of Holling type II. It has most
often been used in the past few decades to predict prey and predator abundances
at ecological timescale in the absence of mutations. When rare phenotypic mutant
populations appear in the resident population, we consider their effects and analyze
an evolutionary dynamics. Our approach is based on the theory of adaptive dynam-
ics (see Metz et al. [22], Dieckmann and Law [9]). In this approach, evolutionary
dynamics is studied by using the concept of invasion fitness [22].

The organization of this paper is as follows. In the next section, we consider
a single phenotypic trait in each species and model an evolutionary dynamics. In
section 3, we investigate the properties of the evolutionary singular points and
evolutionary branching. In section 4, the Hopf bifurcation is investigated to show
that evolutionary cycle is a likely outcome of the process. In section 5, some likely
evolutionary states are simulated. A brief discussion is given in section 6.

2. The evolutionary model. The objective of this section is to construct an
evolutionary model. The population model we consider is the well known prey-
predator model with the functional response of Holling type II, which considers
the saturating effect in the prey-predator interactions. The outcomes of prey-
predator interactions often depend on traits which influence or indicate predation
ability, such as body size, weight, armament, the running velocity, skin color, or
costly signals of strength (see Cohen et al. [4], Simmons and Scheepers [26]). For
example, in the case of rabbits and foxes one might imagine that the running
velocity for rabbits and foxes might be the most important trait. An increase in
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the running velocity for rabbits is then an evolutionary advantage to them. In
some predator-prey interactions one might imagine that skin color might be the
most important trait, but that the color of a prey relative to the environment (not
to the predator) might be the important factor. Body size is also an important
trait in determining interactions between prey and predator. For simplicity, we
focus on a single phenotypic trait in each species and think of these traits as body
size, x1 and x2, of prey and predator respectively. We consider two important
interaction parameters: the predation efficiency α and the carrying capacity K,
which depend on these phenotypic traits. Assume that the interaction parameter
describing predation efficiency depends on two quantitative traits, one in the prey
and the other in the predator. We can specify the effect of the encounter on
the birth and death rates of the individuals concerned. In qualitative terms the
encounter will most likely lead to an increased risk of mortality in the prey; the
predator on the other hand most likely experiences a reduced rate of mortality or,
in the longer term, an increased rate of reproduction, or both. The magnitude
of the effect on the vital rates depends on the phenotypes of the individuals; any
difference in vital rates between co-occurring conspecific individuals with different
phenotypes causes natural selection. For instance, a large prey individual is more
likely than a small one to defend itself successfully from a predator of intermediate
size and, as a result, to gain a selective advantage through a lower risk of death
in the encounter. Therefore, the stronger prey-predator interactions are, the more
similar prey and predator traits are. As an example, the predation efficiency of a
predator with phenotypic trait x2 on prey individuals with phenotypic trait x1 is
given by

α(x1 − x2) = α0 exp
(−(x1 − x2)2

2σ2
α

)
, (1)

which has been previously used in the study of character displacement [27]. It
is symmetric about the origin. The asymmetrical predation efficiency α(x1 − x2)
which has been previously used in the study of character displacement is described
as

α(x1 − x2) = exp
(

σ2
αβ2

2

)
exp

(−(x1 − x2 + σ2
αβ)2

2σ2
α

)
,

where β 6= 0 [11]. One can find alternative functions α in [8, 11]. Further, we assume
that the resource availability for the prey varies with the phenotypic trait x1, such
that the resource distribution function K(x1) is of Gaussian form N(x0, σ

2
K) with

a maximum at x0 [10], namely,

K(x1) = K0 exp
(−(x1 − x0)2

2σ2
K

)
. (2)

For simplicity, we assume that other parameters are not influenced by the quanti-
tative traits x1 and x2. As a consequence, the ecological dynamics of monomorphic
resident prey and predator populations with traits x1 and x2 is given by

dN1(x1, t)
dt

= rN1(x1, t)
(

1− N1(x1, t)
K(x1)

)
− α(x1 − x2)N1(x1, t)N2(x2, t)

1 + hα(x1 − x2)N1(x1, t)
,

dN2(x2, t)
dt

= N2(x2, t)
(

θα(x1 − x2)N1(x1, t)
1 + hα(x1 − x2)N1(x1, t)

− d

)
,

(3)

where N1(x1, t) is the number of the resident phenotypic prey population at time
t, N2(x2, t) is the number of the resident phenotypic predator population at time
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t, α(x1 − x2) and K(x1) are described in (1) and (2), r is the intrinsic growth rate
of the prey, h is the predator handling time, θ is the conversion efficiency and d is
the death rate of the predator.

To have a meaningful problem, we assume that θ > hd. Otherwise, the predator
population can not grow even in the presence of an infinitely abundant prey popu-
lation. When θ > hd, it follows from [5, 23] that there is a globally stable ecological
equilibrium (N∗

1 (x1, x2), N∗
2 (x1, x2)) in (3), where

N∗
1 (x1, x2) =

d

(θ − hd)α(x1 − x2)
,

N∗
2 (x1, x2) =

rθ

(θ − hd)K(x1)α(x1 − x2)
(K(x1)−N∗

1 (x1, x2))
(4)

if
rhK(x1)α(x1 − x2)− r

2hrα(x1 − x2)
≤ d

α(x1 − x2)(θ − hd)
< K(x1). (5)

Note that the strictly positive equilibrium is relevant to the initial resident pheno-
typic trait values (x1, x2).

When rare mutant populations are present in the resident populations, we as-
sume that mutations are sufficiently rare and that there is a separation of ecological
and evolutionary timescales, since the ecological dynamics occurs faster than the
evolutionary dynamics. Under the assumption (5), we suppose that mutants en-
counter monomorphic resident populations at their ecological equilibrium (namely,
the strictly positive equilibrium). Further, we assume that mutants whose inva-
sion fitness is larger than zero can not only invade (with some probability) but
also replace the former resident and thus become the new resident. Under these as-
sumptions, it is possible to study the evolutionary dynamics by analyzing a function
f(y, x) describing the invasion fitness of a mutant y in a resident population x. Evo-
lutionary dynamics then follows selection gradients determined by the derivatives
of the invasion fitness function f(y, x). As a consequence, the ecological dynamics
of rare phenotypic mutant prey y1 in the resident population is given by

dN1(y1, t)
dt

= rN1(y1, t)
(

1− N∗
1 (x1, x2)
K(y1)

)
− α(y1 − x2)N1(y1, t)N∗

2 (x1, x2)
1 + hα(y1 − x2)N∗

1 (x1, x2)
,

where (N∗
1 (x1, x2), N∗

2 (x1, x2)) is the strictly positive equilibrium described in (4),
and the functions α and K are given by (1) and (2) respectively. Therefore, the
invasion fitness for the prey becomes

f1(y1, x1, x2) = r

(
1− N∗

1 (x1, x2)
K(y1)

)
− α(y1 − x2)N∗

2 (x1, x2)
1 + hα(y1 − x2)N∗

1 (x1, x2)
. (6)

Similarly, the ecological dynamics of rare phenotypic mutant predator y2 in the
resident population is given by

dN2(y2, t)
dt

= N2(y2, t)
(

θα(x1 − y2)N∗
1 (x1, x2)

1 + hα(x1 − y2)N∗
1 (x1, x2)

− d

)
.

Then the invasion fitness for the predator becomes

f2(y2, x1, x2) =
θα(x1 − y2)N∗

1 (x1, x2)
1 + hα(x1 − y2)N∗

1 (x1, x2)
− d. (7)

The fate of these mutants is determined by the invasion fitness function f1(y1, x1, x2)
and f2(y2, x1, x2). The quantities that determine the direction of gradual evolu-
tionary change are the selection gradients of f1(y1, x1, x2) and f2(y2, x1, x2) with
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respect to mutant trait values at the resident trait values. By direct calculations,
we obtain

g1(x1, x2) =
∂f1(y1, x1, x2)

∂y1

∣∣∣∣
y1=x1

=
rN∗

1 (x1, x2)K ′(x1)
K2(x1)

− α′(x1 − x2)N∗
2 (x1, x2)

(1 + hα(x1 − x2)N∗
1 (x1, x2))2

,

g2(x1, x2) =
∂f2(y2, x1, x2)

∂y2

∣∣∣∣
y2=x2

= − θα′(x1 − x2)N∗
1 (x1, x2)

(1 + hα(x1 − x2)N∗
1 (x1, x2))2

,

(8)

where

K ′(x1) =
−(x1 − x0)

σ2
K

K(x1), α′(x1 − x2) =
−(x1 − x2)

σ2
α

α(x1 − x2),

and the functions α(x1−x2) and K(x1) are given by (1) and (2), respectively. More
precisely, by Dieckmann and Law [9], if mutations are random and sufficiently small,
the evolutionary dynamics of the trait vector (x1, x2)> is given by

dx1

dt
= m1(x1, x2)g1(x1, x2),

dx2

dt
= m2(x1, x2)g2(x1, x2),

(9)

where g1(x1, x2) and g2(x1, x2) are the selection gradients described in (8), m1(x1, x2)
and m2(x1, x2) are the evolutionary rates of the prey and predator describing how
the mutational process influences the speed of evolution; that is,

m1(x1, x2) =
1
2
µ1σ

2
1N∗

1 (x1, x2),

m2(x1, x2) =
1
2
µ2σ

2
2N∗

2 (x1, x2),
(10)

where µ1 is the probability that the birth event in the prey is a mutant, µ2 is the
probability that the birth event in the predator is a mutant, σ2

1 and σ2
2 are the

variance of the phenotypic effect of prey and predator mutation respectively.

3. The properties of the singular points. The singular points of the evolution-
ary dynamics (9) are those points (x∗1, x

∗
2) in trait space for which both selection

gradients vanish; that is,

g1(x∗1, x
∗
2) = 0,

g2(x∗1, x
∗
2) = 0.

(11)

By direct calculations, we obtain a unique singular point (x∗1, x
∗
2) = (x0, x0). We

see that the singular point occurs at the maximum of the resource distribution.
Whether the point (x0, x0) is an evolutionary attractor or not can be seen from the
Jacobian matrix of the evolutionary dynamics (9) at the point (see Marrow et al.
[24], Leimar [20]).

The Jacobian matrix J1 of the evolutionary dynamics (9) at the point (x0, x0)
is given by
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J1 =


 m1(x1, x2)

∂g1(x1,x2)
∂x1

m1(x1, x2)
∂g1(x1,x2)

∂x2

m2(x1, x2)
∂g2(x1,x2)

∂x1
m2(x1, x2)

∂g2(x1,x2)
∂x2




x1=x2=x0

=




m1(x0, x0)
(
− rN∗

1 (x0,x0)

K0σ2
K

+ α0N∗
2 (x0,x0)

σ2
α(1+hα0N∗

1 (x0,x0))2

)
A1

m2(x0, x0)
(

θα0N∗
1 (x0,x0)

σ2
α(1+hα0N∗

1 (x0,x0))2

)
A2


 ,

where

A1 = m1(x0, x0)
(
− α0N

∗
2 (x0, x0)

σ2
α(1 + hα0N∗

1 (x0, x0))2

)
,

A2 = m2(x0, x0)
(
− θα0N

∗
1 (x0, x0)

σ2
α(1 + hα0N∗

1 (x0, x0))2

)
,

N∗
1 (x0, x0) =

d

α0(θ − hd)
, N∗

2 (x0, x0) =
rθ

K0α0(θ − hd)
(K0 −N∗

1 (x0, x0)),

m1(x0, x0) =
1
2
µ1σ

2
1N∗

1 (x0, x0), m2(x0, x0) =
1
2
µ2σ

2
2N∗

2 (x0, x0).

(12)
If we denote m1(x0, x0) by m1 and m2(x0, x0) by m2, we obtain

J1 =




rm1
K0α0

(
K0α0(θ−hd)−d

θσ2
α

− d
σ2

K(θ−hd)

)
− rm1(K0α0(θ−hd)−d)

θK0α0σ2
α

m2d(θ−hd)
θσ2

α
−m2d(θ−hd)

θσ2
α


 .

The determinant of the Jacobian matrix J1 is given by

det(J1) =
d2rm1m2

θK0α0σ2
ασ2

K

. (13)

Obviously, the determinant of the Jacobian matrix J1 is always positive. The trace
of the Jacobian matrix J1 is

tr(J1) =
rm1

K0α0

(
K0α0(θ − hd)− d

θσ2
α

− d

σ2
K(θ − hd)

)
− m2d(θ − hd)

θσ2
α

. (14)

It can be seen that the trace of the Jacobian matrix J1 may be positive or negative.

Lemma 3.1. The singular point (x0, x0) of the evolutionary dynamics (9) is an
evolutionary attractor if one of the following conditions is satisfied:
(1) θ > hd and dm2 ≥ rm1,
(2) θ > hd and K0α0σ

2
K(θ − hd)2 ≤ dθσ2

α,
(3) θ > hd and K0α0σ

2
K(θ − hd)2 < d(θσ2

α + (θ − hd)σ2
K).

Proof. If one of these conditions holds, it follows from (14) that the trace of the
Jacobian matrix J1 is negative. Note that the determinant of the Jacobian matrix
J1 is always positive. Therefore, both eigenvalues of the Jacobian matrix J1 have
negative real parts, and therefore, the point (x0, x0) is an evolutionary attractor.

Note that in case (1), the stability of the singular point depends on the muta-
tional constants m1 and m2. That is, for given selection gradients g1(x1, x2) and
g2(x1, x2), a singular point may be an attractor for some values of m1 and m2 but
not for others [24].
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Just as in one-dimensional adaptive dynamics, a singular point (x∗1, x
∗
2) that

is an attractor for evolutionary dynamics may not represent the endpoint of the
evolutionary process if one or both species find themselves at a fitness minimum
at the singular point (x∗1, x

∗
2) (see Geritz et al. [14]). The conditions for fitness

minima at a singular point (x∗1, x
∗
2) are those at which the invasion fitness functions

have minima with respect to the mutational trait values at this singular point; that
is,

∂2f1(y1, x1, x2)
∂y2

1

∣∣∣∣ x2=x∗2 ,

y1=x1=x∗1

> 0,

∂2f2(y2, x1, x2)
∂y2

2

∣∣∣∣ x1=x∗1 ,

y2=x2=x∗2

> 0,

(15)

since

g1(x∗1, x
∗
2) =

∂f1(y1, x1, x2)
∂y1

∣∣∣∣ x2=x∗2 ,

y1=x1=x∗1

= 0,

g2(x∗1, x
∗
2) =

∂f2(y2, x1, x2)
∂y2

∣∣∣∣ x1=x∗1 ,

y2=x2=x∗2

= 0.

In our model, (x∗1, x
∗
2) = (x0, x0). By direct calculations, we obtain

∂2f1(y1, x1, x2)
∂y2

1

∣∣∣∣
x2=x0,

y1=x1=x0

=
r

K0α0

(
K0α0(θ − hd)− d

θσ2
α

− d

σ2
K(θ − hd)

)
,

∂2f2(y2, x1, x2)
∂y2

2

∣∣∣∣
x1=x0,

y2=x2=x0

= −d(θ − hd)
θσ2

α

.

(16)

Note that θ > hd. Thus

∂2f2(y2, x1, x2)
∂y2

2

∣∣∣∣
x1=x0,

y2=x2=x0

= −d(θ − hd)
θσ2

α

< 0.

In one-dimensional adaptive dynamics, a fitness minimum at an attracting singu-
lar point is sufficient for evolutionary branching [14]. However, in higher-dimensional
adaptive dynamics, this need not be true anymore. For example, in adaptive dy-
namics of two correlated traits in a single species, convergent stable fitness minima
alone need not generate evolutionary branching. However, for the present model, if
one (or both) of the species are at a fitness minimum at an attracting singular point,
then evolutionary branching can occur in one (or both) species. This is because, in
our evolutionary model, the two traits belong to the two different species and they
are uncorrelated. A timescale separation argument then shows that, at the singular
point, each resident phenotypic trait can be considered as a parameter for the evo-
lutionary dynamics of the other species, which in effect reduces the two-dimensional
problem at the singular point to the one-dimensional case, where a fitness minimum
at an attracting singular point is sufficient for evolutionary branching.

Definition 3.1. A strategy is a continuously stable strategy (CSS) if it is an attrac-
tor of directional evolution; moreover, once it is established, the population cannot
be invaded by any nearby strategy.
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Theorem 3.1. Assume that θ > hd. Then the singular point (x0, x0) of the evolu-
tionary dynamics (9) is a continuously stable strategy if one of the following con-
ditions holds:

(1) K0α0σ
2
K(θ − hd)2 < d(θσ2

α + (θ − hd)σ2
K);

(2) K0α0σ
2
K(θ − hd)2 ≤ dθσ2

α.

Proof. Since θ > hd, if (1) or (2) holds, it follows from Lemma 3.1 that the singular
point (x0, x0) is an evolutionary attractor. Further, by (16) we have

∂2f1(y1, x1, x2)
∂y2

1

∣∣∣∣
x2=x0,

y1=x1=x0

=
r

K0α0

(
(K0α0(θ − hd)− d)

θσ2
α

− d

σ2
K(θ − hd)

)
< 0.

Note that
∂2f2(y2, x1, x2)

∂y2
2

∣∣∣∣
x1=x0,

y2=x2=x0

= −d(θ − hd)
θσ2

α

< 0.

The point (x0, x0) is a fitness maximum for both prey and predator. Therefore, the
evolutionary attractor (x0, x0) is stable against invasion of neighboring phenotypes;
that is, the singular point (x0, x0) is a continuously stable strategy (CSS) [12].

Lemma 3.2. If θ > hd, then the singular point (x0, x0) of the evolutionary dynamics
(9) is not an evolutionary branching point for the predator.

Proof. If θ > hd, by (16) we have

∂2f2(y2, x1, x2)
∂y2

2

∣∣∣∣
x1=x0,

y2=x2=x0

= −d(θ − hd)
θσ2

α

< 0.

The predator can not converge to a fitness minimum. Therefore, the singular point
(x0, x0) is not an evolutionary branching point for the predator.

Theorem 3.2. Assume that θ > hd. The singular point (x0, x0) of the evolutionary
dynamics (9) is an evolutionary branching point for the prey if we have the following
conditions:

(1) rm1 ≤ dm2 and
(2) σ2

K(θ − hd)(K0α0(θ − hd)− d) > dθσ2
α.

Proof. If (1) holds, from Lemma 3.1, we see that the singular point (x0, x0) is an
evolutionary attractor. If (2) holds, by (16) we obtain

∂2f1(y1, x1, x2)
∂y2

1

∣∣∣∣
x2=x0,

y1=x1=x0

=
r

K0α0

(
K0α0(θ − hd)− d

θσ2
α

− d

σ2
K(θ − hd)

)
> 0.

The point (x0, x0) is a fitness minimum for the prey. Therefore, evolutionary
branching can occur for the prey, and the singular point (x0, x0) is an evolutionary
branching point for the prey.

Note that these conditions are easily satisfied. For example, set θ > hd and
m1 ≤ m2 and r = d = 1. Then condition (1) is satisfied. If K0α0(θ − hd) > d and
σα is small enough, then condition (2) is satisfied [11].

Once the prey has branched, selection pressures for the predator change. Because
of the symmetry in the system, the two prey branches are at equal distance δ on
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the opposite sides of the singular predator trait x0. Let N1(t) denote the prey
population size at time t

α(δ) = α0 exp
(
− δ2

2σ2
α

)
.

Then we have

Theorem 3.3. Assume that θ > hd. Then the evolutionary branching in the prey
can induce the secondary branching in the predator population if we have the fol-
lowing:

(1) rm1 ≤ dm2 and σ2
K(θ − hd)(K0α0(θ − hd)− d) > dθσ2

α and
(2) hα(δ)N1(t) < 2 and δ2

σ2
α

> 2+hα(δ)N1(t)
2−hα(δ)N1(t)

.

Proof. If (1) holds, by Theorem 3.2, we see that the prey will split into two different
and divergent phenotype clusters. When the prey populations have branched, se-
lection pressures for the predator change. Because of the symmetry in the system,
at time t, the growth rate of a rare mutant predator with trait y2 is given by

f2(y2, δ, x0, t) = −d +
θα(x0 + δ − y2)

N1(t)
2

1 + hα(x0 + δ − y2)
N1(t)

2

+
θα(x0 − δ − y2)

N1(t)
2

1 + hα(x0 − δ − y2)
N1(t)

2

,

(17)
where the function α is given by (1). Taking the second derivative with respect to
mutant trait value y2 at the resident trait value x0 reveals whether the predator is
located at a fitness minimum after the prey populations have branched. Note that
α(δ) is symmetric about the origin, we obtain

∂2f2(y2, δ, x0, t)
∂y2

2

∣∣∣∣
y2=x0

=
θN1(t)α(δ)(−1− hα(δ)N1(t)

2 + δ2

σ2
α
(1− hα(δ)N1(t)

2 ))

σ2
α(1 + hα(δ)N1(t)

2 )3
.

(18)
If (2) holds, that is, the two prey branches have moved far away enough from x0,
by (18) we have

∂2f2(y2, δ, x0, t)
∂y2

2

∣∣∣∣
y2=x0

=
θN1(t)α(δ)(−1− hα(δ)N1(t)

2 + δ2

σ2
α
(1− hα(δ)N1(t)

2 ))

σ2
α(1 + hα(δ)N1(t)

2 )3
> 0.

In this case, the singular point (x0, x0) is a fitness minimum for the predator.
Once this happens, the evolutionary branching in the prey can induce secondary
branching in the predator. The outcome of the evolutionary process is two prey
species, and each prey species is exploited by a special predator.

Note that these conditions are easily satisfied. For example, if δ is large enough,
that is, the two prey branches have moved far away enough from x0, and the other
conditions are the same as those in Theorem 3.2, then conditions (1) and (2) are
satisfied.

Theorem 3.4. Assume that θ > hd. Then the singular point (x0, x0) of the evolu-
tionary dynamics (9) is unstable if

K0α0σ
2
K(θ − hd)2(rm1 − dm2) > drm1(σ2

K(θ − hd) + θσ2
α). (19)

Proof. (19) implies that the trace of the Jacobian matrix J1 is positive. Note that
the determinant of the Jacobian matrix J1 is always positive. Thus, the Jacobian
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matrix J1 has eigenvalues with positive real parts, and the singular point (x0, x0)
is unstable.

From Theorem 3.4, we can see that there are certain classes of fixed points
which are definitely evolutionary repellers, but others could be either repellers or
attractors. For example, the ω-limit set is a limit cycle [31]. This can be seen in
the next section.

4. Hopf bifurcation. The objective of this section is to analyze the Hopf bi-
furcations and bifurcation directions of the adaptive dynamics. From Lemma 3.1
and Theorem 3.4, we see that the stability of the singular point depends on the
mutational constants. Set

m∗
1 = m1(x0, x0) =

1
2
µ1σ

2
1N∗

1 (x0, x0),

m∗
2 = m2(x0, x0) =

1
2
µ2σ

2
2N∗

2 (x0, x0),
(20)

where N∗
1 (x0, x0) and N∗

2 (x0, x0) are described in (12). We obtain

Theorem 4.1. Assume that θ > hd. Then
(1) The singular point (x0, x0) of the evolutionary dynamics (9) is an evolutionary
attractor if

m∗
2 > m∗

1

[
N∗

2 (x0, x0)
θN∗

1 (x0, x0)
− rσ2

α(1 + hα0N
∗
1 (x0, x0))2

θK0α0σ2
K

]
. (21)

(2) The singular point (x0, x0) of the evolutionary dynamics (9) is unstable if

m∗
2 < m∗

1

[
N∗

2 (x0, x0)
θN∗

1 (x0, x0)
− rσ2

α(1 + hα0N
∗
1 (x0, x0))2

θK0α0σ2
K

]
. (22)

Proof. Set

A =
N∗

1 (x1, x2)
N∗

1 (x0, x0)
, B =

N∗
2 (x1, x2)

N∗
2 (x0, x0)

.

Then, system (9) becomes

dx1

dt
= Am∗

1g1(x1, x2),

dx2

dt
= Bm∗

2g2(x1, x2),
(23)

where g1(x1, x2) and g2(x1, x2) are described in (8).
Set

dt = (σ2
α(1 + hα(x1 − x2)N∗

1 (x1, x2))2)dτ. (24)

If dτ > 0, then dt > 0, this is because σ2
α(1 + hα(x1 − x2)N∗

1 (x1, x2))2 > 0. Thus,
system (23) is equivalent to

dx1

dτ
= Am∗

1 (N∗
2 (x1, x2)(x1 − x2)α(x1 − x2)− ψ(x1, x2)) ,

dx2

dτ
= Bm∗

2θN
∗
1 (x1, x2)(x1 − x2)α(x1 − x2),

(25)

where

ψ(x1, x2) =
rσ2

αN∗
1 (x1, x2)(x1 − x0)(1 + hα(x1 − x2)N∗

1 (x1, x2))2

σ2
KK(x1)

.
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The Jacobian matrix J2 of system (25) at (x0, x0) is given by

J2 =


 m∗

1α0N
∗
2 (x0, x0)− m∗

1rσ2
αN∗

1 (x0,x0)(1+hα0N∗
1 (x0,x0))

2

K0σ2
K

−m∗
1α0N

∗
2 (x0, x0)

m∗
2θα0N

∗
1 (x0, x0) −m∗

2θα0N
∗
1 (x0, x0)


 .

The determinant of J2 is

det(J2) =
m∗

1m
∗
2θα0rσ

2
α(N∗

1 (x0, x0))2(1 + hα0N
∗
1 (x0, x0))2

K0σ2
K

. (26)

Obviously, the determinant of the Jacobian matrix J2 is always positive. The trace
of J2 is given by

tr(J2) = m∗
1α0N

∗
2 (x0, x0)−m∗

2θα0N
∗
1 (x0, x0)

− m∗
1rσ

2
αN∗

1 (x0, x0)(1 + hα0N
∗
1 (x0, x0))2

K0σ2
K

.
(27)

It follows that (21) implies that tr(J2) < 0, which means that the singular point
(x0, x0) is an evolutionary attractor, and (22) implies that tr(J2) > 0, which means
that the point (x0, x0) is unstable.

Let us now verify the existence of a Hopf bifurcation in (9) and determine its
direction [32]. Set

h0 = m∗
1

[
N∗

2 (x0, x0)
θN∗

1 (x0, x0)
− rσ2

α(1 + hα0N
∗
1 (x0, x0))2

θK0α0σ2
K

]
.

Theorem 4.2. Assume that θ > hd.
(1) If K0α0(θ − hd) > d and (θ − hd)(K0α0(θ − hd)− d) > d(θ − 2hd), then there
is a family of stable limit cycles in (9) if m2 is less than and near h0; that is, a
supercritical Hopf bifurcation occurs when m2 passes through h0 from right to left.
(2) If K0α0(θ − hd) > d and (θ − hd)(K0α0(θ − hd)− d) < d(θ − 2hd), then there
is a family of unstable limit cycles in (9) if m2 is greater than and near h0; that is,
a subcritical Hopf bifurcation occurs when m2 passes through h0 from right to left.

Proof. As in the proof of Theorem 4.1, system (9) is equivalent to system (25). If
m∗

2 = h0, then tr(J2) = 0. Set

ω =
√

det(J2) =
σαN∗

1 (x0, x0)(1 + hα0N
∗
1 (x0, x0))

σK

√
m∗

2m
∗
1rθα0

K0
.

Then the eigenvalues of J2 with m∗
2 = h0 are λ1 = ωi and λ2 = −ωi.

By performing coordinate transformations by x = x1 − x0, y = x2 − x0, system
(25) becomes

dx

dt
= Am∗

1

(
N∗

2 (x− y)α(x− y)− rσ2
αN∗

1 x(1 + hα(x− y)N∗
1 )2

σ2
KK(x + x0)

)
,

dy

dt
= Bm∗

2θN
∗
1 (x− y)α(x− y),

(28)

where τ is represented by t and

N∗
1 = N∗

1 (x+x0, y+x0), N∗
2 = N∗

2 (x+x0, y+x0), A =
N∗

1

N∗
1 (x0, x0)

, B =
N∗

2

N∗
2 (x0, x0)

.
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Let

α(x− y) = α0 exp
(−(x− y)2

2σ2
α

)
,

K(x + x0) = K0 exp
(
− x2

2σ2
K

)
.

(29)

Then, system (28) becomes
dx

dt
= (b− c)x− by + f0(x, y),

dy

dt
= ax− ay + g0(x, y),

(30)

where

f0(x, y) = b (x− y) exp
(−(x− y)2

2σ2
α

)
− px exp

(
− x2

2σ2
K

)(
1 + q exp

(−(x− y)2

2σ2
α

))2

+ by + cx− bx,

g0(x, y) = a (x− y) exp
(−(x− y)2

2σ2
α

)
+ ay − ax,

(31)
and

b = m∗
1α0N

∗
2 (x0, x0), c =

m∗
1rσ

2
αN∗

1 (x0, x0)(1 + hα0N
∗
1 (x0, x0))2

K0σ2
K

,

a = m∗
2θα0N

∗
1 (x0, x0), p =

m∗
1rσ

2
αN∗

1

K0σ2
K

, q = hα0N
∗
1 .

Set

u = x and v = −b− c

ω
x +

b

ω
y. (32)

Using tr(J2) = b− c− a = 0 and ω2 = det(J2) = ac, we obtain
du

dt
= −ωv + f(u, v),

dv

dt
= ωu + g(u, v),

(33)

where
f(u, v) = cuϕ(u, v)− ωvϕ(u, v)− 2pquϕ(u, v)φ(u)− pq2uφ(u)(ϕ(u, v))2 + ωv,

g(u, v) =
1
ω

(−bcuϕ(u, v) + bωvϕ(u, v) + 2bpquφ(u)ϕ(u, v) + bpq2uφ(u)(ϕ(u, v))2

+ c2uϕ(u, v)− cωvϕ(u, v)− cpuφ(u)− 2cpquϕ(u, v)φ(u) + bpuφ(u)

− cpq2u(ϕ(u, v))2φ(u) + acuϕ(u, v)− aωvϕ(u, v)− acu),
(34)

and

ϕ(u, v) = exp
(
− (cu− ωv)2

2b2σ2
α

)
, φ(u) = exp

(
− u2

2σ2
K

)
.

Let
µ =

1
16

[fuuu + fuvv + guuv + gvvv]

+
1

16ω
[fuv(fuu + fvv)− guv(guu + gvv)− fuuguu + fvvgvv] ,

(35)
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which is evaluated at the origin. By some tedious calculations, we obtain

µ = − 3c

16bσ2
ασ2

K

[
σ2

Kp(1− q2)− bσ2
α

]
. (36)

When u = 0 and v = 0, we have

p =
m∗

1rσ
2
αN∗

1 (x0, x0)
K0σ2

K

, q = hα0N
∗
1 (x0, x0), c = p(1 + q)2, b = m∗

1α0N
∗
2 (x0, x0).

Substituting p, q, b into (36), we obtain

µ = − 3c

16σ2
K

[
d(θ − 2hd)

(θ − hd)(K0α0(θ − hd)− d)
− 1

]
. (37)

Then, µ > 0 if K0α0(θ−hd) > d and (θ−hd)(K0α0(θ−hd)−d) > d(θ−2hd), and µ <
0 if K0α0(θ−hd) > d and (θ−hd)(K0α0(θ−hd)−d) < d(θ−2hd). The conclusion
of this theorem follows from [18, Theorem 3.4.2 and formula (3.4.11)].

As an example, we fix r = d = 1, θ = 2.0, h = 1.0, σα = 0.1, σK = 0.5, µ1 =
0.01, σ2

1 = 0.012, σ2
2 = 0.012, x0 = 0.0, α0 = 0.001, K0 = 2000.0. Then, θ >

hd,K0α0(θ − hd) > d, (θ − hd)(K0α0(θ − hd)− d) > d(θ − 2hd) and h0 = 0.00023,
the first part of Theorem 4.2 shows that there is a stable limit cycle in (9) when
m2 decreases from 0.00023, which is shown in Fig. 1.
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Figure 1. The prey and predator evolve to a stable limit cycle.
Left graph gives the phase portrait of traits (x1, x2) and the right
one gives the time series portrait where the solid line is the trait x1

of prey and the dashed line is the trait x2 of predator. Parameters:
r = d = 1, θ = 2.0, h = 1.0, σα = 0.1, σK = 0.5, µ1 = 0.01, µ2 =
0.004, σ2

1 = 0.012, σ2
2 = 0.012, x0 = 0.0, α0 = 0.001,K0 = 2000.0.

This is of some biological interest, because it shows that the interactions between
prey and predator are sufficient to keep the system evolving infinitely as discussed by
Dieckmann et al. [8], and changes in the physical environment are not a prerequisite
for continuing evolution. This corresponds to the Red Queen dynamics, in which
the selection pressures arising from the prey-predator interactions cause the species
to evolve infinitely.
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5. Simulation results. In this section, we simulate some likely evolutionary states
with different conversion efficiencies and evolutionary rates. It is found that dif-
ferent conversion efficiencies and evolutionary rates can markedly influence the
dynamical behaviors of (9).

First, we consider the influence of different evolutionary rates. In the last section,
we presented Fig. 1 as an example to illustrate that the prey and predator evolve
to a stable evolutionary cycle. In that case, the evolutionary rates of the prey and
predator are chosen in the ratio 5 : 2, i.e., µ1σ2

1
µ2σ2

2
= 5 : 2. However, if the evolutionary

rates of the prey and predator are chosen in the ratio 1 : 1 (i.e., the evolutionary
speeds of the prey and predator are the same), then, instead of evolving to a stable
evolutionary cycle, the prey and predator evolve to an evolutionary attractor [6].
Therefore, evolutionary cycle requires higher evolutionary speed of the prey than
the predator. This is also supported by Fig. 2, where parameters are the same
as in Fig. 1 except for µ2 = 0.01. Furthermore, if the evolutionary rates of the
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Figure 2. The prey and predator evolve to an evolutionary at-
tractor where the parameters are the same as in Fig. 1 except for
µ2 = 0.01.

prey and predator are chosen in the ratio 25 : 2 ( i.e., the evolutionary speed of
the prey is much higher than the evolutionary speed of the predator), then the
prey and predator evolve to a stable evolutionary cycle with a longer period of
evolutionary cycle (Fig. 3, where the parameters are the same as in Fig. 1 except
for µ2 = 0.0008).

Second, we consider the influence of different conversion efficiencies. In Fig.
1, with the conversion efficiency θ = 2.0, the prey and predator evolve to a stable
evolutionary cycle. However, if θ = 2.5, i.e., the conversion efficiency of the predator
is higher, then instead of evolving to a stable evolutionary cycle, the prey and
predator evolve to an evolutionary attractor (Fig. 4, where the parameters are the
same as in Fig. 1 except for θ = 2.5).

6. Discussion. The problem of the coevolution of phenotypes in a community
comprising a population of predator and prey has been investigated in this paper.
The population model we consider is the well known prey-predator model with
the functional response of Holling type II [34]. Following the adaptive dynamics
approach [27], we investigate an evolutionary dynamics which is constructed from
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Figure 3. The prey and predator evolve to a stable evolutionary
cycle with a longer period of evolutionary cycle, where the solid
line is the trait x1 of prey and the dashed line is the trait x2 of
predator. The parameters are the same as in Fig. 1 except for
µ2 = 0.0008.
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tractor under identical conditions as in Fig. 1 except for θ = 2.5,
where the solid line is the trait x1 of prey and the dashed line is
the trait x2 of predator.

a stochastic process of mutation and selection. The first of two primary results of
this paper is that, in investigating the ecological and evolutionary conditions that
allow for continuously stable strategy and evolutionary branching, we have shown
that the branching in the prey can induce the secondary branching in the predator.
Evolutionary branching consists of two phases: in the first, there is a convergence
in the phenotype space to an evolutionary attracting fitness minimum, and in the
second, the population splits into two different phenotype clusters. The second
primary result of this paper is that we have shown that the evolutionary dynamics
admits a stable limit cycle. An evolutionary cycle is a likely outcome of the process,
which requires higher evolutionary speed of the prey than the predator. There is
no general rule in nature to say that phenotypic evolution would lead to a fixed
point in the absence of external changes in the environment. The evolutionary cycle
corresponds to the Red Queen dynamics, in which the selection pressures arising
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from the prey-predator interactions cause the species to evolve infinitely. We have
also shown that the evolutionary dynamics admits a subcritical Hopf bifurcation.
With the aid of computer simulations, we find that different evolutionary rates and
conversion efficiencies can influence the dynamical behaviors of (9).

By our analysis of the evolutionary dynamics, we can see that a simple clas-
sification of the outcomes of phenotypic evolution can be constructed from three
dichotomies: the first depends on whether an attractor exists [28], the second de-
pends on whether the attractor is a fixed point [19, 24] and the third depends on
whether the attractor is a fitness minimum for the species. This gives four classes
of evolutionary states:

(1) evolution to a continuously stable strategy (CSS) ( i.e., evolution to a fixed
point with stationary phenotypes which is fitness maxima for the species);

(2) evolution to an evolutionary cycle ( i.e., evolution to an attractor that is not
a fixed point on which the phenotypes continue to change infinitely);

(3) evolution to an evolutionary branching point and then splitting into different
phenotype clusters ( i.e., evolution to a fixed point which is fitness minima
for the species);

(4) evolution without an attractor, such that the phenotypes take more and more
extreme values.

In this paper, we have considered a simple case of coevolution involving two
species and two uncorrelated traits which belong to prey and predator respectively.
However, in reality, matters are more complicated [15, 30, 13, 33, 25], since it is
rare for a predator and prey species to live in isolation from other interactions
[17]. Typically, they would be embedded in a food web with other species [16, 32].
Therefore, it will be interesting to study how these larger communities evolve [1].
Secondly, it will be also interesting to consider the asymmetric form of the predation
efficiency α(x1 − x2) or correlated traits in the species. We leave these as a future
work.
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