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Abstract. Many natural population growths and interactions are affected by
seasonal changes, suggesting that these natural population dynamics should
be modeled by nonautonomous differential equations instead of autonomous
differential equations. Through a series of carefully derived models of the well
documented high-amplitude, large-period fluctuations of lemming populations,
we argue that when appropriately formulated, autonomous differential equa-
tions may capture much of the desirable rich dynamics, such as the existence of
a periodic solution with period and amplitude close to that of approximately
periodic solutions produced by the more natural but mathematically daunt-
ing nonautonomous models. We start this series of models from the Barrow
model, a well formulated model for the dynamics of food-lemming interac-
tion at Point Barrow (Alaska, USA) with sufficient experimental data. Our
work suggests that an autonomous system can indeed be a good approxima-
tion to the moss-lemming dynamics at Point Barrow. This, together with our
bifurcation analysis, indicates that neither seasonal factors (expressed by time-
dependent moss growth rate and lemming death rate in the Barrow model)
nor the moss growth rate and lemming death rate are the main culprits of
the observed multi-year lemming cycles. We suspect that the main culprits
may include high lemming predation rate, high lemming birth rate, and low
lemming self-limitation rate.

1. Introduction. Pioneer works on resource-consumer dynamics include the well
known works of Lotka (1925) and Volterra (1926), which introduced the classical
Lotka-Volterra predator-prey model that arguably forms the foundation of math-
ematical ecology. One of the most frequently used resource-consumer models is
the Rosenzweig-MacArthur (1963) model, which produces two generic asymptotic
behaviors: equilibria and limit cycles. Bazykin (1974) added a self-limitation term
to the Rosenzweig-MacArthur model to account for the rather ubiquitous density-
dependent mortality rate (see also Bazykin et al. 1998). All these models produce
oscillatory solutions that seem to mimic the fluctuating populations observed in
nature.

Indeed, large-scale high-amplitude oscillations in populations of small rodents
such as voles and lemmings have been a constant inspiration to numerous influential
and thought provoking articles since the pioneering work of Elton (Elton 1924,
Hanski et al. 2001). The lemming is a mouse-like arctic rodent characterized by
a small, short body that is about 13 cm (about 5 in) long, with a very short tail.
Lemmings live in extensive burrows near the water, feed on vegetation, and build
nests out of hair, grass, moss, and lichen. The female produces several broods a
year, each of which contains about five young. Many researchers believe that such
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oscillations are more or less the exhibitions of the usual characteristics of resource-
consumer interactions. More specifically, ecologists tend to believe that the cause
of such oscillations is either an interaction between lemmings and their food supply
(Turchin and Batzli 2001) or an interaction between lemmings and their many
predators (Hanski et al. 2001).

All key reproductive events for lemmings take place during winter. Because of
the extreme low temperatures, empirical research on organisms that live under snow
is difficult. However, ecologists have managed to obtain collections of data, even
though they are very limited in many aspects. Turchin and Batzli (2001) described
a family of two- and three-dimensional autonomous and nonautonomous differential
equation models incorporating various biological mechanisms and compared their
numerical dynamics. They arrived at the conclusion that their three-dimensional
nonautonomous differential equations Barrow model (named after the brown lem-
mings at Point Barrow, Alaska, USA) is the most appropriate one in their family
of models. The objective of this paper is to show that when appropriately for-
mulated, a two-dimensional autonomous differential equation model (the Bazykin
predator-prey model) can capture much of the desirable dynamics exhibited by
their Barrow model. Specifically, we show that the period and amplitude of the
stable periodic solution of our autonomous lemming-moss model are close to that
of the approximately periodic solutions of the Barrow model.

The Barrow model is formulated to describe the apparent seasonal interactions
among lemmings, moss, and vascular plants. It takes the following form (Turchin
and Batzli 2001):

dV

dt
= U(τ(t))(1− V

KV
)− AV H

V + αM + B
,

dM

dt
= u(τ(t))M(1− M

KM
)− αAMH

V + αM + B
,

dH

dt
= RH[

A(V + αM)
V + αM + B

−G(τ)].

(1.1)

Here V =vascular plant (v. plant) density, M=moss density, and H=lemming den-
sity. The season indicator is τ = τ(t) = t− btc ∈ [0, 1). Summer (two months from
melt-off in mid-June to first heavy frosts in mid-August) is represented by the in-
terval of 5/6 ≤ τ < 1. In summer, U(τ) = Us, u(τ) = us, G(τ) = Gs. Winter is rep-
resented by the interval of 0 ≤ τ < 5/6. In winter, U(τ) = 0, u(τ) = 0, G(τ) = Gw.
The description of the parameters and their value ranges is given in Table 1. At
τ = 0 (transition between summer and winter), V(t) suffers a sudden 90% reduction
due to the first heavy frost. Observe that Gs is the summer lemming death rate
divided by the conversion rate R. We will call it the modified summer lemming
death rate, or simply, the lemming summer death rate. Similar statements are true
for Gw. Together or alone, they are ambiguously referred to as lemming death rate.

Different forms (linear and logistic) are used in vascular plants and moss re-
growth terms. Detailed justification and background information can be found
in Turchin and Batzli (2001). Seasonal effect is taken into account, especially in
the resource (vascular plants and moss) regrowth term (Oksanen 1990). From the
shape indicated by field data and the solution profiles generated by some plausible
lemming-moss models, Turchin et al. (2000) suggest that the predator nature of
the lemming is the main driving force of the observed dramatic lemming population
cycles. In other words, the lemming-moss interaction generates lemming population
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Table 1. Parameters in Barrow model (Turchin and Batzli 2001)

Par. Meaning Median value Range
Us Maximal growth rate of v. plants 10000 kg/(ha*yr) 5000-20000
us Maximal growth rate of moss 12 /yr 6-24
KV V. plant carrying capacity 1000 kg/ha 100-2000
KM Moss carrying capacity 2000 kg/ha 1000-4000
A Maximal v. plant consumption rate by

a lemming
15 kg/(yr*ind.) 10.7-20

B Lemming half-saturation constant 70kg/ha 35-140
R Conversion rate of vascular or moss

biomass into lemming biomass
10.7/A 0.5-1

Gs Lemming death rate in summer/R 0.44A n.a.
Gw Lemming death rate in winter/R 0.63A n.a.
α Discounting parameter for relative con-

sumption of mosses compared to vascu-
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Figure 1. Barrow model simulation result with parameters taking
the median values shown in Table 1.

cycles. Or equivalently, the moss dynamics controls and induces lemming popula-
tion oscillations. This hypothesis is hence referred as bottom-up regulation. Figure
1 represents a typical Barrow model simulation result.
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This periodic Barrow model, while it embodies many realistic features, is some-
what awkward to describe and simulate, and almost impossible to analyze mathe-
matically. A natural and interesting question is whether some simpler and plausible
autonomous differential equation models can reasonably approximate its rich and
realistic dynamics. Our answer to this question is positive.

In the next section, we formulate an intermediate two-dimensional nonautonomous
moss-lemming model that results from canceling the vascular plant variable and
adding a self-limitation term in the Barrow model. We then replace the season-
dependent moss growth rate and the modified lemming death rate by suitable con-
tinuous time dependent functions. We carry out some simple mathematical analysis
for this intermediate model. In the third section, we formulate a two-dimensional
autonomous model by simply choosing moss growth rate and lemming death rate
to be their naturally weighted mean values, respectively. This model is mathemat-
ically tractable, and a global qualitative analysis is attempted. In addition, we
present bifurcation diagrams for several key parameters to gain additional insights
on how these parameters affect the amplitudes and periods of those periodic so-
lutions. We then proceed to the conclusion section of this paper: comparing the
simpler autonomous model with those nonautonomous models in four key aspects
expressed by their oscillatory solution profiles. We provide a brief discussion de-
scribing the implications of our findings in the context of some specific existing
biological observations and theoretical statements. The paper ends with an ad hoc
procedure for finding out if an autonomous differential equation model can be an
acceptable approximation to a nonautonomous one.

2. A nonautonomous lemming-moss model. Since moss is the main food sup-
ply for lemmings, it is natural to reduce the Barrow model to a two-dimensional
one by canceling the vascular plant variable. Following Bazykin (1974), we include
a self-limitation term in the reduced system to account for various possible mecha-
nisms that may introduce additional lemming density dependent mortality. Indeed,
Chitty (1996) argues for such a self-limitation effect in lemming dynamics. This
leads to the following nonautonomous lemming-moss model with self-limitation.

dM

dt
= u(τ)M(1− M

KM
)− αAMH

αM + B
,

dH

dt
= RH[

αAM

αM + B
−G(τ)]− EH2.

(2.1)

The self-limitation rate E depends on many factors, and may include lemming
behavioral changes such as from normal to more aggressive behavior as lemming
population density increases. Chitty (1996) suggests that behavioral changes can
be key factors inducing lemming cycles. As we will see, mathematically, the self-
limitation term actually keeps the lemming population away from dropping to an
extremely low level, which makes the model more realistic.

Simulation results (see Figure 2) strongly suggest that the above nonautonomous
lemming-moss model and Barrow model produce qualitatively similar dynamics.

To facilitate a systematic qualitative study of the model, we would like to convert
it into a model with fewer and more familiar parameters and variables. To this end,
we let

c =
B

α
, K = KM , a = A, b = R, d(τ) = G(τ), l = E, x = M, y = H.
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Figure 2. Nonautonomous lemming-moss model simulation re-
sult with parameters, taking the median values shown in Table 1
and E = 0.01.

This yields
dx

dt
= u(τ)x(1− x

K
)− axy

x + c
,

dy

dt
= by[

ax

x + c
− d(τ)]− ly2.

(2.2)

In the rest of this paper, we assume that 0 < x(0) < K and y(0) > 0.
In reality, u(τ), d(τ) change continuously as the season progresses. We thus try

to use two continuous functions u(t), d(t) to replace the discontinuous functions
employed by Turchin and Batzli (2001) in their Barrow model. This simple and
natural modification enables a good amount of mathematical analysis. The new
system takes the form of

dx

dt
= u(t)x(1− x

K
)− axy

x + c
,

dy

dt
= by[

ax

x + c
− d(t)]− ly2.

(2.3)

In the following, we let

u(t) =
us

0.3
max(sin(2πt− 4.2)− 0.7, 0)

d(t) = min(dw, 3(dw − ds)(sin(2πt− 1) + 1) + ds)

to approximate the discontinuous function u(τ) and d(τ) below
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Table 2. Parameters in lemming-moss models

Par. Meaning Median value Range
us Maximal growth rate of moss 12 /yr 6-24
K Moss carrying capacity 2000 kg/ha 1000-4000
a Maximal vascular consumption rate by

a lemming
15 kg/(yr*ind.) 10-20

c Lemming half-saturation constant 140kg/ha 35-1400
b Conversion rate of vascular or moss

biomass into lemming biomass
10.7/a n.a.

ds Lemming death rate in summer/b 0.44a n.a.
dw Lemming death rate in winter/b 0.63a n.a.
l self-limitation rate 0.01 0.006-0.06
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Figure 3. u(τ(t)), d(τ(t)) vs. u(t) and d(t). Red continuous
curves represent u(t) and d(t). Using mean values of us, ds, dw,
we can compare u(t), d(t) with u(τ), d(τ) statistically. The stan-
dard/average error of u(t) with respect to u(τ(t)) is 1.538 and the
relative error is 1.538/us = 0.128. The standard/average error
of d(t) with respect to d(τ(t)) is 0.401 and the relative error is
0.401/(dw − ds) = 0.141.

u(τ) = 0 (0 ≤ τ ≤ 5/6), or us (5/6 ≤ τ < 1),
d(τ) = dw (0 ≤ τ ≤ 5/6), or ds (5/6 ≤ τ < 1).

Using the median values of us, ds, dw, we can visually and statistically compare
u(t), d(t) with u(τ(t)) and d(τ(t)) (see Figure 3).

We now are in a position to start our mathematical analysis for the nonau-
tonomous model (2.3), where u(t) and d(t) are continuous periodic functions in t,
with period 1 and 0 ≤ u(t) ≤ us, ds ≤ d(t) ≤ dw.
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Figure 4. A typical solution of the nonautonomous lemming-
moss model (2.3) with parameters taking the median values shown
in Table 1 and l = 0.01.

Since x = 0 and y = 0 are solutions of model (2.3), we see that the positive cone
R2

+ = {(x, y) : x ≥ 0, y ≥ 0} is invariant. As usual, it is easy to show that (0, 0) is
a saddle, stable along y axis and unstable along x axis.

Theorem 2.1. The trivial steady state (0, 0) of model (2.3) is a saddle.

Proof. The linearized system of (2.3) at the origin takes the form of
dx

dt
= u(t)x,

dy

dt
= −d(t)by.

The conclusion of the theorem follows immediately.

Our next analytical result says that model (2.3) is dissipative, which is equivalent
to saying that all nonnegative solutions eventually are uniformly bounded.

Theorem 2.2. For t ≥ 0, solutions of (2.3) satisfy 0 < x(t) < K and

lim sup(x(t) + y(t)/b) ≤ (us + dwb)K/(dsb).

Proof. It is obvious that 0 < x(t) < K. Let z = x + y/b; then for 0 < x(0) < K
and y(0) > 0, we have

dz

dt
≤ u(t)x(1− x

K
)− d(t)b(z − x) ≤ (u(t) + d(t)b)x− d(t)bz.

Hence
dz/dt ≤ (us + dwb)K − dsbz

and a simple comparison argument to the linear equation dz/dt = (us+dwb)K−dsbz
yields that

lim sup(x(t) + y(t)/b) ≤ (us + dwb)K/(dsb).

The simulation result in Figure 4 represents a typical solution of model (2.3). It
fluctuates profoundly, with adjacent high peaks occuring about 4 years apart.
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Figure 5. A typical solution of the autonomous lemming-moss
model (3.1) with parameters taking the median values shown in
Table 1 and l = 0.01.

3. An autonomous lemming-moss model. We are now in a position to formu-
late an autonomous version of the lemming-moss interaction model. The method
is simply replacing the season-dependent parameters by their weighted averages.
This yields

dx

dt
= ūx(1− x

K
)− axy

x + c
, f(x, y),

dy

dt
= by[

ax

x + c
− d̄]− ly2 , g(x, y),

(3.1)

where ū = us/6 (mean 2), d̄ = (5dw +ds)/6 (mean 8.975) are the weighted averages.
This model is called the Bazykin predator-prey model (see Bazykin et al. 1998 and
Kuznetsov 2004, p 325). Short of chaotic dynamics, the Bazykin model is capable of
generating rich and complicated dynamics. For example, it may have three positive
steady states and several limit cycles, and it may undergo several codimension-
2 bifurcations and generate a large homoclinic loop (Kuznetsov 2004, p. 325).
Indeed, many mathematical questions on the qualitative properties of the model
remain open (Hwang and Kuang 2006). If l = 0 in (3.1), then it is the well studied
Rosenzweig-MacArthur Holling type II predator-prey model (Kuang 1990).

Figure 5 is a solution of model (3.1) with the same initial condition and parameter
values as the solution of (2.3) depicted in Figure 4. By comparing the simulation
result with that of model (2.3) (Figure 6), we see that the period is slightly longer.
However, their amplitudes are comparable in log scale.

A systematic bifurcation and global phase plane analysis has been carried out by
Bazykin (Bazykin et al. 1998) and the graphical description of the 11 cases can also
be found in (Kuznetsov 2004, p. 331). The lemming-moss model (3.1) dynamics
(with the parameters given in Table 1) seems to exhibit dynamics as depicted by
case 1 (the interior steady state is unique and a sink, no positive limit cycle) or
case 3 (the interior steady state is unique and a spiral source; there exists at least
one and most likely a unique limit cycle).

From the bifurcation diagrams, we see that the following statements hold.
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Figure 6. Comparison of solutions of nonautonomous model (2.3)
and autonomous model (3.1).

1. Select b as the bifurcation variable and choose median values for other pa-
rameters. If 0 < b < 0.22, the system behaves like case 1. If 0.22 < b < 1,
then the system behaves like case 3.

2. Select l as the bifurcation variable and choose median values for other pa-
rameters. If 0.006 < l < 0.02, then case 3 happens. If 0.02 < l < 0.06, case 1
happens.

3. Select us (which is 6ū) as the bifurcation variable and choose median values
for other parameters. If 6 < us < 24 (special region for lemming), the system
always behaves like case 3 and a limit cycle exists all the time.

In the following, we analyze model (3.1) with b ∈ [0.5, 1], varying values of l, and
other parameters taking the median values given in Table 1. For such parameters,
(3.1) has steady states (0, 0), (K, 0) and appears to have an unique positive steady
state (x∗, y∗). As in the case of model (2.3), the nonnegative cone is invariant and
model (3.1) is dissipative. It is also clear that (0, 0) is a saddle with the y-axis as its
stable manifold and the x-axis as its unstable manifold. (K, 0) is a saddle with the
x-axis as its stable manifold. For convenience, bars above u and d will be dropped
from now on.

The following simple lemma asserts that if the moss density at the positive steady
state is high enough (higher than half of the difference of the carrying capacity
and the Michaelis-Menten constant c), then the positive steady state is locally
asymptotically stable. This is well known when l = 0 (Rosenzweig and MacArthur
1963).

Lemma 3.1. Assume model (3.1) has a unique positive steady state (x∗, y∗) and
x∗ > (K − c)/2. Then this positive steady state is locally asymptotically stable.
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Figure 7. Bifurcation diagrams and limit cycles for the au-
tonomous system.
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Proof. The variational matrix at (x∗, y∗) is

J(x∗, y∗) =




aux∗(K − c− 2x∗)
aK(x∗ + c)

− ax∗

x∗ + c
abcy∗

(x∗ + c)2
−ly∗


 .

If x∗ < (K − c)/2, then
aux∗(K − c− 2x∗

aK(x∗ + c)
< 0, in which case we see that the trace

of J(x∗, y∗) is negative and the determinant of J(x∗, y∗) is positive. Hence, (x∗, y∗)
is locally asymptotically stable.

The next theorem provides an explicit condition for the unique positive steady
state to be locally asymptotically stable. As to be expected, the median parameter
values given in Table 1 fail to satisfy the condition.

Theorem 3.1. Assume model (3.1) has a unique positive steady state and

l >
4Kab[(a− d)(K − c)/2− cd]

u(K + c)3
.

Then the positive steady state (x∗, y∗) is locally asymptotically stable.

Proof. The positive steady state (x∗, y∗) satisfies

u(1− x

K
)− ay

x + c
= 0, b(

ax

x + c
− d)− ly = 0,

which is equivalent to

F (x) ≡ u(1− x

K
)(x + c)2 =

ab

l
[(a− d)x− cd] ≡ G(x).

Let
H(x) ≡ F (x)−G(x).

We have H(K) < 0 and

H(
K − c

2
) = F (

K − c

2
)−G(

K − c

2
) =

u(K + c)3

4K
− ab

l
[(a− d)(K − c)/2− cd].

We see that H(K−c
2 ) > 0 since l > 4Kab[(a− d)(K − c)/2− cd]/(u(K + c)3). This

shows that x∗ > (K − c)/2, and by Lemma 3.1 we conclude that (x∗, y∗) is locally
asymptotically stable.

Our main mathematical theorem below suggests that the low lemming consump-
tion rate of moss and the very high intraspecific competition among lemmings can
stabilize the system dynamics. Again, the median parameter values given in Table
1 fail to satisfy the condition.

Theorem 3.2. Assume model (3.1) has a unique positive steady state and l >
a/(4c). Then the positive steady state (x∗, y∗) is globally asymptotically stable.

Proof. Notice that both the origin and the boundary steady state (K, 0) are
saddles and (K, 0) has its unstable manifold pointed inward to the positive cone
{(x, y) : x > 0, y > 0}. The conclusion of the theorem follows easily from the
Poncaré-Bendixson theorem and the dissipativity of the system once we show that
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7 7.5 8 8.5 9
4.5

5

5.5

6

6.5

Lemming death rate d

Pe
rio

ds
Periods 

d
s
 d

w
 

(d) Period diagram for d

Figure 8. Period diagrams for the autonomous system.

model (3.1) has no limit cycle in the strip {(x, y) : 0 < x < K, y > 0} when 4cl > a.
We will apply the Dulac criterion. Let φ(x, y) = 1/(xy), then

∆(x) ≡ ∂φf

∂x
+

∂φg

∂y
= − u

Ky
+

a

(x + c)2
− l

x
.

We shall show that
a

(x + c)2
<

l

x
for 0 < x < K. This is equivalent to saying that

l > ax/(x + c)2 ≡ L(x) for 0 < x < K. Notice that L′(x) = a(c − x)/(x + c)3, we
see that L(x) achieves its maximum at c with the value of a/(4c). This shows that
4cl > a implies that l > ax/(x + c)2 ≡ L(x) for 0 < x < K. In other words, we
have shown that ∆(x) < 0 for 0 < x < K, which implies that model (3.1) has no
positive limit cycle when 4cl > a.

The following theorem follows naturally from the dissipativity and analytical
nature of model (3.1) (Kuang 1989).

Theorem 3.3. Whenever (x∗, y∗) is a spiral source, there exists at least one stable
positive limit cycle in the strip {(x, y) : 0 < x < K, y > 0}.

4. Conclusion: comparison of autonomous and nonautonomous models.
Comparing solutions of models (2.3) and (3.1) in Figure 6, we can see that the main
dynamical features (oscillatory nature, approximate periods, and amplitudes) of
these solutions are similar. We notice that the amplitude and period in autonomous
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Table 3. Comparison of all four lemming models

cycles period amplitude inc. vs dec. peak
(years) (in log. plot) (years)

Barrow model (1.1) 5 2.5 orders 2.8 vs 2.2 sharp
nonautonomous model (2.1) 4-4.9 2 orders 2.4-2.5 vs 1.6-2.4 sharp
nonautonomous model (2.3) 4-4.9 2 orders 2.4-2.6 vs 1.4-2.3 sharp
autonomous model (3.1) 4.8 2.5 orders 2.8 vs 2 sharp
data 4 2 orders 2 vs 2 sharp

system are both a little larger on average than those in model (2.3). Moreover, these
features all closely resemble those of the Barrow model.

To gain a close look at how amplitude and period of the autonomous model
change as some of the parameters vary within the range given in Table 1, we turn to
some amplitude bifurcation diagrams and period diagrams. Amplitude bifurcation
diagrams with respect to four key parameters are shown in Figure 7. Amplitude
bifurcation diagrams for moss growth rate u and the modified lemming death rate d
have similar behaviors; neither has any bifurcation point. In fact, both parameters
have only a very small influence on amplitudes of the cycles in their ecologically
meaningful ranges. This seems to explain why amplitudes of the autonomous model
(3.1) are very close to those of the nonautonomous model (2.3). In contrast, both
bifurcation diagrams for conversion rate b and self-limitation rate l have a (Hopf)
bifurcation point.

Period diagrams for the same four parameters are plotted in Figure 8. The pe-
riod as a function of u and d is a smooth and slow changing one. This explains why
periods of the autonomous model (3.1) are close to those of the nonautonomous
model (2.3). On the other hand, the period curves are discontinuous at the bifurca-
tion point for both b and l, respectively. This coincides well with the observations
from the amplitude bifurcation diagrams. The period changes quickly when b or
l varies near its bifurcation point. In this neighborhood of parameters, the peri-
ods of the autonomous model (3.1) can be significantly different from that of the
nonautonomous one.

Table 3 contains the comparisons of the lemming variable of all four models
appearing in this paper with real data from Gilg et al. (2003). The features com-
pared are (1) the approximate periods, (2) the order of magnitudes from lemming
low density level to its high density level, (3) the number of years from low lem-
ming density level to high lemming density level versus the number of years from
high lemming density level to low lemming density level, and (4) the peak shape.
According to these key dynamical features, the autonomous moss-lemming model
(3.1) actually provides a slightly better approximation than the Barrow model, if
we take into account each and every period.

Our work clearly suggests that an autonomous system can indeed be a good
approximation to the moss-lemming dynamics at Point Barrow. This, together
with our bifurcation analysis, indicates that neither the seasonal factor (expressed
by time-dependent moss growth rate and lemming death rate in the Barrow model)
nor the moss growth rate and lemming death rate are the main culprits of the
observed multi-year lemming cycles. The main culprits may include high lemming
predation rate a (since conversion rate is more or less constant, this is equivalent



98 HAO WANG AND YANG KUANG

to high lemming birth rate) and low self-limitation rate l, as they enable cyclic
population dynamics.

Indeed, Hoffmann (1958) suggested that reproductive changes play relatively
minor roles in inducing cyclic population dynamics. However, Hoffmann (1958)
thought that important factors causing population oscillations must include mor-
tality changes. Our result suggests that this assertion is not well grounded theoreti-
cally. Our conclusion that seasonal effect does not play a key role in inducing cyclic
lemming dynamics is in agreement with a similar statement of Krebs (1964) made
on lemming cycles at a different location. In addition, our findings confirm the field
observation of Erlinge et al. (2000), who stated that higher litter sizes (equivalent
to higher birth rates) may trigger lemming cycles. However, our conclusion that low
self-limitation rates promote cyclic dynamics contradicts Chitty’s (1996) hypothesis
that claims high level of aggressiveness (equivalent to higher self-limitation rate)
induces lemming cycles.

We end our paper by recapping our ad hoc but effective procedure for deter-
mining whether a time-dependent parameter can be replaced by a constant in an
oscillating system: plot amplitude and period diagrams in a biologically reasonable
range for that parameter. If there is no bifurcation point and the period curve is
continuous, then we can replace that time-dependent parameter by its weighted
average. Biologically, this suggests that parameter is not a key one for generating
the observed oscillatory solutions.
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