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Abstract. We model the effects of both stochastic and deterministic temper-
ature variations on arthropod predator-prey systems. Specifically, we study
the stochastic dynamics of arthropod predator-prey interactions under a vary-
ing temperature regime, and we develop an individual model of a prey under
pressure from a predator, with vigilance (or foraging effort), search rates, at-
tack rates, and other predation parameters dependent on daily temperature
variations. Simulations suggest that an increase in the daily average temper-
ature may benefit both predator and prey. Furthermore, simulations show
that anti-predator behavior may indeed decrease predation but at the expense
of reduced prey survivorship because of a greater increase in other types of
mortality.

1. Introduction. A central issue in population ecology is to determine factors
that regulate populations and trophic interactions (Kareiva et al. [27], Murdoch et
al. [40], Joern et al. [25]). Environmental factors, many of which are stochastic, are
foremost among mechanisms that affect the dynamics of ecosystems. In particular,
temperature variations have a strong influence on arthropod populations and their
interactions (Logan & Powell [34], Logan & Bentz [33], Gilbert & Ragworth [14],
Bentz et al. [5]). In an era when global climate change is a major issue, understand-
ing the effects of these variations on resource-consumer dynamics is essential (see
Burns [8] for a bibliography; Joern et al. [25], Belovsky & Joern [2]). The key ideas
underlying arthropod predator-prey interactions are put forth in Hassell [19] and
also reviewed, for example, in Murdoch et al. [40]). However, with few exceptions
(Mack & Smilowitz [38], Gilioli et al. [15], Logan et al. [36]), the inclusion of tem-
perature in many of the ecological models addressing predator-prey relationships
seems to be lacking. In brief, in this paper we study the stochastic dynamics of
arthropod predator-prey interactions under a varying temperature regime, and we
develop an individual model of a host under pressure from a predator, with vigi-
lance (or foraging effort), search rates, attack rates, and other predation parameters
dependent upon daily temperature variations.
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Our model is motivated by recent work by Luttbeg et al. [37], who study trait-
and density-mediated effects in a foraging-predation risk environment. They model
foraging success as a binomial random variable depending upon the foraging effort
and resource level. The foraging effort can be interpreted as prey vigilance, and
it depends upon predation risk. In our model the predation risk is a function of
the state, or fitness, of the prey, the prey’s vigilance, and the predator density. In
Luttbeg et al. [37] and in our model, the prey’s state evolves over a fixed time
horizon by accumulating, each day, the difference between foraging success (intake)
that day and a constant daily metabolic cost. No effort is made in our model to
resolve predator population dynamics. We assume that predator density is an input,
determined, for example, from field estimates. In summary, we extend Luttbeg et
al. [37] to include

• temperature effects,
• foraging success dependent upon nutritional state,
• nonlinear growth rate.
For poikilothermic organisms, daily activity is largely determined by tempera-

ture. Changes in temperature can alter the daily activities for both predator and
prey, resulting in possible changes in predation and foraging rates. For example,
in a predator-prey system where the predator and prey are active under different
temperature ranges (e.g., wandering lycosid spiders and grasshoppers), an increase
in the daily average temperature may prove beneficial to prey by providing addi-
tional foraging time in the absence of predators. This in turn may result in a higher
prey nutritional state and provide prey with additional energy that may allow for
increased anti-predator behavior and lower predation. The trade-off between forag-
ing and predation risk is discussed in Brown et al. [7], Houston et al. [21], Houston
& McNamara [20], and Lima & Bednekoff [31]. We add to this body of work by
providing a functional form for vigilance that depends on temperature-dependent
quantities, such as predator search rate, prey nutritional state, and the effective
predator density (i.e., active predators).

The purpose of this paper is twofold: first to present a rational mechanism for
the inclusion of temperature into predator-prey models for terrestrial ectotherms,
and second to illustrate the model by applying it to an actual predator-prey system
for wandering lycosid spiders and grasshoppers (Beckerman et al. [1], Danner &
Joern [11], [12], [13], Joern et al. [24], Joern & Gaines [23], Logan et al. [36]). In
addition, we perform simulations for both ignorant and non-ignorant prey (that em-
ploy vigilance) using three different average daily temperatures. We simulate the
life history for 10,000 individual prey to determine prey survivorship, predation,
total prey mortality, and adult prey mass. In particular, we use the simulations
for the spider-grasshopper system to address the following questions: will an in-
crease in daily average temperature prove favorable for the predator or prey (i.e.,
increased predation, or increased prey survivorship); will an increase in daily av-
erage temperature change adult mass; what is the trade-off between types of prey
mortality when prey employ anti-predator behavior (i.e., will the survivorship gain
from reduced predation offset the additional mortality that results from reduced
foraging)?
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Figure 1. Depiction of hourly ambient air temperature. The var-
ious activity zones (Zi,j) are shown on the vertical axis, and the
corresponding measure of the time spent in these zones (Ti,j) is
shown on the horizontal axis.

2. Model components.

2.1. Temperature zones. Insects are ectotherms and must rely on external heat
sources and sinks to control body temperature. Thus, to adequately model predator-
prey systems involving insects, it is essential to include the effects that ambient
air temperature has on determining body temperature, as it influences both food
acquisition and processing capabilities for ectotherms (Huey and Stevenson [22],
Crowder & Magnuson [10], Karasov [26], Zimmerman & Tracy [52], Yang & Joern
[50] [51], Harrison & Fewell [18]). For simplicity, we assume the microhabitat tem-
perature coincides with the ambient air temperature, although we recognize that
microhabitat temperature is actually a function of ambient air temperature and
solar radiation falling on the environment. Further, many animals (ectotherms) ex-
hibit behavior that allows them to thermoregulate in their environment. While we
choose to ignore these factors in this work, the reader is referred to Logan et al. [36]
for a model that relates microhabitat temperature to ambient air temperature and
solar radiation. Temperature can further complicate ectotherm predator-prey in-
teraction when the prey and predator possess differing temperature ranges in which
they are effectively able to thermoregulate. For example, spiders exert a significant
limiting influence on grasshopper populations through both direct effects, such as
predation (Belovsky & Slade [3], Oedekoven & Joern [41], [42], and indirect effects,
such as reduced foraging effort due to the presence of spiders (vigilance) (Rothley
et al. [44], Danner & Joern [12]). The responses exhibited by both species are
affected directly by temperature (Kemp [28], Li & Jackson [30], Lactin & Johnson
[29]), with the daily activity schedule of spiders differing significantly from that
of grasshoppers. Generally, spiders are active in an ambient air temperature zone
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(AP in Figure 1) that includes temperatures below those needed by grasshoppers
to effectively thermal regulate, while grasshoppers are active in a range of temper-
atures (AN ) which include values higher than those at which spiders can effectively
operate. Thus, to adequately model the daily dynamics of spider and grasshop-
per interactions, we define four ”activity zones” (Figure 1). These zones are easily
adapted to other predator-prey systems and the associated dynamics that occur in
these zones is also highly species dependent.

The activity zone Z1,1 is defined by the overlapping temperature zone in which
both the predator and prey exhibit highly active behavior. Within this zone, we
expect maximum interaction between the species with associated complex predation
dynamics. For example, it is expected that predation is high in this zone when
predators are highly dependent upon prey motion for identifying prey. At the
same time, this activity zone will induce high sensory processing for prey, thus
allowing prey with highly evolved anti-predator mechanisms potentially to elude
predation, but at the expense of reduced foraging. The activity zone Z1,0 is defined
by temperatures that are conducive for active behavior in predators and inactive
behavior by prey. The dynamics of predation in the zone greatly depend on the
ability of the predator in identifying inactive prey. If the predator has well evolved
searching skills that allow it to identify stationary prey, then a large amount of
predation can occur in this zone. On the other hand, if prey identification depends
largely on prey motion, then this zone will produce predation dynamics similar to
the dynamics that occur when prey are exhibiting anti-predator behavior. The zone
Z0,1 is highly favorable for prey foraging because predation, as well as the threat
of predation, is very low. For example, in grasshopper–wolf spider interactions,
the wolf spiders are effectively absent from the field when temperatures are above
those in their active temperature range, thus creating ideal foraging conditions for
grasshoppers. Finally, in the zone Z0,0, both the predator and prey are inactive,
and little foraging or predation is occurring. For prey (or predators), extended time
in this zone limits the time available to forage actively and thus increases risk of
starvation.

These activity zones help explain temporal differences observed in many predator-
prey interactions. We let Ti,j(n) denote the time spent in activity zone Zi,j on
day n. We assume that there are upper and lower temperature thresholds θmin

and θmax between which both predator and prey are active. If θ(τ, n) is the
hourly temperature on day n where σ is measured in hours (0 ≤ τ ≤ 24), then
T1,1(n) = meas{τ : θmin ≤ θ(τ, n) ≤ θmax}. Further, T0,0 + T1,0 + T0,1 + T1,1 = 24.
Table 1 gives a summary of the activity zones.

Table 1. Activity zone behavior
Zone Predator Prey
Z1,1 Active Active
Z1,0 Active Inactive
Z0,1 Inactive Active
Z0,0 Inactive Inactive

For the simulations, we model the hourly ambient air temperature on day n by

θ(τ, n) = θ(n) + B cos
(τ − 14)π

12
, 0 ≤ τ < 24, (2.1)
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where θ(n) is the average ambient air temperature on day n. The air temperature
can also be obtained from field site data, but we take an average value compiled
from the U.S. Weather Service [48] near a field site in western Nebraska. The
average daily temperature on day n, computed over a 30-year period for the dates
June 1 through September 30, can be fit by the quadratic

θ(n) = θ0 + 0.2547n− 0.0014n2, (2.2)

where θ0 = 17.01 (Celsius) is the average temperature on June 1, with R2 = 0.96.
For simplicity we use an average daily amplitude of B = 7.58 degrees, but note
that daily amplitude also varies with n.

2.2. Fitness dynamics. The costs and benefits of an action may depend on the
state (fitness) of the animal. For small arthropods, such as insects, fitness varies on
a daily, if not hourly, basis. For example, Simpson and Simpson [46] showed that
nutrient titers in the hemolymph of grasshoppers change markedly within hours
of consuming a meal. It was further observed that these nutrient titers play a
significant role in triggering the onset of foraging (Simpson & Raubenheimer [45]).
In this section we describe a measure for fitness and incorporate prey fitness into
both the predation and foraging rates.

The rate at which prey accumulate mass is clearly prey specific. Moreover, the
uniformity at which individuals within the same cohort grow is species dependent
and varies with foraging success and food quality. For example, Chambers [9] ob-
served that Locusta migratoria fed foods of various quality exhibit compensatory
feeding and were able to defend a very tight range of mass targets and development
rates. This contrasted strongly with the gypsy moth, Lymantria dispar, whose
larvae (Stockhoff [47]) suffered marked differences in both pupal mass and devel-
opment time when presented with food of variable quality. For the simulations
and predictions included in this paper, we use a geometric model for mass growth,
assuming adult prey mass differs by at most 10%, and we incorporate both prey
growth rate and mass range in defining the daily fitness of prey.

To define prey fitness, we follow Luttbeg [37], but with significant refinements.
To reflect the rapid changes in fitness that occur in small prey, we define daily
fitness s(n) by

s(n) =
(

m(n)
mmid(n)

)κ

,

where m(n) is the dry mass of the prey on day n and mmid(n) is the mid range
value determined by the upper and lower growth curves on day n (Figure 2). The
parameter κ determines the shape of the daily fitness curve. It is species dependent,
and it depends on the role that fitness plays in determining foraging effort and prey
vigilance. For example, when fitness is high (s(n) > 1), then prey can afford to be
more vigilant (and thus reduce predation risk) than prey who are at a low level of
fitness (s(n) < 1). The value of κ either increases or decreases the role that fitness
plays in determining vigilance level or foraging effort. Further discussion on the
role of κ is included in Section 2.4.

2.3. Mass gain dynamics. Using field data for hatch mass and adult mass (mg.,
dry weight) we follow Luttbeg [37] to create a mechanistic model for mass gain
that is dependent upon the daily number of meals consumed. Additionally, we
assume prey gain mass at a geometric rate until becoming adults (geometric growth
occurs under the assumption of an energy budget model where both the rate of
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consumption and the metabolic rate are proportional to mass (Gurney & Nisbet
[17]). Our model is easily adapted to other mass gain rates, such as the linear
model implicitly assumed in Luttbeg [37]. Furthermore, we employ a fixed time
model (Houston & McNamara [20], Luttbeg [37]) that determines the length of the
juvenile stage. That is, we assume that prey become adults in a fixed time horizon
of 50 days (Luttbeg [37]). The model can be adapted to other approaches, such as
a fixed-size horizon (prey become adults upon reaching a predetermined size range)
(Houston & McNamara [20]).

For notation we use the double subscript i, j to denote dynamics that occur in
activity zone Zi,j . We assume that daily mass gain, dg(n), is determined by

dg(n) =





−cf +
(

∆min(n)+cf

xmin

)
x if x ≤ xmin

∆min(n) +
(

∆mid(n)−∆min(n)
xmid−xmin

)
(x− xmin) if xmin < x ≤ xmid

∆mid(n) +
(

∆max(n)−∆mid(n)
xmax−xmid

)
(x− xmid) if xmid < x ≤ xmax

∆max(n) if x > xmax

(2.3)

where x (n) is the number of meals consumed on day n; cf is a fixed daily metabolic
cost; xmin, xmid, and xmax are the number of meals that result, respectively, in daily
mass gains of ∆min(n), ∆mid(n), and ∆max(n). These mass gains correspond to the
mass trajectories given in Figure 2.

Central to dg(n) is the daily meal consumption x(n), which we assume is Poisson
distributed. We let X(n) be a random variable denoting the number of meals
consumed by prey on day n. For arthropods, foraging behavior has been successfully
modeled (Wolesensky et al. [49]) using the observation that time intervals between
successive foraging events are exponentially distributed (Gross [16]). From this
assumption it follows that the Poisson distribution is appropriate for the number
of meals, Xi,j , consumed in the time interval Ti,j with Poisson rate parameter
λi,j = γij(1− vij). That is,

Pr(Xi,j(n) = xi,j(n)) ∼ Poisson(λi,j = γij(1− vij)), (2.4)

where γi,j is the foraging rate (meals/hour) with no vigilance and vi,j is the level of
vigilance exhibited by prey in zone Zi,j (vigilance is discussed in detail in the next
section). Then

x(n) =
∑

all i,j

xi,j(n), (2.5)

from which it follows that prey mass on day t is given by

m(n) = m(0) +
t∑

n=1

dg(n),

where m(0) is the initial prey mass. If, at any time, the prey mass on day n lies
below the minimum mass trajectory on that day (lower curve in Figure 2), then we
assume the prey dies due to starvation (or other natural causes).

2.4. Predation and vigilance. We assume that predation events occur according
to a simple Poisson process (Lima & Bednekoff [31]) with attack rates

α1,0, α0,1, α1,1, α0,0

that differ according to the activity levels of the predator and prey. When modeling
predation as a Poisson process, it is standard to include predator density, vigilance,
and attack rate in the Poisson rate parameter ρ. In our model, we assume that this
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Figure 2. Schematic showing the maximum, minimum, and
midrange mass trajectories over the 50-day nymphal period. The
actual mass history of an individual lies in the band.

parameter varies according to the activity zone to which it corresponds. That is,
ρi,j = ρi,j(Pe, vi,j , αi,j), where Pe is the effective predator density and vi,j is the
level of vigilance. The actual predator density Pa is fixed, as is the case for the
rangeland grasshopper-lycosid system considered here (Joern et al. [24]). While
the actual density of predators is assumed constant, the effective density of the
predators depends on the various activity zones. For example, in temperature zones
where the predator is active (Z1,0, Z1,1), we use density Pa, but in temperature
zones where the predator is relatively inactive (Z0,1, Z0,0), we assume an effective
density Pe = δPa with 0 ≤ δ ≤ 1. The value of δ reflects the severity of activity
limitation that predators exhibit when encountering less than ideal temperatures.
More precisely,

Pe =
{

Pa in Z1,0 and Z1,1

δPa in Z0,1 and Z0,0
. (2.6)

The success of predators in securing prey depends in large part on the anti-
predator behavior (vigilance) exhibited by the prey. While most models that in-
corporate vigilance (or feeding effort) are concerned with the level of vigilance that
optimizes some fitness criteria (Houston et al. [21], Brown et al. [7], Lima & Bed-
nekoff [31], Luttbeg et al. [37]), we include vigilance v(t) in our model using an
explanatory approach. That is, because vigilance is an anti-predator behavior of
the prey, it should depend on prey traits (Lima & Steury [32]) such as fitness (nu-
tritional state) and sensory characteristics, as well as predator density and predator
activity (search speed). We state this mathematically by v(t) = v(s, D, Pe, ri,j),
where s is the nutritional state of the prey, D is the sensory diameter of the prey,
Pe the effective density of the predator, and ri,j the search speed of the predator
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(distance/predator/time ) while in activity zone Zi,j . The sensory diameter D is a
measure of the region around prey in which they are able to perceive predation risk
by using some type of sensory mode (e.g., visual, chemical, auditory, etc.). The
value of D depends greatly on the complexity and structure of the habitat, and
one expects the value of D to significantly influence prey survivorship. A small D
is indicative of prey that are largely ignorant of predators and who would spend
little time being vigilant, thereby leading to both increased foraging and increased
predation. Large D refers to fretful prey that spend a large portion of time being
vigilant at the expense of foraging. We determine the proportion of time that a
prey spends being vigilant while in activity zone Zi,j by the dimensionless quantity

vi,j(n) = min{ρs(n)Dri,jPe, 1}. (2.7)

The first term in braces is the proportion of time spent being vigilant. The proba-
bility of surviving predation on day t is determined by

Pr(survival) =
∏

all i,j

exp(−αi,j(1− vi,j)2Ti,j). (2.8)

To make (2.7) dimensionless we multiply by the factor ρ, which we give value unity
and dimension time. In general, it is expected that prey with a high level of fitness
(s(n) > 1) can afford to be more vigilant than prey with a low level of fitness
(s(n) < 1). The exact role that fitness plays in determining vigilance depends on
the parameter κ used in defining the daily fitness s(n). If fitness exerts a large
influence on vigilance, then a large κ should be used, whereas if fitness plays a
small role in determining vigilance, then κ near 0 would be appropriate.

We now summarize the algorithm used in the simulations. We track the daily
mass increase and the total mortality for 10,000 individual prey in a cohort over
their nymphal period. For an individual with initial mass m(0), the mass gain,
survivorship, and mortality (from both starvation and predation) are computed
recursively, day to day. Specifically, on a given day, the times Ti,j (representing the
measure of the time spent in temperature zone Zi,j) are calculated from the daily
hourly temperature profile. Using a Poisson random variable (2.4), this determines
the number of meals (2.5), which determines the daily mass gain dg (2.3) on day n,
and hence the natural survivorship. On the same day, the probability of surviving
predation is determined from (2.8). This information is then used as the initial
conditions for the next day.

3. Simulations and results. While we recognize that predator-prey systems are
complex with subtle nuances, simulations using our stochastic model provide op-
portunities to investigate, at least qualitatively, ecological questions involving tem-
perature modulation within a predator-prey system. In particular, we examine how
changes in temperature affect

1. survivorship through changes in predation and other mortality,
2. adult fitness (or mass) of prey upon reaching adulthood, and
3. anti-predator behavior, such as vigilance.
Table 2 provides a listing of the primary model components, parameters, and

functions used in the simulations. The parameter values reflect grasshopper-spider
interactions in a grassland ecosystem where field experiments show that spider
densities and size distributions are nearly constant (Joern et al. [24]). The ini-
tial simulations use a deterministic temperature ((2.1), (2.2)) and assume ignorant
prey (i.e., no vigilance). These baseline results are later compared to simulations
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assuming non-ignorant prey and simulations that employ a stochastic daily average
temperature. In all cases, the plots and analysis reflect typical realizations resulting
from 10,000 individual runs.

Table 2. Primary model components, parameters, and functions.
Symbol Definition Additional Information Units

Zi,j Activity zone Temperature Dependent

Ti,j(n) Time spent in Zi,j Temperature Dependent Hours

m(n) Dry mass of prey Used to define fitness Mass

mmid(n) Midrange prey mass See growth curves Mass

s(n) Daily fitness s(n) = (m(n)/mmid(t))κ

κ Defines shape of s(n) κ = 1
dg(n) Daily mass gain Meal dependent Mass

cf Daily Maintenance cf= 2 Mass

x(n) Prey meals on day n Determines growth Meals

f1(x) Mass gain function see (2.3)

f2(x) Mass gain function see (2.3)

f3(x) Mass gain function see (2.3)

xmin Meals = ∆min xmin= 9 Meals

xmid Meals = ∆mid xmid= 12 Meals

xmax Meals = ∆max xmax= 15 Meals

m0 Minimum initial mass m0= 7 Mass

M0 Maximum initial mass M0= 9 Mass

mf Minimum terminal mass mf = 180 mg. Mass

Mf Maximum terminal mass Mf = 200 mg. Mass

γi,j Foraging w/o vigilance γi,1= 2/3, γi,0= 1/12 Meals
Hr

αi,j Attack rate α1,1= .005, α1,0= .0001, α0,j= 0 per Hr

Pa Actual predator density Pa= .01 Pred
Meter2

δ Density parameter δ = .05
Pe Effective density see (2.6) Pred

Meter2

v(t) Vigilance 0 ≤ v(t) ≤ 1
D Sensory diameter D = 1 Meter

ri,j Predator search rate r1,j= 10, r0,j= 0 Meter
Pred·Hr

3.1. Baseline simulations: No vigilance. Figure 3 shows survivorship (subplots
(a), (b), (c)), predation (subplots (d), (e), (f)), and other mortality (subplots (g),
(h), (i)) under a deterministic average daily temperature given by (2). The columns
in Figure 3 correspond to letting T0 in equation (2.2) equal 17.01◦ C, 17.51◦ C, and
18.01◦ C, respectively (i.e., changing the average daily temperature by 0.5 and 1
degree Celsius). Table 3 includes data related to Figure 3 and the relative percent
changes over the time horizon that occur as the average temperature increases.

Table 3. Relative percent change with increasing temperature (no vigilance)
End of season results Temperature constant T0

17.01◦ 17.51◦ % Change 18.01◦ % Change
Survivorship 3.0% 5.0% +66.67 7.70% +54.0
Predation 15.09% 18.94% +25.51 24.33% +28.46
Starvation 81.91% 76.06% −7.14 67.91% −10.72
Mean Adult Mass (mg.) 191.29 191.59 +0.16 192.37 +0.41
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As the average temperature increases, there is a corresponding increase in end-of-
season survivorship, as illustrated in subplots (a), (b), and (c) of Figure 3 and row
2 of Table 3. This increase occurs despite a significant increase in predation (see
subplots (e), (f), (g) of Figure 3 and row 3 of Table 3). The increase in predation
is explained by additional predation occurring late in the growing season, due to
greater survivorship. In all three predation subplots, the predation occurring in the
first quarter of the growing season is approximately the same, but in subplots (e)
and (f) greater predation can be observed in the latter part of the growing season.
The results in Figure 3 are consistent with size-independent predation and prey
with no resource (food) limitation. If size-dependent predation were included in the
model, then the increased predation predicted later in the season would disappear,
and the results would show an even greater increase in survivorship. For prey with
resource limitations, the predicted increase in survivorship would be greatly reduced
by additional mortality occurring later in the growing season. Subplots (h), (i), (j)
of Figure 3 show predicted mortality caused by starvation, which in the model
occurs when prey mass falls below the minimum mass trajectory (Figure 2). Prey
mass in the model depends on meals ingested (foraging success) and will fall below
the minimum mass trajectory when prey fail to consume sufficiently many daily
meals (equation (2.5)). Our model corresponds to prey that hatch in the spring
and mature through the summer; thus, the part of the day that is favorable for prey
foraging increases throughout the growing season. Therefore, the probability that
prey ingest sufficient meals to remain above the lower mass trajectory increases
and hence lowers mortality caused by starvation later in the growing season. This
trend is apparent in all three subplots ((h), (i), (j) of Figure 3) and agrees with
empirical results for grasshoppers where death from starvation is more likely in
young nymphs (Belovsky & Slade [4]).

3.2. Non-ignorant prey: The cost of vigilance. Figure 4 and Table 4 give
results of simulations that include prey vigilance (equation(2.7)), while using the
same temperature conditions as in 3.1. Subplots (a), (b), and (c) of Figure 4 still
show an increase in survivorship with an increase in daily average temperature,
but end-of-season survivorship is significantly lower than when vigilance is absent
(subplots (a), (b), and (c) of Figure 3 and row 1 of Table 3). The effectiveness of
vigilance in reducing predation is evident when comparing subplots (d), (e), and (f)
of Figure 4 with the corresponding subplots in Figure 3. We see greater mortality
occurring from starvation when vigilance is included (compare subplots (g), (h),
(i) of Figure 4 to corresponding subplots in Figure 3). This increase in starvation
results from prey spending a proportion of their day being vigilant, thus reduc-
ing their foraging success. Overall, the additional loss in survivorship that occurs
from an increase in starvation more than offsets the gain in survivorship from re-
duced predation (compare subplots (a), (b), and (c) in Figure 4 with corresponding
subplots in Figure 3). We call this loss in survivorship the cost of vigilance. An
additional consequence of including vigilance is that the mean adult mass (hence
adult fitness) of the prey (row 5 in Tables 3 and 4) tends to be slightly lower. This
could have reproductive consequences and hence consequences on yearly prey dy-
namics, particularly if reproduction capacity (egg clutch size, for example) is mass
dependent. In general, most models that include vigilance or feeding effort seek to
determine an optimal level that maximizes some fitness criteria (examples include
Lima & Bednekoff [31], Luttbeg et al. [37], McNamara & Houston [39], Brown [6],
Brown et al. [7], Houston et al. [21]). That is not our goal. Instead, we model
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Figure 3. Baseline results. These subplots show results obtained
by tracking 10,000 individual ignorant prey (no vigilance included)
from a single cohort using a deterministic daily average tempera-
ture (equation (2.2)). The rows show survivorship, predation, and
mortality from causes other than predation. The columns were
obtained using 17.01◦ C, 17.51◦ C, and 18.01◦ C, respectively, for
the average daily temperature (T0 in equation (2.2))

the inclusion of a rational mechanism for individual prey vigilance and its effect on
overall population survivorship.

Table 4. Relative percent change with increasing temperature (with vigilance)
End of season results Temperature constant T0

17.01◦ 17.51◦ % Change 18.01◦ % Change
Survivorship 1.09% 2.02% +85.32 4.25% +110.40
Predation 7.64% 10.22% +33.77 12.91% +26.32
Starvation 91.27% 87.76% −3.85 82.84% −5.61
Mean Adult Mass (mg.) 190.22 190.14 −0.04 191.31 +0.62

3.3. Stochastic daily average temperature. One motivation for this work is
to show that small changes in temperature can have profound effects on predation
and survivorship in predator-prey systems. In Sections 3.1 and 3.2 we investigated
the effect of changing the daily average temperature in a deterministic temperature
model. While much can be gained from such investigations, weather events that
occur on the scale of days can severely limit prey foraging and predation events to
the extent that, over the period of a few days, little or no foraging or predation
may occur. To examine the ways weather events translate into survivorship and
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Figure 4. These subplots show results obtained by tracking
10,000 individual non-ignorant prey (vigilance is included) from
a single cohort using a deterministic daily average temperature
(equation (2.2)). The rows show survivorship, predation, and mor-
tality from causes other than predation. The columns were ob-
tained using 17.01◦ C, 17.51◦ C, and 18.01◦ C, respectively, for the
average daily temperature (T0) in equation (2.2)).

predation, we assume the temperature history (2.1) includes a stochastic average
daily temperature input. That is, we replace θ(n) in (2.1) by Θ(n), which we define
by the first-order autoregressive process

Θ(n + 1) = θ(n) + α(Θ(n)− θ(n)) + σ
√

1− υ2Z, (3.9)

where α is the autocorrelation, σ is the standard deviation, and Z is a normal
random variable with zero mean and unit variance. Figure 5 gives a seasonal
realization of the average daily temperature using (2.1) and (3.9).

Figure 6 shows simulated results for a 50-year period using the stochastic daily
temperature input (3.9). Each year represents end of season survivorship results
for a single cohort of 1000 individuals. Survivorship in the 50 year simulation
ranges between 0.75% and 4% with a median of 2.3%. For many insect species,
such as grasshoppers, shifts in end of season survivorship of only 1% or 2% may
be sufficient to signal an outbreak year (a year when the insect is recognized as a
significant pest) or the onset of conditions favorable for an outbreak in a subsequent
year. For example, a high percentage of adult survivorship usually leads to high
egg production, which may be a precursor for an outbreak in the following year.
To make predictions with regard to actual prey density, it is essential to link yearly
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Figure 5. Seasonal average daily temperature as a first-order au-
toregressive process (re: equation (3.9)).

cohort results with year-to-year dynamics. With grasshoppers, that would include
linking adult survivorship to egg production and egg hatch rate, both of which are
strongly weather related.

4. Conclusions. The model presented in this work has several advantages. First,
it can be easily modified to investigate additional ecological questions associated
with climate change, such as changes in food quality, vegetation density, initial
(birth, hatch) mass, size dependent mortality, and predator dynamics. For example,
it is predicted that elevated CO2 levels may increase the amount of vegetation and
in turn provide an advantage for cryptic prey. To investigate the effect of increased
vegetation and its role on predation, one can let the various attack rates (αi,j) differ.
On the other hand, increased vegetation is predicted to have lower food quality, thus
requiring prey to employ compensatory foraging behavior and increase the number
of meals required. For example, grasshoppers have been observed to eat twice as
much when food is diluted to half its original nitrogen content (Raubenheimer &
Simpson [43]); in grasshoppers this occurred by eating twice as many meals, not
by eating larger meals. To examine what effect reduced food quality may have on
survivorship and predation, it is only necessary to increase the value of xmid in
equation (2.3). Size-dependent mortality can be included in the model by letting
the temperature zone attack rates be size dependent, such as in Luttbeg et al. [37]
or Logan & Wolesensky [35]. The initial mass of a prey species may depend on
climatic conditions, such as winter severity. For simulations used in the model,
we assumed that all were of the same initial mass (m(0) = mmid(0) = 8 mg.).
In actuality, the initial mass of a species may be better represented by a mass
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Figure 6. End-of-season survivorship for 50 years with a stochas-
tic temperature input.

distribution function. By selecting the initial mass of individuals using a density
function, the model can be used to see what effect various initial distributions
have on survivorship and adult mass. The predator-prey system we modeled had
a constant predator density, but the model can be adapted in a straightforward
manner to include predator dynamics. Predator density is used in determining
prey survival (equation (2.8)) and prey vigilance (equation (2.7)); using a variable
predator density presents no difficulties in either of these equations. Last, and most
important, by using the simple structure of temperature-dependent activity zones
the model presents a rational mechanism for including temperature into predator-
prey dynamics (see also Logan & Wolesensky [35]).

Simulations of the model using parameters that are appropriate to a predator-
prey system for wandering spiders and grasshoppers in a high plains environment
provide insight into how changes in the daily average temperature effect prey sur-
vivorship and predation. Simulations show a significant increase in prey survivor-
ship when the daily average temperature increases in increments of 0.5◦ C (Figures
3 and 4). Interestingly, the increase in survivorship does not come at the expense of
predation. To the contrary, simulations predict that predation will increase when
the daily average temperature is increased, suggesting that an increase in daily
average temperature may benefit both the predator and the prey (if one assumes
that increased predation is advantageous to the predator population). Additionally,
simulations show that including prey vigilance leads to lower predation, but at the
expense of reduced overall survivorship due a greater increase in starvation (Figure
4). This leads to the conjecture that for some arthropod prey, mortality attributed



STOCHASTIC MODEL, STATE-DEPENDENT RISK, AND RANDOM FORAGING 81

to the presence of predators is an important factor in controlling prey populations.
Further, by comparing the results for both ignorant and non-ignorant prey, model
predictions illustrate how decision-making on the individual level can lead to con-
sequences that are not beneficial for the population. By employing vigilance, an
individual prey may avoid certain death in the presence of a predator, but the
consequence of doing so leads to negative consequences for the entire population.

With the reality of global climatic change, it is increasingly important to include
temperature when modeling predator-prey interactions involving ectotherms. This
work has two goals: first, to present a rational, mechanistic model for the inclu-
sion of temperature into a terrestrial ecosystem involving exothermic predators and
prey, and, second, to verify the usefulness of such a model by making qualitative
predictions using parameters that reflect an actual predator-prey system. In addi-
tion, we presented results of the model using both ignorant and non-ignorant prey.
The main conclusion of these simulations is that temperature changes play a key
role in prey survivorship and predation and can simultaneously provide conditions
favorable for both predator and prey.
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