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Abstract. We present a deterministic selection-mutation model with a dis-
crete trait variable. We show that for an irreducible selection-mutation matrix
in the birth term the deterministic model has a unique interior equilibrium
which is globally stable. Thus all subpopulations coexist. In the pure selec-
tion case, the outcome is known to be that of competitive exclusion, where
the subpopulation with the largest growth-to-mortality ratio will survive and
the remaining subpopulations will go extinct. We show that if the selection-
mutation matrix is reducible, then competitive exclusion or coexistence are
possible outcomes. We then develop a stochastic population model based on
the deterministic one. We show numerically that the mean behavior of the
stochastic model in general agrees with the deterministic one. However, un-
like the deterministic one, if the differences in the growth-to-mortality ratios
are small in the pure selection case, it cannot be determined a priori which
subpopulation will have the highest probability of surviving and winning the
competition.

1. Introduction. Deterministic selection-mutation models, also referred to as dis-
tributed rate population models with closed-open reproduction, have been studied
by many researchers [1, 2, 3, 4, 9, 11, 12, 22]. These are models for the density of
individuals with respect to some evolutionary discrete or continuous trait. In [4], a
pure selection model (closed reproduction) with logistic type nonlinearity and a con-
tinuous 2-dimensional trait variable (growth and mortality) was studied. Therein,
the authors proved that competitive exclusion occurs and the surviving subpopu-
lation is the one with the largest growth-to-mortality ratio. In [3], these results
were extended to a more general population model constructed on the (natural)
space of measures. In this case, the limiting measure (a Dirac delta measure) is an
element of the state space. In [1, 2], a nonlinear size-structured population model
with a discrete trait variable (a finite number of subpopulations each having its own
growth, mortality, and reproduction functions) was studied. It was shown that in
the case of closed reproduction, competitive exclusion occurs and the winning sub-
population is the one with the highest ratio of reproduction to mortality. In the
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case of open reproduction, the authors showed that survival of all subpopulations
is possible.

In [10] a simple population model with two groups of age (juveniles and adults)
for the mean age at maturity was studied. The authors showed the existence and
uniqueness of a globally attractive stationary solution. This simple model was then
used in [11] to build a system of equations for the density of individuals with respect
to age at maturity. In this model, there are two birth terms one for selection
(closed reproduction) with a probability (in the form of a coefficient) 1 − ε and
another for pure mutation (open reproduction) with a probability ε. Therein, the
authors proved the existence of L1 stationary solutions, which tend to concentrate
around the evolutionary stable value of the trait when the open reproduction term
coefficient ε → 0. In [12] a pure mutation model was considered. The authors
proved the existence of stationary solutions, and they investigated the behavior of
these stationary solutions when the mutation is small.

It is well known that the deterministic and stochastic models may behave differ-
ently. Hence, the goal of this paper is to present a deterministic selection-mutation
model, formulate a stochastic differential equation model based on it, and then
compare the dynamics of these two models. The derivation of the stochastic dif-
ferential equation model is based on the method developed in [6, 7, 18], where the
variability inherent in the system is due only to demographic variability.

This paper is organized as follows: in Section 2 we present a selection-mutation
model with a two-dimensional discrete trait variable. We recall that in the case
of a pure selection birth term, competitive exclusion between the different traits
occurs and the winner trait is the one with highest growth-to-mortality ratio. In
Section 3 we establish stability results for the model when the selection-mutation
matrix is either reducible or irreducible. In Section 4 we develop an Itô stochastic
differential equation model which is based on the deterministic model. In Section
5 we consider two numerical examples, one for a pure selection case and another
for a selection-mutation case. We show that in both cases the stochastic model
behaves like the deterministic model. However, the main difference is that in the
pure selection case, if the ratio of growth to mortality of the first subpopulation
is not much larger than the other subpopulations, then unlike the deterministic
model the subpopulation with the larger ratio may go extinct. Section 6 is devoted
to concluding remarks.

2. Deterministic model. The selection-mutation deterministic model that we
consider is given as follows:

ẋi = ai

n∑

j=1

pijxj − bixi

n∑

j=1

xj , i = 1, 2, . . . , n

xi(0) = x0
i , i = 1, 2, . . . , n.

(1)

Here the total population X =
n∑

j=1

xj , and the ith subpopulation is identified by the

two-dimensional discrete trait (ai, bi) ∈ R2
+, where ai is a scaled per-capita growth

rate and bi is a scaled per-capita mortality rate. The parameter pij denotes the
fraction of offspring of an individual in the jth subpopulation which belongs to the

ith subpopulation, 0 ≤ pij ≤ 1 and
n∑

i=1

pij = 1. For convenience, we will denote
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by P = (pij)n,n the selection-mutation matrix whose (i, j) entry is given by pij .
Clearly P is a column stochastic matrix since each of the column sums of P is equal
to one.

Remark 1. For the special case where P is the identity matrix (i.e., pii = 1 and
pij = 0 for i 6= j), (1) reduces to the following pure selection model:

ẋi = xi(ai − bi

n∑

j=1

xj), i = 1, 2, . . . , n

xi(0) = x0
i , i = 1, 2, . . . , n.

(2)

Here the quotient
ai

bi
can be thought of as a scaled reproductive ratio; i.e., it is a

measure of the average amount of offspring an individual of trait (ai, bi) produces
during its lifetime. The actual reproductive ratio at population density X is given
by

ai

biX
. It is well known that if a1/b1 > ai/bi for i = 2, . . . , n, then solutions to (2)

satisfy xi(t) → 0 for i = 2, . . . , n and x1(t) → a1/b1 as t →∞. That is, competitive
exclusion occurs and the surviving subpopulation is the one with the highest growth-
to-mortality ratio a1/b1. In fact, this is true for a more general selection model
which includes this one as a special case [3].

For easy exposition, we will use the following notations throughout the paper.
Let B = diag(b1, b2, . . . , bn) (i.e., the diagonal matrix with b1, b2, . . . , bn as its main
diagonal entries), and A = diag(a1, a2, . . . , an). Let e = [1, 1, . . . , 1]T ∈ Rn; then
the system of (1) can be written in the following vector form:

ẋ = APx− (eT x)Bx,

x(0) = x0,
(3)

where x = [x1, x2, . . . , xn]T and x0 = [x0
1, x

0
2, . . . , x

0
n]T .

To establish stability results for the selection-mutation model presented in (3),
we first recall the following two definitions and theorem concerning nonnegative
matrices (e.g., see [5, 8, 13, 14, 15, 24]).

Definition 2.1. A square nonnegative matrix H is called reducible if there is a
permutation matrix Q for which QHQT has the form

QHQT =
[

H11 H12

0 H22

]
,

where H11 and H22 are square matrices. A square nonnegative matrix is called
irreducible if it is not reducible.

Definition 2.2. A square nonnegative matrix H is called completely reducible if
it is the direct sum of square nonnegative irreducible matrices. That is, H is com-
pletely reducible if there is a permutation matrix Q such that

QHQT =




H1 0 . . . 0
0 H2 . . . 0
...

...
. . .

...
0 0 . . . Hm


 ,

where H1, . . . , Hm are square nonnegative irreducible matrices.
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Theorem 2.1. (Perron-Frobenius). Let H be a square nonnegative irreducible ma-
trix and ρ(H) be its spectral radius. Then ρ(H) is a positive (algebraically) simple
eigenvalue of H, and to this eigenvalue there correspond positive right and left
eigenvectors. Moreover, there cannot exist two independent nonnegative right (or
left) eigenvectors.

Next, we recall the following definition and theorem concerning M-matrices (see
[21]).

Definition 2.3. A square matrix G that can be expressed in the form G = sI −F ,
where F is a nonnegative matrix, and s ≥ ρ(F ) the spectral radius of F , is called
an M-matrix.

Theorem 2.2. The following are equivalent:
(1) G is a nonsingular M-matrix.
(2) G is inverse-positive (i.e., G−1 is a nonnegative matrix).

3. Stability analysis of deterministic model. In this section, we will establish
results concerning the existence and stability of equilibrium solutions of system (3).
Our arguments are in the spirit of those used in [5]. Two cases are studied: the
case where P is an irreducible matrix, and the case where P is reducible. The
case where P is an irreducible matrix can be biologically interpreted as follows:
all the subpopulations are connected with each other; i.e., any subpopulation con-
tributes, either directly or indirectly, individuals to all the other subpopulations.
Thus, survival of one subpopulation implies survival of all the other subpopulations.
Indeed, this is confirmed in Section 3.1. Similarly by Definition 2.1, the biological
interpretation of P as a reducible matrix is that the total population (i.e., all the
subpopulations) can be separated into (at least) two classes, where each class is
composed of several subpopulations. Furthermore, one of the two classes does not
contribute individuals to the other class. Thus in this case, if the surviving class is
the one that contributes individuals to the other class, then it is possible that the
other class also survives. Again this is confirmed in Section 3.3.

3.1. Irreducible case. In this section, stability results will be established for the
irreducible case. We first show that there exists a unique positive equilibrium
for system (3), and then we show that this unique equilibrium is globally stable
provided that the scaled per-capita mortality rates of all the subpopulations are
equal.

Theorem 3.1. Suppose that P is an irreducible matrix; then there exists a unique
positive equilibrium for system (3).

Proof. Let y = R−1x, where y = [y1, y2, . . . , yn]T and R = diag
(

a1

b1
,
a2

b2
, . . . ,

an

bn

)

be the diagonal matrix with a1/b1, a2/b2, . . . , an/bn as its main diagonal entries.
Then by (3) we have

Rẏ = APRy − (eT Ry)BRy

Ry(0) = x0.

Note that since BR = A and R−1A = B, we see that

ẏ = B[PRy − (rT y)y],

y(0) = R−1x0,
(4)
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where r = Re. To show that there exists a unique positive equilibrium for (3), we
need to show only that it is true for (4). Note that since ai/bi > 0 for i = 1, 2, . . . , n
and P is a column stochastic irreducible matrix, PR is a nonnegative irreducible
matrix. By the Perron-Frobenius Theorem, we know that there exists a unique
positive normalized right eigenvector ȳ (i.e., eT ȳ = 1) corresponding to the spectral
radius ρy of the matrix PR such that

PRȳ = ρy ȳ. (5)

Clearly eT ȳ = 1, eT P = eT and eT R = rT . Therefore, we find that

ρy = ρy(eT ȳ) = eT (ρy ȳ) = eT PRȳ = eT Rȳ = rT ȳ.

By substituting ρy = rT ȳ into (5), we have

PRȳ = (rT ȳ)ȳ. (6)

Hence, ȳ is an equilibrium of system (4). Suppose that there exists another positive
equilibrium ū for (4), then ū is a positive (right) eigenvector of PR corresponding to
the positive eigenvalue rT ū. By the Perron-Frobenius Theorem, we have ρy = rT ū.
Since P is column stochastic, we get

ūT e =
(PRū)T e

rT ū
=

ūT Re

rT ū
=

rT ū

rT ū
= 1. (7)

This implies that ū is a positive normalized right eigenvector corresponding to ρy.
Hence, ū = ȳ. Thus, there exists a unique positive equilibrium ȳ for the system (4),
which implies that Rȳ is the unique positive equilibrium for the system (3).

Next we show that the interior equilibrium is globally stable under some condi-
tions on the model parameters.

Theorem 3.2. Assume that P is an irreducible matrix, and bi = β for i =
1, 2, . . . , n, where β is a positive constant. Then the unique positive equilibrium
is globally asymptotically stable.

Proof. Since P is an irreducible matrix, AP is irreducible. Let ρ be the spec-
tral radius of the matrix AP . By the Perron-Frobenius Theorem, ρ is a simple
eigenvalue of AP , and there exist a unique positive normalized right eigenvec-
tor x̄ such that APx̄ = ρx̄ and a unique positive normalized left eigenvector x̄∗

such that (x̄∗)T AP = ρ(x̄∗)T . Let I be the identity matrix. It is known that

lim
t→∞

exp[(AP − ρI)t]x0 = αx̄, where α =
(x0)T x̄∗

x̄T x̄∗
> 0 (e.g., Theorem A.45 in [24]

or [5]). However, for the convenience of the reader, we provide an argument to show
this. Since ρ is a simple eigenvalue of AP , we have Cn = {x̄}⊕V, where {x̄} is the
(right) eigenspace corresponding to ρ, and V is the generalized (right) eigenspace
corresponding to all eigenvalues of AP except ρ. Hence, there exists a constant α
and a vector v ∈ V such that x0 = αx̄ + v. It is well known that vT x̄∗ = 0 for any
v ∈ V (e.g., see [20] page 367). Thus, we have (x0)T x̄∗ = αx̄T x̄∗, which implies

α =
(x0)T x̄∗

x̄T x̄∗
. Since x̄ and x̄∗ are both positive and x0 is a nonzero nonnegative

vector, we have α > 0. Notice that exp[(AP − ρI)t] = exp(−ρt) exp(APt). Thus,

exp[(AP − ρI)t]x0 = exp(−ρt)[α exp(APt)x̄ + exp(APt)v]

= exp(−ρt)[α exp(ρt)x̄ + exp(APt)v]

= αx̄ + exp[(AP − ρI)t]v.



138 A. S. ACKLEH AND S. HU

Since V is invariant under AP and the spectrum of (AP − ρI)|V lies strictly in the
left half plane, it follows that lim

t→∞
exp[(AP − ρI)t]v = 0. Hence, lim

t→∞
exp[(AP −

ρI)t]x0 = αx̄.
Substituting x(t) = g(t) exp[(AP−ρI)t]x0 into (3) with g being a scalar function

of t, we find that

ġ = g[ρ− β(eT exp[(AP − ρI)t]x0)g]

g(0) = 1.
(8)

Hence, the limiting equation of (8) is given by the following logistic model,

ġ∞ = g∞[ρ− βαg∞]

g∞(0) = 1,

which has a unique positive equilibrium ḡ∞ =
ρ

βα
and it is globally asymptotically

stable. Furthermore, it is easy to see from (8) that g is bounded. Therefore, it
follows from the theory on asymptotically autonomous systems that lim

t→∞
g(t) = ḡ∞

(e.g., [23]), which implies the theorem.

Remark 2. By a similar process, we can show that Theorem 3.2 still holds for
the more general system ẋ = APx − βf(eT x)x, where f is a Lipschitz continuous
strictly increasing function with f(0) = 0 and lim

q→∞
f(q) = ∞.

3.2. Completely reducible case. In this section, we establish stability results
for the case P being a completely reducible matrix. By Definition 2.2, there exists
a permutation matrix Q such that

QPQT =




P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . Pm


 ,

where Pi ∈ Rni×ni is an irreducible matrix, i = 1, 2, . . . ,m, and
m∑

i=1

ni = n. Hence,

in this case we have m population classes (each class is composed of ni subpopula-
tions) which are totally disconnected from each other. Since P is column-stochastic,
then Pi is column-stochastic, i = 1, 2, . . . , m. Let z = Qx; then z satisfies the fol-
lowing differential equation:

ż = QAPx− (eT x)QBx

z(0) = Qx0.
(9)

Let A = QAQT and P = QPQT . Notice that QT Q = I and eT x = eT Qx. Thus,
equation (9) can be rewritten as follows:

ż = APz − (eT z)QBQT z

z(0) = Qx0.
(10)
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Since A is a diagonal matrix, A is also a diagonal matrix. We rewrite A in the
same block form as the matrix P; i.e.,

A =




A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am


 ,

where Ai ∈ Rni×ni , i = 1, 2, . . . ,m. Since Pi is irreducible and Ai is a diagonal
matrix whose diagonal entries are positive, AiPi is a nonnegative irreducible matrix,
i = 1, 2, . . . ,m. Let ρi be the spectral radius of the matrix AiPi, i = 1, 2, . . . , m. By
the Perron-Frobenius Theorem, ρi is a simple eigenvalue of AiPi, and there exist
a unique positive normalized right eigenvector h̄i ∈ Rni such that AiPih̄i = ρih̄i

and a unique positive normalized left eigenvector h̄∗i ∈ Rni such that (h̄∗i )
T AiPi =

ρi(h̄∗i )
T , i = 1, 2, . . . ,m. Let z̄i ∈ Rn, i = 1, 2, . . . , m, be defined by

z̄1 =




h̄1

0
0
...
0
0




, z̄2 =




0
h̄2

0
...
0
0




, z̄3 =




0
0
h̄3

...
0
0




, · · · , z̄m =




0
0
0
...
0

h̄m




, (11)

and z̄∗i ∈ Rn, i = 1, 2, . . . ,m, be defined by

z̄∗1 =




h̄∗1
0
0
...
0
0




, z̄∗2 =




0
h̄∗2
0
...
0
0




, z̄∗3 =




0
0
h̄∗3
...
0
0




, · · · , z̄∗m =




0
0
0
...
0

h̄∗m




. (12)

Then we have AP z̄i = ρiz̄i, and (z̄∗i )TAP = ρi(z̄∗i )T , i = 1, 2, . . . , m.
To establish stability results for (10), we assume that x(0) is positive (which

implies z(0) is positive) and that bi = β, i = 1, 2, . . . , n, where β is a positive
constant. Let z(t) = g(t) exp[(AP − ρlI)t]z(0), where ρl = max

i=1,2,...,m
ρi. If ρl > ρi,

i = 1, 2, . . . , l−1, l+1, . . . , m, then ρl is a simple eigenvalue of AP, z̄l is the unique
normalized nonnegative (right) eigenvector of AP that corresponds to ρl, and z̄∗l
is the unique normalized nonnegative (left) eigenvector of AP that corresponds to
ρl. Using an argument similar to that in the proof of Theorem 3.2, it follows that

there exists a positive constant αl =
z(0)T z̄∗l
z̄T
l z̄∗l

such that

lim
t→∞

exp[(AP − ρlI)t]z(0) = αlz̄l, and lim
t→∞

g(t) =
ρl

βαl
.

This implies that

lim
t→∞

z(t) =
ρl

β
z̄l.

Hence, under this case we have a nonnegative equilibrium (independent of the initial
condition z(0)) which is globally stable.
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If ρl is not unique, then there exist indices ij ∈ {1, 2, . . . , l−1, l+1, . . . ,m} such
that ρij

= ρl, j = 1, 2, . . . , k, where k is a positive integer (1 ≤ k ≤ m−1). For easy
exposition, we use ik+1 to denote l. By (11), we know that z̄ij , j = 1, 2, . . . , k+1 are
the disjoint (right) eigenvectors of AP corresponding to ρl, z̄∗ij

, j = 1, 2, . . . , k + 1
are the disjoint (left) eigenvectors of AP corresponding to ρl, and z̄T

iι
z̄∗iτ

= 0 if ι 6= τ

while z̄T
iι

z̄∗iι
> 0. Using an argument similar to that of proof of Theorem 3.2, we

can show that there exist positive constants αj =
z(0)T z̄∗ij

z̄T
ij

z̄∗ij

, j = 1, 2, . . . , k+1, such

that

lim
t→∞

exp[(AP − ρlI)t]z(0) =
k+1∑

j=1

αj z̄ij
,

and
lim

t→∞
g(t) =

ρl

β(
∑k+1

j=1 αj)
.

This implies that

lim
t→∞

z(t) =
ρl

β(
∑k+1

j=1 αj)

k+1∑

j=1

αj z̄ij ,

which indicates that the nonnegative equilibrium obtained here depends on the
initial condition z(0). Hence, in this case the nonnegative equilibrium is not stable.

We summarize the above discussion in the following theorem:

Theorem 3.3. Assume that x0 is positive, P is completely reducible, and bi = β
for i = 1, 2, . . . , n, where β is a positive constant.

(1) If ρl > ρi, i = 1, 2, . . . , l − 1, l + 1, . . . , m, then we have

lim
t→∞

x(t) =
ρl

β
QT z̄l.

(2) If there exist indices ij ∈ {1, 2, . . . , l − 1, l + 1, . . . , m} such that ρij = ρl,
j = 1, 2, . . . , k (1 ≤ k ≤ m− 1), then we have

lim
t→∞

x(t) =
ρl

β(
∑k+1

j=1 αj)

k+1∑

j=1

αjQ
T z̄ij ,

where l = ik+1, and αj, j = 1, 2, . . . , k + 1, depends on the initial condition
x0.

Remark 3. From case (1) in Theorem 3.3, we see that each subpopulation in class
l survives but the subpopulations in all the other classes become extinct. This is
competitive exclusion, and the surviving population class is the one with the largest
spectral radius. If ρ1 = ρ2 = · · · = ρm, then from case (2) in Theorem 3.3 there
exist positive constants αj, j = 1, 2, . . . , m such that

lim
t→∞

x(t) =
ρl

β(
∑m

j=1 αj)

m∑

j=1

αjQ
T z̄j .

Using (11), we see that lim
t→∞

x(t) is positive. Hence, under this case we have a
positive equilibrium but it is not stable.
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3.3. Reducible but not completely reducible case. In this section we will
consider the following case for P which is reducible but not completely reducible:
Suppose that there exists a permutation matrix Q such that

QPQT =
[

P11 P12

0 P22

]
, (13)

where P11 ∈ Rn1×n1 and P22 ∈ R(n−n1)×(n−n1) are irreducible, and P12 ∈ Rn1×(n−n1)

is a non-zero matrix. Thus, for such matrices P , the population is divided into two
classes with subpopulations in class 2 able to contribute individuals to class 1, but
not vice versa. We refer to class 1 as the receiver class and to class 2 as the donor
class. Let A = QAQT , P = QPQT and z = Qx, then z satisfies the following
equation:

ż = APz − (eT z)QBQT z

z(0) = Qx0.
(14)

Rewriting A in the same block form as P, we get

AP =
[

A11P11 A11P12

0 A22P22

]
, where A =

[
A11 0
0 A22

]
.

Since P11 and P22 are irreducible, A11 and A22 are diagonal matrices with positive
diagonal entries, we see that A11P11 and A22P22 are both irreducible. Let ρi be the
spectral radius of AiiPii, i = 1, 2. By the Perron-Frobenius Theorem, ρi is a simple
eigenvalue of AiiPii, and there exist a unique positive normalized right eigenvector
h̄i such that AiiPiih̄i = ρih̄i and a unique positive normalized left eigenvector h̄∗i
such that (h̄∗i )

T AiiPii = ρi(h̄∗i )
T , i = 1, 2. To establish stability results for (14),

we use the same assumptions as in the completely reducible case. In particular,
we let x(0) be positive (which implies z(0) is positive) and we assume that bi = β,
i = 1, 2, . . . , n, where β is a positive constant.

Suppose that ρ1 > ρ2. Let In−n1 ∈ R(n−n1)×(n−n1) be the identity matrix. Note
that ρ1In−n1 − (A22P22)T is a nonsingular M-matrix. Thus, from Theorem 2.2
(ρ1In−n1 − (A22P22)T )−1 is a nonnegative matrix. Let z̄1 ∈ Rn and z̄∗1 ∈ Rn be
defined by

z̄1 =
[

h̄1

0

]
, z̄∗1 =

[
h̄∗1[

ρ1In−n1 − (A22P22)T
]−1

(A11P12)T h̄∗1

]
, (15)

respectively, then we have AP z̄1 = ρ1z̄1 and (z̄∗1)TAP = ρ1(z̄∗1)T . Hence, z̄1

is the unique nonnegative normalized (right) eigenvector which corresponds to the
spectral radius ρ1 of the matrixAP. Let z(t) = g(t) exp[(AP−ρ1I)t]z(0). Following
a similar argument as in the proof of Theorem 3.2, we can show that there exists a

positive constant α1 =
z(0)T z̄∗1
z̄T
1 z̄∗1

such that

lim
t→∞

exp[(AP − ρ1I)t]z(0) = α1z̄1, and lim
t→∞

g(t) =
ρ1

βα1
.

This implies that

lim
t→∞

z(t) =
ρ1

β
z̄1.

Hence, we have a nonnegative equilibrium (independent of the initial condition
z(0)) which is globally asymptotically stable.
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Now, suppose that ρ1 < ρ2. Let In1 ∈ Rn1×n1 be the identity matrix. Note
that ρ2In1 −A11P11 is a nonsingular M-matrix. Thus, from Theorem 2.2, (ρ2In1 −
A11P11)−1 is a nonnegative matrix. Let z̄2 ∈ Rn and z̄∗2 ∈ Rn be defined by

z̄2 =
[

(ρ2In1 −A11P11)−1A11P12h̄2

h̄2

]
, z̄∗2 =

[
0
h̄∗2

]
, (16)

respectively; then we have AP z̄2 = ρ2z̄2, and (z̄∗2)TAP = ρ2(z̄∗2)T . Hence, z̄2 is
unique in the sense that its last n − n1 elements constitute a vector which is a
normalized positive right eigenvector of A22P22 corresponding to its spectral radius
ρ2. Let z(t) = g(t) exp[(AP−ρ2I)t]z(0). Following an argument similar to the proof

of Theorem 3.2, we can show that there exists a positive constant α2 =
z(0)T z̄∗2
z̄T
2 z̄∗2

such that

lim
t→∞

exp([(AP − ρ2I)t]z(0) = α2z̄2, and lim
t→∞

g(t) =
ρ2

βα2(eT z̄2)
,

which implies that

lim
t→∞

z(t) =
ρ2

β(eT z̄2)
z̄2.

Hence, in this case we again have a nonnegative equilibrium (independent of initial
condition z(0)) which is globally stable.

We summarize the above discussion with the following stability result for system
(3):

Theorem 3.4. Assume that x0 is positive, P is a reducible matrix satisfying (13),
and bi = β for i = 1, 2, . . . , n, where β is a positive constant.

(1) If ρ1 > ρ2, then we have

lim
t→∞

x(t) =
ρ1

β
QT z̄1.

(2) If ρ1 < ρ2, then we have

lim
t→∞

x(t) =
ρ2

β(eT z̄2)
QT z̄2.

Remark 4. The above theorem states that if the spectral radius of the receiver class
is larger than that of the donor class, then we have a competitive exclusion case with
all the subpopulations in the receiver class surviving and all the subpopulations in
the donor class becoming extinct. However, if the spectral radius of the donor class
is larger than that of the receiver class, then we have a coexistence case in the sense
of classes; that is, all the subpopulations in the donor class survive and at least one
subpopulation in the receiver class survives. Furthermore, if we also assume that
each row of matrix P12 has at least one element that is positive, then from (16)
we see that z̄2 is a vector with each element being positive. Hence, from case (2)
in Theorem 3.4 we have a positive equilibrium which is globally stable. Thus all
subpopulations coexist.

We illustrate the results in Theorem 3.4 using the following example. Let

P =




0.3 0.2 0.1 0.1
0.7 0.8 0.3 0.4
0 0 0.4 0.4
0 0 0.2 0.1


 ,
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A = diag(0.4, 0.5, 2, 3) and B = diag(0.1, 0.1, 0.1, 0.1). Under this case, we have
two population classes: class 1 is composed of subpopulations 1 and 2, and class
2 is composed of subpopulations 3 and 4. The values of matrix P indicate that
an individual in class 2 can reproduce an individual in class 1, but not vice versa.
Using Matlab , we solve symbolically for the unique positive equilibrium to get

x̄ = [0.4976 2.1443 6.3572 3.8663]T .

Furthermore, we find that the real part of each eigenvalue of the linearized system
is less than zero. Thus the equilibrium is locally asymptotically stable. Note
that the spectral radius of class 1, ρ1 = 0.4782 and the spectral radius of class
2, ρ2 = 1.2865. Thus from Theorem 3.4 it follows that this interior equilibrium
is globally asymptotically stable. Under this case, we have coexistence of all the
subpopulations (for a reducible matrix P ).

However, if we set the values for A and B such that the spectral radius of class
1 is bigger than that of class 2, then no positive equilibrium exists anymore. For
example, let A = diag(0.4, 0.5, 0.8, 0.3) and keep the values for P and B the same
as above. This results in class 1 having spectral radius ρ1 = 0.4782 and population
class 2 having spectral radius ρ2 = 0.3756, and we obtain the following boundary
equilibrium

x̄ = [0.8730 3.9087 0 0].

As above, using linearization techniques, one can show that this equilibrium is lo-
cally asymptotically stable and by Theorem 3.4 it is globally asymptotically stable.
Hence, subpopulations 1 and 2 survive, but subpopulations 3 and 4 go to extinction.
Therefore, we have a competitive exclusion result between the two classes.

4. Stochastic differential equation model. Since the deterministic model (1)
defined in Section 2 is continuous in both time and state space, the objective of
this section is to create a stochastic model based on the deterministic one which
is continuous in both time and state space. Thus we use the method developed in
[6, 7, 18] to derive an Ito stochastic differential equation model. In the derivation, it
is assumed that the random variability is due to births and deaths, i.e., demographic
variability.

Let Xi(t) be a random variable for the total number of individuals in the ith
population at time t, i = 1, 2, . . . , n, and X(t) = (X1(t), X2(t), . . . , Xn(t))T be
a random vector of the n subpopulations. Let ∆Xi(t) = Xi(t + ∆t) − Xi(t),
i = 1, 2, . . . , n be the incremental change in the ith population during the time
interval ∆t. Assume that ∆t is chosen sufficiently small that the probabilities of a
birth or a death in subpopulation i are given by

q2i−1 = Prob{∆Xi(t) = 1|Xi(t)} = ai

n∑

j=1

pijXj∆t + o(∆t), i = 1, 2, . . . , n,

q2i = Prob{∆Xi(t) = −1|Xi(t)} = biXi

n∑

j=1

Xj∆t + o(∆t), i = 1, 2, . . . , n,

Then the probability that no change occurs is given by

q2n+1 = Prob{∆X1(t) = 0, ∆X2(t) = 0, . . . , ∆Xn(t) = 0|(X1(t), X2(t), . . . , Xn(t))}
= 1− (

n∑

i=1

ai

n∑

j=1

pijXj +
n∑

i=1

biXi

n∑

j=1

Xj)∆t + o(∆t).
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Let η = (∆X1,∆X2, . . . , ∆Xn)T be the vector representing the change in the
n subpopulations over the time interval ∆t. It is necessary to find the mean and
covariance matrix for the change η. Neglecting multiple births or deaths in the time
interval ∆t which have probabilities of order o(∆t), we have the following 2n + 1
possibilities for the vector η in ∆t:

η2i−1 = νi, i = 1, 2, . . . , n, η2i = −νi, i = 1, 2, . . . , n, η2n+1 = 0,

where νi = [0, . . . , 0, 1, 0, . . . , 0]T is the standard unit vector in Rn with the ith com-
ponent equal 1 and all the other components are equal to 0, and 0 = [0, 0, . . . , 0]T

is the zero vector in Rn. In the above expression η2i−1 represents the event that
a single birth occurs in the ith subpopulation, η2i represents the event that a sin-
gle death occurs in the ith subpopulation, and η2n+1 represents the event that no
change occurs in all the subpopulations.

Therefore, if terms of order o(∆t) are neglected, the infinitesimal mean of η is
approximated as follows:

E(η) =
2n+1∑

i=1

qiηi ≈




a1

n∑

j=1

p1jXj − b1X1

n∑

j=1

Xj

a2

n∑

j=1

p2jXj − b2X2

n∑

j=1

Xj

...

an

n∑

j=1

pnjXj − bnXn

n∑

j=1

Xj




∆t = µ∆t. (17)

The covariance matrix for η is

V (η) = E(ηηT )− E(η)E(η)T .

Notice that E(η)E(η)T is of order (∆t)2, and E(ηηT ) =
2n+1∑

i=1

qiηiη
T
i . Therefore, we

approximate the covariance matrix V as follows:

V (η) ≈
2n+1∑

i=1

qiηiη
T
i ≈




φ11 0 . . . 0
0 φ22 . . . 0
...

...
. . .

...
0 0 . . . φnn


 ∆t = Φ∆t, (18)

where the diagonal elements

φii =


ai

n∑

j=1

pijXj + biXi

n∑

j=1

Xj


 , i = 1, 2, . . . , n.

Clearly φii is positive. Thus

C =
√

Φ =




√
φ11 0 . . . 0
0

√
φ22 . . . 0

...
...

. . .
...

0 0 . . .
√

φnn


 . (19)
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When X(t) is sufficiently large and ∆t is sufficiently small, we can assume that
η has an approximate normal distribution with mean vector µ∆t and covariance
C2∆t = Φ∆t, i.e., η ∼ N(µ∆t,Φ∆t), due to the Central Limit Theorem.

The random vector η ∼ N(µ∆t,Φ∆t) can be transformed into a simpler form
using a random vector from the standard normal distribution N(0, I). In particular,
let ξ = (ξ1, ξi, . . . , ξn)T ∼ N(0, I). Then, the random vector C

√
∆tξ ∼ N(0,Φ∆t).

Hence, η − µ∆t ∼ N(0, Φ∆t) and

η = µ∆t + C
√

∆tξ ∼ N(µ∆t,Φ∆t).

Thus we have that
X(t + ∆t) = X(t) + µ∆t + C

√
∆tξ (20)

has an approximate normal distribution N(X(t) + µ∆t, Φ∆t). The above equation
is just an Euler approximation of an Itô stochastic differential equation for Xi(t)
with time step ∆t ([16, 19]). Therefore, if µ and C satisfy certain conditions, then
X(t) converges in the mean square sense to the following Itô stochastic differential
equation:

dX = µ(X)dt + C(X)dW, X(0) = X0 (21)

where µ and C are defined in (17) and (19), respectively, and W = (W1,W2, . . . , Wn)T

is an n dimensional Wiener process. In particular, the following theorem states the
conditions for existence and uniqueness of solutions to (21) and for convergence of
Euler’s approximation to the solution of (21) (see [18, 19]).

Theorem 4.1. Suppose µ(X) and C(X) satisfy uniform growth and Lipschitz con-
ditions; that is, there exists a constant K1 > 0 and K2 > 0 such that

‖µ(Y )− µ(Z)‖+ ‖C(Y )− C(Z)‖ ≤ K1‖Y − Z‖,
and

‖µ(Y )‖+ ‖C(Y )‖ < K2(1 + ‖Y ‖)
for Y , Z ∈ Rn, where ‖•‖ denotes the Euclidean norm. Then there exists a pathwise
unique, t-continuous solution X(t) of the Itô stochastic differential equation (21)
with the property

sup
t∈[0,T ]

E‖X(t)‖2 < ∞,

where E denotes the expectation. In addition, there exists a constant K3 such that

E‖X(t)− X̃(t)‖2 ≤ K3∆t

where X(t) is the solution to stochastic differential equation (21) and X̃(t) is Euler’s
solution; i.e.,

X̃(t + ∆t) = X̃(t) + µ(X̃(t))∆t + C(X̃(t))
√

∆tξ,

for t ∈ {0, ∆t, 2∆t, . . . , T}.
If, for example, we add a boundedness restriction on the the random variables

Xi, i = 1, . . . , n (i.e., we assume that Xi(t) ∈ [0,M ] for a sufficiently large constant
M), then it is straightforward to see that the existence and uniqueness conditions
in Theorem 4.1 are satisfied with µ(X) and C(X) as defined in (17) and (19),
respectively. Hence, it follows that as ∆t → 0, X(t) converges in the mean square
sense to the solution of the Itô stochastic differential equation.
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5. Numerical results. In this section, two cases will be studied. In Section 5.1 we
study a selection birth term where for the deterministic model the subpopulation
with the highest ratio, max

i=1,2,...,n
{ai/bi}, will survive and all the other subpopulations

will die out. In Section 5.2 we study a selection-mutation case with P being an
irreducible matrix (where all subpopulations survive in the deterministic model).

We use Euler’s method to numerically approximate the sample paths for the
stochastic model (21). In all the simulations for the stochastic model, we choose
the time mesh size ∆t = 0.001. The mesh points are given by: tk = k4t, k =
0, 1, . . . ,m. Denote by Xk

i the numerical solution of Xi(tk). Then we have the
following numerical scheme:

Xk+1
i = Xk

i +


ai

n∑

j=1

pijX
k
j − biX

k
i

n∑

j=1

Xk
j


∆t

+ξk
i

√√√√√

ai

n∑

j=1

pijXk
j + biXk

i

n∑

j=1

Xk
j


∆t,

(22)

where ξk
1 , ξk

2 , . . . , ξk
n are independent random variables following a normal distri-

bution with mean 0 and variance 1. In the simulation, if Xk+1
i ≤ 0, then we set

Xk+1
i = 0. The numerical method (22) constructed from Euler’s approximation to

the continuous Itô model is computationally simpler and faster than the numerical
method for a continuous-time Markov chain model. This was another motivation
for us to consider an Itô stochastic differential equation model.

In all of the examples below, we simulated N sample paths Xi,l(t) with l =
1, 2, . . . , N and i = 1, 2, . . . , n for the corresponding stochastic model. The mean
conditioned on nonextinction for the ith subpopulation µi(t) is calculated by av-
eraging all the sample paths conditioned on nonextinction of the total population

X (t) =
n∑

j=1

Xj(t) at time t. The sample standard deviation for the ith subpopu-

lation is represented by σi(t). We use πi(0, t) = Prob{Xi(t) = 0}, i = 1, 2, . . . , n
to denote the probability of extinction for the ith subpopulation at time t, and
π(0, 0, . . . , 0, t) = Prob{X1(t) = 0, X2(t) = 0, . . . , Xn(t) = 0} to denote the proba-
bility that all the subpopulation are driven to extinction at time t. We denote by
πc(t) = Prob{X1(t) > 0, X2(t) > 0, . . . , Xn(t) > 0} the probability of coexistence
at time t. These probabilities will be calculated based on the N sample Monte
Carlo data set for all the following simulations.

5.1. Pure selection case. In this section, we consider a pure selection case, that
is, P = I, which means that individuals in the ith subpopulation can only reproduce
individuals in the ith subpopulation. In what follows, we choose n = 3, T = 10,
and we use ode23 in Matlab to solve numerically the deterministic model (1).

In the first example, we simulated 7000 (N = 7000) sample paths for the corre-
sponding stochastic model. The initial population size is chosen to be (10, 10, 10).
The values for all the other parameters are chosen to be a1 = 3, a2 = 1, a3 = 1,
b1 = 0.1, b2 = 0.2 and b3 = 0.1. Notice that since a1/b1 > ai/bi for i = 2, 3, the
solution of the deterministic model (1) satisfies

lim
t→∞

x1(t) = 30, lim
t→∞

x2(t) = 0, lim
t→∞

x3(t) = 0.
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Three randomly chosen stochastic realizations (out of 7000) and the solution to the
deterministic model (1) for each subpopulation are plotted in Figure 1 (left col-
umn). The results show that both subpopulations 2 and 3 are driven to extinction
after t = 5 and subpopulation 1 survives for all these three realizations. The mean
conditioned on nonextinction (µ1(t), µ2(t), µ3(t)) and the solution to the determin-
istic model are plotted in Figure 1 (right column), which suggests that the mean
conditioned on nonextinction is close to the deterministic equilibrium (30, 0, 0).

The sample standard deviation (σ1(10), σ2(10), σ3(10)) is approximately equal
to (5.6174, 0, 0.3094). The probabilities of extinction πi(0, t) and π(0, 0, 0, t) are
plotted in Figure 2 (left). From this figure it is clear that subpopulation 2 be-
comes extinct at approximately t = 3 while subpopulation 3 becomes almost extinct
around t = 5. The numerical approximations at time t = 10 of these probabilities
and their corresponding Wilson score confidence interval (see [17] for details) with
significance level 0.05 are given in Table 1. The probability of coexistence πc(t)

Table 1. Probability of extinction at time t = 10 and its corre-
sponding confidence interval.

estimated value confidence interval
π1(0, 10) 0.001 [0.0005, 0.0021]
π2(0, 10) 1 [0.9995, 1]
π3(0, 10) 0.999 [0.9979, 0.9995]

π(0, 0, 0, 10) 0 [0, 0.0005]

is plotted in Figure 2 (right), which indicates that the subpopulations no longer
coexist after t = 3.5. Hence, for this example the stochastic model behavior is
similar to that of the deterministic model.

We point out that when the highest ratio a1/b1 is significantly larger than the
ratios a2/b2 and a3/b3, as in the above example, the stochastic (in the mean sense)
and deterministic model behave similarly. To test whether the same outcome occurs
when the highest ratio is close to the other ratios, we give the following example:
the initial population size is chosen to be (20, 20, 20). The values for all the other
parameters are chosen to be a1 = 3λ, a2 = 6λ, a3 = 12λ, b1 = 1, b2 = 2.01 and
b3 = 4.01, where λ is some positive constant. Since a1/b1 > ai/bi for i = 2, 3, the
solution of the deterministic model satisfies

lim
t→∞

x1(t) = 3λ, lim
t→∞

x2(t) = 0, lim
t→∞

x3(t) = 0.

Figures 3 and 4 are obtained with λ = 90. We simulate 7000 (N = 7000) sample
paths for the corresponding stochastic model. Three randomly chosen stochastic
realizations and the solution to the deterministic model for each subpopulation are
plotted in Figure 3 (left column). The results show that subpopulations 1 and
3 die out after t = 1 for these three realizations but subpopulation 2 survives.
The mean conditioned on nonextinction (µ1(t), µ2(t), µ3(t)) and the solution to the
deterministic model are plotted in Figure 3 (right column). The results suggest
that the mean conditioned on nonextinction is far away from the deterministic
equilibrium (270, 0, 0).

The sample standard deviation (σ1(10), σ2(10), σ3(10)) is approximately equal to
(124.3057, 112.9720, 134.2170). The probabilities of extinction πi(0, t) and π(0, 0, 0, t)
are plotted in Figure 4 (left), from which we can see that these probabilities are
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Figure 1. (left column) Three randomly chosen stochastic realiza-
tions and the solution to the deterministic model with (a1, a2, a3) =
(3, 1, 1), (b1, b2, b3) = (0.1, 0.2, 0.1) and P = I. The initial popula-
tion size for both the stochastic model and the deterministic model
is (10, 10, 10). (right column) The solution to the model (1) and
the mean conditioned on nonextinction.

approximately constant for a large range of times. Their numerical approximations
at time t = 10 and their corresponding Wilson score confidence interval with sig-
nificance level 0.05 are illustrated in Table 2. The probability of coexistence πc(t)
is plotted in Figure 4 (right), which indicates that the subpopulations no longer
coexist after t = 1.
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Figure 2. (left) The probability of extinction for each subpop-
ulation and the probability that all subpopulations are driven to
extinction. (right) The probability of coexistence.

Table 2. Probability of extinction at time t = 10 and its corre-
sponding confidence interval.

estimated value confidence interval
π1(0, 10) 0.6937 [0.6828, 0.7044]
π2(0, 10) 0.7691 [0.7591, 0.7789]
π3(0, 10) 0.5371 [0.5254, 0.5488]

π(0, 0, 0, 10) 0 [0, 0.0005]

We performed many other numerical simulations with different λ values. In
these simulations, we obtain many cases where the stochastic model differs from
the deterministic one in picking the winning trait or subpopulation. The results in
Table 3 and Figure 5 are obtained by simulating 1000 (N = 1000) sample paths.
The probability of extinction π1(0, 10), π2(0, 10) and π3(0, 10) for some λ values
less than 10 and bigger than 200 with initial condition (20, 20, 20) are tabulated
in Table 3. We can see that if λ is chosen very small or very big, then all the
subpopulations are driven to extinction, which is expected for the stochastic model
because of the variance.

Table 3. Probability of extinction π1(0, 10), π2(0, 10) and
π3(0, 10) for λ values less than 10 and bigger than 200 with initial
condition (20, 20, 20).

λ 1 2 5 250 300 400 800 1000
π1(0, 10) 0.999 0.882 0.268 0.311 0.219 0.013 0.707 1
π2(0, 10) 1 0.998 0.788 0.689 0.781 1 1 1
π3(0, 10) 1 1 0.958 1 1 1 1 1

The probabilities of extinction π1(0, 10), π2(0, 10) and π3(0, 10) with λ values
between 10 and 200 are plotted in Figure 5, where the left part is the plot for
results with initial condition (20, 20, 20), and the right one is the plot for results
with initial condition (20, 40, 80). We can see from Figure 5 that the results remain
similar even if we choose the initial condition to be (20, 40, 80), scaled according to
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Figure 3. (left column) Three randomly chosen stochastic realiza-
tions and the solution to the deterministic model with (a1, a2, a3) =
(270, 540, 1080), (b1, b2, b3) = (1, 2.01, 4.01) and P = I. The initial
population size for both stochastic model and deterministic model
is (20, 20, 20). (right column) The solution to the model (1) and
the mean conditioned on nonextinction.

the choice of parameters. Both plots indicate that the stochastic model disagrees
with the deterministic model much more in the middle than in the tails.

To get a better understanding of the stochastic model dynamics, we consider
three values of λ, λ = 20, 100, 180, with initial condition (20, 20, 20), and plot the
frequency histograms for X1(10), X2(10) and X3(10) out of these 1000 sample paths
in Figures 6, 7 and 8. We repeat the same numerical experiment for the initial
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Figure 4. (left) The probability of extinction for each population
and the probability that all subpopulations are driven to extinc-
tion. (right) The probability of coexistence.
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Figure 5. (left) Probability of extinction π1(0, 10), π2(0, 10) and
π3(0, 10) for λ values between 10 and 200 with initial condition
(20, 20, 20). (right) Probability of extinction π1(0, 10), π2(0, 10)
and π3(0, 10) for λ values between 10 and 200 with initial condition
(20,40,80).

condition (20, 40, 80). Figures 6 and 8 show that subpopulation 1 has a greater
chance to win the competition than subpopulations 2 and 3, which agrees with the
deterministic case since subpopulation 1 has the highest growth-to-mortality ratio.
However, Figure 7 indicates that subpopulation 3 has greater chance to win the
competition than subpopulations 1 and 2. Hence, it is not possible to determine a
priori which subpopulation will win the competition if the difference in the growth-
to-mortality ratios are small.

From these two examples, we can see that the agreement between the stochastic
model and the deterministic model is better if the difference among the ratios (ai/bi)
are bigger.

5.2. Selection-mutation case. In this section, we consider a selection-mutation
case. We choose n = 3, T = 10, and we use ode15s in Matlab to solve numerically
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Figure 6. Frequency histograms for Xi(10), i = 1, 2, 3 out of the
1000 sample paths with λ = 20. (left column) Initial condition is
(20, 20, 20). (right column) Initial condition is (20, 40, 80).

the deterministic model (1). The matrix P is chosen as

P =




0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6


 .

Hence, P is an irreducible matrix. The initial population size is set to (10, 10, 10).
The values for all the other parameters are chosen to be a1 = 8, a2 = 10, a3 = 17,
b1 = 0.1, b2 = 0.1 and b3 = 0.1. We simulate 7000 (N = 7000) sample paths for
the corresponding stochastic model. Three randomly chosen stochastic realizations
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Figure 7. Frequency histograms for Xi(10), i = 1, 2, 3 out of the
1000 sample paths with λ = 100. (left column) Initial condition is
(20, 20, 20). (right column) Initial condition is (20,40,80).

and the solution to the deterministic model for each subpopulation were plotted
in Figure 9 (left column). The results show that all subpopulations survive for
these three realizations. We also observe that the sample variance is a bit large.
To test whether the variance depends on the initial condition, we repeat the same
numerical experiment with initial condition (20, 20, 20) and present the results in
Figure 9 (right column), which indicate that the large sample variance does not
depend on the choice of the initial condition. We point out that since the case
considered in this example is a selection-mutation case and all the populations
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Figure 8. Frequency histograms for Xi(10), i = 1, 2, 3 out of the
1000 sample paths with λ = 180. (left column) Initial condition is
(20, 20, 20); (right column) Initial condition is (20,40,80).

coexist, the covariance is a function of all the subpopulations (see (4.1)), which
may be the reason for such large sample variance.

The mean conditioned on nonextinction (µ1(t), µ2(t), µ3(t)) and the solution
to the deterministic model with initial condition (10, 10, 10) are plotted in Figure
10, which suggests the mean conditioned on nonextinction is very close to the
deterministic equilibrium. The sample standard deviation (σ1(10), σ2(10), σ3(10))
is approximately equal to (5.3518, 6.3403, 10.0541). The probability of extinction
πi(0, t) ≡ 0 for i = 1, 2, 3, π(0, 0, 0, t) ≡ 0, and the probability of coexistence
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Figure 9. Three randomly chosen stochastic realizations out of
7000 sample paths and the solution to the deterministic model
with (a1, a2, a3) = (8, 10, 17) and (b1, b2, b3) = (0.1, 0.1, 0.1) under
selection-mutation case. (left column) The initial population size
for both stochastic model and deterministic model is chosen to
be (10, 10, 10); (right column) The initial population size for both
stochastic model and deterministic model is chosen to be
(20, 20, 20).
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πc(t) ≡ 1, which means that the populations coexist. Hence, the stochastic model
and deterministic model have similar behavior in this case.
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Figure 10. The solution to the model (1) and the mean condi-
tioned on nonextinction.

We performed many simulations for other selection-mutation examples with an
irreducible matrix P . The results were always in agreement with the deterministic
model (1).

6. Concluding remarks. In this paper we compared a stochastic and determin-
istic selection-mutation models. For the most part the behavior of the mean condi-
tioned on nonextinction of stochastic model follows that of the deterministic model.
In particular, in the case of open reproduction (selection-mutation) all subpopula-
tion survive in both the stochastic and deterministic models. In the case of closed
reproduction (pure selection) one population survives in both models. However, a
main difference is that if subpopulation have growth to mortality ratios that are
close to each other then in the deterministic case the one with the highest ratio will
win the competition but it is not so in the stochastic model. Perhaps this is due to
an Itô diffusion effect. Recall that in our simulations we set the population size to
be zero if the population size Xk

i <= 0. Thus, Xk
i values in the interval (0, 1) may

contribute to the growth in the stochastic differential equation model rather than
becoming extinct in a continuous-time Markov chain model.

Acknowledgments: The authors would like thank Professor L.J.S. Allen and two
anonymous referees for their thorough review of this manuscript and for the helpful
suggestions they provided. The work of A.S. Ackleh is supported in part by the
National Science Foundation grant # DUE-0531915. The second author, S. Hu,
is grateful to Dr. H.T. Banks for his encouragement and especially for support
in part by the Joint DMS/NIGMS Initiative to Support Research in the Area of
Mathematics Biology under grant 1R01GM67299-01.



STOCHASTIC AND DETERMINISTIC SELECTION-MUTATION MODELS 157

REFERENCES

[1] A.S. Ackleh and K. Deng, Survival of the fittest in a quasilinear size-structured population
model, Natural Resource Modeling, 17 (2004) 213-228.

[2] A.S. Ackleh, K. Deng, and X. Wang, Competitive exclusion and coexistence in a quasilinear
size-structured population model, Mathematical Biosciences, 192 (2004) 177-192.

[3] A.S. Ackleh, B.G. Fitzpatrick, and H. Thieme, Rate distribution and survival of the fittest:
a formulation on the space of measures, Discrete and Continuous Dynamical Systems series
B, 5 (2005) 917-928.

[4] A.S. Ackleh, D. Marshall, H. Heatherly, B.G. Fitzpatrick, Survival of the fittest in a gen-
eralized logistic model, Mathematical Models and Methods in Applied Sciences, 9 (1999)
1379-1391.

[5] G.D. Allen, Toward a dynamics for power and control theory, Journal of Mathematical Soci-
ology, 17 (1992) 1-38.

[6] E.J. Allen, Stochastic differential equations and persistence time for two interacting popula-
tions, Dynamics of Continuous, Discrete and Impulsive System, 5 (1999) 271-281.

[7] L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Prentice
Hall, New Jersey, 2003.

[8] L.J.S. Allen, Introduction to Mathematical Biology, Prentice Hall, New Jersey, 2007.
[9] R. Burger and I.M. Bomze, Stationary distributions under selection-mutation balance: struc-

ture and properties. Advances in Applied Probabilities, 28 (1996) 227-251.
[10] A. Calsina and S. Cuardrado, A model for the adaptive dynamics of the maturation age,

Ecological Modelling, 133 (2000) 33-43.
[11] A. Calsina and S. Cuardrado, Small mutation rate and evolutionary stable strategies in

infinite dimensional adaptive dynamics, Journal of mathematical Biology, 48 (2004) 135-159.
[12] A. Calsina and S. Cuardrado, Stationary solution of a selection mutation model: the pure

mutation case, Mathematical Models and Methods in Applied Sciences, 15 (2005) 1091-1117.
[13] H. Caswell, Matrix Population Models, Sinauer Associates, Inc. Publishers, Sunderland, Mas-

sachusetts, 2001.
[14] J.M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional

Conference Series in Applied Mathematics, SIAM, Philadelphia, 1998.
[15] R.F. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1960.
[16] T.C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, new York 1987.
[17] M. Henderson and M.C. Meyer, Exploring the confidence interval for a bionomial parameter

in a first course in statistical computing, The American Statistican, 55 (2001), 337–344.
[18] N. Kirupaharan and L.J.S. Allen, Coexistence of multiple pathogen strains in stochastic

epidemic models with density-dependent mortality, Bulletin of Mathematical Biology, 66
(2004) 841-864.

[19] P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer-Verlag, New York 1992.

[20] B. Noble and J.W. Daniel, Applied Linear Algebra, Prentice Hall, New Jersey, 1988.
[21] R.J. Plemmons, M-Matrix characterizations – nonsigular M-matrices, Linear Algebra and Its

Applications, 18 (1977) 175-188.
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