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Abstract. We model the development of an individual insect, a grasshopper,
through its nymphal period as a function of a trade-off between prey vigilance
and nutrient intake in a changing environment. Both temperature and food
quality may be variable. We scale up to the population level using natural mor-
tality and a predation risk that is mass, vigilance, and temperature dependent.
Simulations reveal the sensitivity of both survivorship and development time
to risk and nutrient intake, including food quality and temperature variations.
The model quantifies the crucial role of temperature in trophic interactions
and development, which is an important issue in assessing the effects of global
climate change on complex environmental interactions.

1. Introduction. A central challenge in population ecology is to understand how
key interactions can be integrated into a coherent model of population regulation.
It is increasingly appreciated that multiple factors operate simultaneously. Such
factors include environmental conditions, food quality, and animal behavior, espe-
cially in the presence of competing species or predators, or in foraging strategies
(Dunham et al. [13], Grant & Porter [19], Dunham [13], Belovsky & Joern [2],
Schmitz et al. [48], Schmitz [47], Pitt [44], Danner & Joern [11]). Because of the
difficulty, or even impossibility, in synthesizing many different concepts into a single
coherent study, most models of population regulation deal with only one or two crit-
ical factors. Yet, incorporating many such interactions involving individual-based
attributes into population models may be key to their resolution.

Temperature is a key driving force affecting ectotherm physiology, and it has
many important ecological consequences (Logan1 et al. [34], Grant & Porter [19],
Dunham [13], Stamp & Casey [49], Gilbert & Ragworth [16], Gillooly et al. [18]).
Feeding, metabolism, and development rates are strongly temperature dependent.
Temperature variation can also affect the interactions of prey with predators. Both
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predator and prey activity must be coincident; many arthropods have activity peri-
ods bounded by upper and lower threshold temperatures, and temperature changes
can shift the interaction periods (Joern et al. [25], Logan et al. [39], Logan & Wole-
sensky [40],[41]). Slower development rates can also mean additional time spent in
those stages where predation risk is greater. Global climate change, which may
lead to increased or decreased average temperatures, or larger stochastic variations
in temperature, can have a strong effect on underlying critical interactions, and it
is important to examine these effects in the context of consumer responses (Joern
et al. [25]).

For insect herbivores such as grasshoppers, the availability of food bulk is seldom
an issue; but existence of sufficient food with quality above a minimum level is.
The natural decrease of protein availability over a growing season causes the C:N
ratio in food to increase, thereby decreasing food quality. An insect grazer must
therefore increase its intake rate to meet its nutritional demands. However, lower
temperatures may make this adjustment impossible, leading to increased mortality
(Ayers [1], Pitt [44]). Furthermore, if the prey is aware of predators, then prey
vigilance may force the prey into refuge or inactivity, reducing its foraging effort,
and again its nutrient needs cannot be met (Houston et al. [22], Lima [30], Brown
et al. [7], Danner & Joern [11]).

Many papers have examined the behavioral trade-off between nutrient acquisi-
tion and predation risk (e.g., see Lima [30]). Simply stated, feeding options with
higher nutrient gain often carry higher risk. As a result, there are many studies
regarding behaviorial characteristics that satisfy nutrient requirements while avoid-
ing predation (Gilliam & Fraser [17], Lima & Dill [31]). These studies pose issues
such as: how a forager uses time allocation or habitat selection to lessen preda-
tion risk (Brown [6]); trade-offs between feeding rates and safety within a patch
(Lima & Dill [31], J. S. Brown [5]); how prey optimally select a vigilance level to
maximize fitness (Houston et al. [22], Houston & McNamara [23], McNamara &
Houston [42]); and, how time-dependent risk drives anti-predator behavior and risk
allocation (Lima & Bednekoff [32]). Recent discrete models that include foraging
and risk based on probability are presented in Luttbeg et al. [33] and Wolesensky
& Logan [52].

In this communication we present a simple model of insect population dynamics
that includes temperature and resource variability and prey vigilance in the presence
of predators. The goal is to model, in continuous time, the mass development of an
animal through its juvenile period as a function of predation risk, environmental
temperature, and nutrient intake. The individual mass dynamics scales up to the
population level through food-limited mortality and a predation rate that depends
upon size and temperature. Under constant parameter assumptions the model is
analytically tractable; for time-dependent parameters, numerical simulations show
the sensitivity of abundance and development times to risk, nutrient intake, and
temperature variations. The major difference between this study and others is
the explicit inclusion of temperature dependence as a driving force for consumer
phenology and mortality. The model is metered in that average daily quantities,
such as search time and average body temperature, are computed on a shorter
(hourly) time scale. Our focus is on a terrestrial arthropod interaction, e.g., a
grasshopper-spider system in grassland environments, but the results may apply to
other trophic interactions as well. The outputs, or predictions, are development
time and survivorship. Taken separately, model results can be analyzed easily
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Figure 1. Compartmental model of an insect consumer. Food
of density F and flow rate G enters at rate FG; a fraction a is
assimilated across the gut wall and into the organism’s system,
where some is used for growth (structure) and the remaining for
maintenance (respiration).

Table 1. Quantities and Dimensions

Quantity Name and dimensions
F Food density (mass per volume)
G Grazing rate (volume per time)
a Conversion efficiency (dimensionless)
M Biomass growth (mass)
B Respiration rate (mass per time)
θb Average daily body temperature (degrees C)
v vigilance (dimensionless, 0 ≤ v ≤ 1)

with regard to changes in a given mechanism. Treated together, however, it is
not clear a priori how all three mechanisms interact to affect model predictions.
Our intention is to examine this issue for a cohort of insects. For example, what
does it take to maintain the same development period? Under higher temperatures
that are environmentally favorable, can the insect increase its vigilance and thus
increase its survivorship? What is the best behavioral strategy if environmental
temperatures decrease? Similarly, if the species is to maintain survivorship, how
should its behavior change in the face of temperature increase or food quality
decrease? How all these factors come together to affect population dynamics and
development rates is the subject of this work.

2. The model.

2.1. Individual mass dynamics. The model for the individual is based on a
dynamic energy budget (Gurney & Nisbet [20]). Figure 1 shows the compartments
and associated rates. Food of density F is consumed at rate G. It enters the
digestive tract and a fraction a is assimilated across the gut wall into the animal’s
system by a complex of metabolic pathways. The assimilated nutrients then are
divided between biomass growth (structure M) and respiration (maintenance B).
The biomass is the currency, and it may be the carbon biomass, the total carbon
and nitrogen biomass, or the mass of some essential nutrient. The quantities and
their dimensions are shown in the accompanying table. The model depends upon
the average daily body temperature θb of the prey, and its vigilance level v. We
are not considering stoichiometric conditions that might constrain different nutrient
concentrations to maintain homeostasis (for example, see Logan et al. [37],[38]).
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We do not assume separate autotroph (plant) dynamics. Rather, we assume
that food is abundant, but food density, which is related to nutritional quality, may
be a function of time, F = F (t). This is true for insects like grasshoppers where
the quantity of food is high, but food quality, measured in terms of the carbon-
to-nitrogen ratio, is a limiting factor. For example, the C:N ratio increases over
a summer growing season as nitrogen availability decreases in plants. Vigilance,
a dimensionless constant between zero and one, is a parameter that measures the
animal’s behavioral response to the presence of predators. High vigilance means
reduced foraging effort and decreased predation risk, while low vigilance implies
increased foraging with higher predation risk. The vigilance may be a function
of predator numbers, or it may be a behaviorial parameter set by the animal as
an evolutionary stable strategy to maximize its fitness (J. S. Brown [6], Houston
& McNamara [23]), or with the aim of minimizing the ratio of predation risk to
nutrient intake (Gilliam’s rule); for example, see Houston et al. [22]. One way
to interpret vigilance is to relate 1 − v to the time spent foraging, or the foraging
effort. Yet another view is that vigilance depends on the animal’s recent feeding
history, or satiation. A hungry animal may always forage under hunger conditions,
regardless of the risk.

An individual’s dynamics is expressed by the balance law

Growth rate = Assimilation rate − Respiration rate.

In symbols,
dM

dt
= aGF −B.

In this model we are considering nymphs, or juveniles, and we therefore do not
include energy devoted to reproduction; nor do we include storage. We impose the
following assumptions:

1. The conversion efficiency depends on body temperature a = a(θb), with
da

dθb
≥ 0.

2. The grazing rate depends on a power of the biomass and otherwise depends
on temperature, vigilance, and food quality: G = g(θb, v, F )Mα, α > 0. We
expect

∂g

∂θb
≥ 0,

∂g

∂v
≤ 0,

∂g

∂F
≤ 0.

Here, g is the volume that an organism takes in per unit time, per unit size
of the organism.

3. The respiration rate B depends linearly on total biomass and otherwise de-
pends upon temperature and food quality: B = b(θb, F )Mβ , β > 0. We
expect

∂b

∂θb
≥ 0,

∂b

∂F
≥ 0.

In summary, we can therefore write the biomass growth rate equation as
dM

dt
= a(θb)g(θb, v, F )FMα − b(θb, F )Mβ . (2.1)

Our assumptions that G and B depend upon a power of mass M must be refined.
Generally, through allometric relationships, the mass is proportional to L3, where
L is a characteristic length of the organism. The values α = 2

3 and β = 1 imply that
assimilation is proportional to the animal’s cross-sectional area, while the metabolic
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rate depends upon its volume. This assumption implies that the size of an organism
will approach a limiting value, which is the classic Bertanaffly law. On the other
hand, if α = β = 1, then both the assimilation rate and metabolic rate depend
on volume, and the organism will increase in size exponentially over some time
period. In the terminology of Gurney & Nisbet ([20], p 96), these two models are
the cross-sectional model and volume model, respectively. One can argue for other
power laws, for example β = 3

4 (J. H. Brown et al. [4]). In the sequel, we develop
the dynamics in the context of the volume model.

How a, g, and b depend upon body temperature, food density, and vigilance
depend upon further constitutive assumptions. We assume that the grazing rate is
given by

g(θb, v, F ) = r(θb)(1− v)
(

gmFm

F

)
, (2.2)

where Fm is the maximum available food density, and gm is the grazing rate at the
maximum. The grazing rate g is maximum when there is no risk (v = 0), and it
is zero at maximum risk (v = 1). The linearity in v is the same assumption made
by Houston et al. [22]. In this model, if the food quality decreases by a factor of
2, then the grazing rate doubles. Body temperature-dependence, defined by the
function r(θb), is discussed below with respect to all the rates. The conversion
efficiency a, or fraction of the ingesta that crosses the gut wall and is assimilated,
is temperature-dependent because, at higher temperatures, the substrate-enzyme
reactions and absorption rates increase. The conversion rate may also depend upon
food density because food density can determine residence time in the gut; however,
we do not include this assumption in this model. We represent

a(θb) = a0r(θb), (2.3)

where a0 is a constant, 0 < a0 < 1. Finally, we assume the respiration rate varies
with both body temperature and food density, and we assume

b(θb, F ) = r(θb)(b0 − b1F ). (2.4)

Our assumption of a linearly decreasing function of food density means that respi-
ration will increase as the food density becomes less. In this case, increased grazing
and foraging efforts to maintain nutrient intake cause an increased energy expendi-
ture that offsets the decrease energy required to digest the lower quality food. For
other organisms, for example, Daphnia, there is evidence that the metabolic rate
increases with food density (K. Rinke & J. Vijverberg [46]).

In summary, the master equation for individual mass dynamics is

dM

dt
= r(θb) (a0(1− v) gmFM − (b0 − b1F )) M. (2.5)

In this model, where food abundance is assumed, the net intake is constant and
the insect compensates for lower food density by increasing grazing. We expect
that the body temperature and food density depend upon time as environmental
conditions change, i.e., θb = θb(t), F = F (t). The boundary conditions are

M(0) = M0, M(T ) = Mf ,

where M0 is the initial mass and Mf is the final mass at full development; both
quantities are specified. The horizon time T , which is the length of the nymphal
period, is determined as the stopping time when Mf is reached. The model may
be modified to include a range, or interval, of target masses.
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In Section 4 we indicate how to determine the set of parameters for a generic
grasshopper.

2.2. Temperature-dependent development. Generally, the development rate
of a terrestrial, poikilothermic arthropod with respect to body temperature is
strongly nonlinear. The body temperature depends upon the temperature of the
microhabitat and the animal’s ability to thermoregulate (Casey [8], Chappell &
Whitman [10], Lactin et al. [28]). For example, grasshoppers thermoregulate by
body orientation with respect to the sun. The microhabitat temperature depends
upon the structure of the habitat, the ambient air temperature, and the solar power
index, which is a measure of the sunlight falling on the environment. In this section
we discuss these issues and motivate a choice for the temperature dependence r(θb)
in the master equation (2.5).

In many life-history studies, the cumulative development ξ, measured in degree-
days (normalized, 0 ≤ ξ ≤ 1), is chosen as the quantity that gauges progress
through the nymphal period. The development rate r = R(θb), in degree-days/day
is a function of body temperature and has been measured for many organisms.
Generally, the development rate is a strongly nonlinear function of temperature as
illustrated in the generic plot is shown in figure 2. Over time, the body temperature
varies with θb = θb(t); thus the development stage at time t is

ξ = ξ(t) =
∫ t

0

R(θb(s))ds,

and full development (maturity) occurs at the time T for which ξ(T ) = 1. The
temperature history, either deterministic or stochastic, is an input to the system.
Other studies of temperature-dependent insect phenology include Bentz et al. [3],
Logan & Bentz [35], Jenkins et al. [24], Logan & Powell [36], Gilbert et al. [15], and
Logan et al. [39]. Digestion modulation in grasshoppers in variable temperature
environments has been studied by Wolesensky et al. [51].

Other physiological variables involving size can also serve as development mea-
sures. In the present model we use biomass M as the development progress vari-
able, and we apply allometric relationships to connect development in degree-days
to mass. Dyer’s rule and Przibram’s law (Wigglesworth [50]) both imply that body
size increases geometrically as a function of development. Therefore, we assume
the general relationship

M = M0

(
Mf

M0

)ξ

, 0 ≤ ξ ≤ 1,

where M is the mass, M0 is the initial mass at birth or hatching corresponding to
ξ = 0, and Mf is the mass at maturity when ξ = 1. It follows that the rate of mass
development in terms of degree-day development is

dM

dt
= ln

(
Mf

M0

)
MR(θb(t)).

Comparison to the master equation (2.5) shows that the temperature dependence of
mass development has the same nonlinear form as the development rate in degree-
days as shown in figure 2. Temperature dependence of digestion processes are often
modeled by a Qn rule, which requires that the rate doubles for every n degrees (C)
increase in temperature. If θ0 is a reference body temperature, then the rate would
contain a factor 2(θ−θ0)/n, or equivalently, e(θ−θ0)/∆. Here, θ = θb. But the Qn rule
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Figure 2. The general shape of the nonlinear development rate
for many terrestrial arthropods. A functional form is given by
equation (6).

only holds in a narrow range of temperatures near the reference temperature, and
this factor does not reflect the general nonlinearity shown in figure 2. A global
form that holds over a wide range of temperatures has been obtained from fitting
experimental data. Here we use the Lactin et al. [28] form

R(θ) = eαθ − eαθ0e(θ−θ0)/∆ − λ,

which was developed for various species of grasshoppers. As one can observe, this
form is similar to the Qn rule. In the master equation (2.5) we normalize this rate
by dividing by the maximum value Rmax, so that it takes the value 1 at the optimal
body temperature. Thus,

r(θ) =
1

Rmax

(
eαθ − eαθ0e(θ−θ0)/∆ − λ

)
, θ = θb. (2.6)

Consequently, in our model, the grazing rate, the metabolic rate, and the assimila-
tion rate all contain this same temperature factor. The parameters α, λ, ∆, and θ0

are chosen to fit rates for various species, many of which are given in Lactin et al.
[28].

We may include instar development as follows. Let f be the number of juvenile
instars. In each instar (j = 1, 2, ..., f) there is a target, cumulative mass Mj that
the animal must reach to graduate to the next instar. The completion of the jth
instar is therefore the time tj for which M(tj) = Mj . Thus T = tf is the nymphal
period. We remark that the model can be refined to include an interval of masses
suitable to reach full development, rather than a single value. This generalization
would allow for development at different sizes, which is observed (Logan et al. [36]).

The model (2.5)–(2.6) provides a comprehensive tool for the simulation of growth
in an environment with dependence on temperature, food density, and the prey’s
level of vigilance. Often the most difficult task is to determine the key parameters.
In Section 4 we show how values of a0, gm, FM , b0, b1,M0, and Mf are obtained.

Prior to presenting the results of simulations, and before including population
dynamics, we indicate how development time T depends upon food density, vigi-
lance, and average body temperature in the case that all the parameters are time-
independent, and θb, F, and v are constant values. In this special case we may solve
(2.5) to obtain

M = M0e
r(θb)[agmFM (1−v)−b0+b1F ]t,
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Figure 3. Plots showing how the nymphal period T depends upon
each of the three parameters, F , v, and θb, with the remaining two
held fixed. The value F = 9.12 corresponds to maximum available
food density, and θb = 36 corresponds to the body temperature
that maximizes the development rate. No vigilance means maxi-
mum foraging effort.

which represents exponential growth. Therefore the nymphal period, or time for
development, is

T =
1

r(θb)[agmFM (1− v)− b0 + b1F ]
ln

(
Mf

M0

)
.

Using parameters calculated in Section 4, we have

T = T (θb, F, v) =
1

r(θb)
ln 25

0.048− 0.0798v + 0.0018F
.

Figure 3 shows how T varies over ranges of the three indicated variables. As
expected, development time decreases with increased food density and increases
with increased vigilance, and there is an optimum body temperature that minimizes
the development period.

3. Mass-dependent population dynamics.

3.1. A population model. The next goal is to scale up from the individual to
the population, i.e., to a cohort of nymphs. We assume that prey mortality consists
of two effects, a natural hazard rate µn = µn(M, θb) representing random events
and depending upon size (mass) and body temperature, and a predation rate µp =
µp (θa, v, M, P ) dependent upon the ambient temperature θa, the prey’s level of
vigilance, its size (mass), and the predator density P . The population dynamics
for a prey cohort of population N = N(t) is

1
N

dN

dt
= −(µn + µp), N(0) = N0.
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Figure 4. Bar graphs of instar-dependent natural mortality rate
and predation risk for species of grasshoppers in a grassland envi-
ronment.

Grasshoppers, for example, have a stage-dependent natural mortality rate (Joern
& Gaines [27], Oedekoven & Joern [43]). The mortality rate can also depend
explicitly on time, a generalization we do not consider here. In this model we
assume the temperature enters the natural mortality rate through the temperature-
dependent mass M . Therefore, we assume that µn = µn(M), which is a specified
function determined by survivorship experiments. We take

µn(M) = mj , Mj−1 < M ≤ Mj , (3.7)

where j = 1, 2, ..., f is the instar. Here, mj is the daily per capita mortality rate,
which in the simulations is taken to be constant in each instar (survivorship data
shows that, in fact, mortality is higher the first few days of an instar). Figure 4
shows a typical survivorship bar graph for a grasshopper (compare, for example,
Joern & Gaines, [27], p431; Oedekoven & Joern [43]). We note that survivorships
vary widely, depending on laboratory or field environments.

The functional form of the predator’s functional response can be taken as Holling
type II or III (see the discrete model by Logan et al. [40]). In the present model
we use a mass-action functional response (a type I response) of the form

µp = kδAPφ(M), (3.8)

where P is the predator density, A is the search rate in area per day per predator,
δ is the encounter rate, and k is the fraction of prey captured of those encountered.
The factor φ(M) is a size-dependent predation risk factor. The functional form of
φ(M) depends upon the risk at various sizes. For example, a factor of the form

ηρ
η+M , where ρ is the predation rate for newborns and where η is the prey size for
which the predation rate is half maximum, the risk decreases as the organism grows.
(See the analysis of size-dependent energy budgets in Ledder et al. [29].) On the
other hand, if new nymphs have low risk (e.g., predators are uninterested because
of small size, or nymphs are protected) and the risk increases up to a maximum size
before declining again because of becoming too large for the predator, a functional
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form ρMσe−ηM is suggested. This form may be appropriate for spider predation
of immature grasshoppers. In the present model we assume the predation risk is
dependent upon the developmental stage, or

φ(M) = φj , Mj−1 < M ≤ Mj , (3.9)

where j = 1, 2, ..., f. The φj measure the daily per capita predation risk in each
instar (figure 4).

The encounter rate, a dimensionless quantity, is assumed to have the form

δ(v) = de−cv, (3.10)

a decreasing function of vigilance. The factor d is the encounter rate when there
is no vigilance, and c is a measure of the prey’s effectiveness in detecting and
responding to predators. Although these factors appear in the predator’s response
functional, they can also be interpreted as either prey or predator characteristics. In
addition, the encounter rate may be a function of the structure of the microhabitat,
e.g., either dense forage or open grassland. Other relations are possible depending
upon the behavior and prescience of the prey, fierceness of the predator, and the
searching characteristics of the predator (Brown [6]). Satiation is also not included
in the simulations; depending upon the prey’s recent feeding history, it may relax its
vigilance to actively forage. Vigilance itself may depend upon the predator density;
a generalized functional relation such as

v =
Pn

Pn
h + Pn

, n ≥ 1,

or a Heaviside function v = H(P − Ph), both provide a threshold predator density
Ph where vigilance is switched on. For the simulations presented in Section 4 we
specify a value of v that does not depend upon predator density.

3.2. Temperature dependence. Search time may be temperature-dependent, as
discussed in Logan et al. [39], [40]. Predation events in insect-arthropod systems
depend on both predator and prey being in an active state. Predators may hunt
only during certain temperature intervals, and prey may be available only within
a range of temperatures. Shifts in the intersection of these two ranges can occur
when the temperature varies. For example, body temperature is crucial in insect
behavior and development, and there is only a range of temperatures when they
are active. In a wolf spider–grasshopper interaction2 the spider actively hunts only
when its body temperature is relatively low compared to grasshoppers, and it avoids
the hotter portions of the day (Joern et al. [26]). Figure 5 depicts this shift in a
schematic way.

Three temperatures are relevant to describing activity times, namely, body tem-
perature, microhabitat temperature, and ambient air temperature. The micro-
habitat temperature depends in a complicated manner upon the air temperature,
the amount of sunlight falling on the system (the solar power index, measured in
watts per meter-squared), and the vegetation structure (grasses or dense vegeta-
tion). Body temperature depends on all of these quantities as well, interacting with
insect thermoregulation behavior (e.g., body orientation to the sun). To model these
complex interactions is beyond the scope of this work. Rather, we take a simpler
approach and assume there are upper and lower ambient temperature thresholds
θhi and θlo between which both predator and prey are active. The joint activity

2This remark refers to crawling wolf spiders (lycosid) that do not build webs.
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Figure 5. Diagram showing how a shift in the daily temperature
range, from R1 to R2, can dramatically lessen the possible inter-
action times between a predator and a prey.

time α(t) on day t is the fraction of the day when the hourly ambient temperature
lies between these thresholds. Specifically, if θ(σ, t) is the hourly temperature on
day t, where σ is in hours (0 ≤ σ ≤ 24), then

α(t) =
1
24

meas{σ : θlo ≤ θ(σ, t) ≤ θhi}.
Including this assumption in the model makes the dynamics metered, where a daily
quantity is computed from dynamics on a smaller time scale. We chose to work with
the ambient temperature rather than the complex microhabitat temperature, which
depends on so many other environmental quantities. We then use experimental
data gathered by Harrison & Fewell [21] to relate the body temperature θb of the
prey to the ambient air temperature θ. (Data were taken for M. bivittatus at night
and on a clear sunny day in a top of the stalk model.) We compute the hourly
ambient temperature θ(σ, t) as follows. We assume the average daily temperature
throughout a season is generated as a stochastic process Θ(t) with Θ(0) = θ0 fixed.
Then we take

θ(σ, t) = Θ(t) + A(t) sin
πσ

12
,

where A(t) is a (stochastic) daily amplitude.
We now address the issue of where the joint activity factor enters into the func-

tional response. For a discrete time model, where search time appears explicitly in
the functional response, it is natural to consider the activity time as a factor that
either reduces or increases the search time (Logan et al. [39], Logan & Wolesensky
[40]). For continuous time models, however, the search time is infinitesimal and
is divided out to create, in the limit, a predation rate, as was done in equation
(3.8); the search time does not appear on the right side. However, in this case it is
equally valid to include the joint activity factor α(t) as a part of the encounter rate
d. Clearly, encounters are lessened at lower activity levels and increased at higher
levels. Consequently, we modify equation (3.10) by

δ = δ(v, t) = d0α(t)e−cv.

For simulations we are motivated by a grasshopper-spider interaction, and we
assume that there is only an upper temperature threshold θhi representing the max-
imum temperature spiders are active, and no lower threshold. Thus, grasshoppers
are always present and susceptible to predation. This is consistent with field data
(Joern et al. [26]) showing spiders are particularly active during the morning and
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evening hours when cooler temperatures prevail. Then the activity time is com-
puted as

α(θ(t)) =
1
24

meas{σ : Θ (t) + A(t) sin
πσ

12
≤ θhi}. (3.11)

Therefore, the activity time increases on days when the average daily temperature
is lower.

To summarize, the final form of the individual mass–population dynamics model
is:

dM

dt
= r(θb) (a0(1− v) gmFM − (b0 − b1F )) M, (3.12)

dN

dt
= − (

µn(M) + kde−cvα(t)APφ(M)
)
N, (3.13)

M(0) = M0, N(0) = N0, (3.14)

where µn(M) and φ(M) are given by (3.7) and (3.8), and θb = θb(t), θ = θ(t),
with α(t) given by (3.11). The mass development rate r(θb) is given by (2.6), and
the termination condition is M(T ) = Mf , which determines the nymphal period T .
Clearly, increased vigilance decreases predation risk but decreases foraging effort.
Lower temperatures slow development and increase mortality. How all these factors
interrelate and how robust the model is to variations are discussed in the next
section.

4. Parameter values and simulations. A set of benchmark parameters is used
to simulate the mass development and population dynamics, (3.12)–(3.13). We
assume the weight (mass) of the insect at hatching is M0 = 8 mg, and the weight
at full development is Mf = 200 mg, both dry weights. The food density and
grazing values have to be consistent with development. We compute gm, FM , b0,
and b1 as follows. The mass M at any time is related to the development ξ in
degree-days via

M = M0

(
Mf

M0

)ξ

, 0 ≤ ξ ≤ 1.

Therefore the change in M per day in terms of the change in ξ per day is

∆M = ln
(

Mf

M0

)
M∆ξ.

We assume that, at constant optimum body temperature θ∗b , the insect’s maximum
growth rate in degree-days per day is 0.02 degree-days per day. Therefore, the
insect will require at least 50 days to mature and the maximum increase in mass
per day is

∆M = ln
(

Mf

M0

)
M∆ξ = ln(25)(0.02)M = 0.064M.

Optimum growth occurs when there is no vigilance (v = 0) and r(θ∗b ) = 1. There-
fore, from equation (3.12), at maximum food density Fm, we have

(0.7gmFM − (b0 − b1FM )) = 0.064,

where we have taken the assimilation rate to be a0 = 0.7 (comparable to measured
values). At this maximum growth rate we assume the respiration rate is 20% of
the net intake, or

b0 − b1FM = (0.2)(0.7gmFM ). (4.15)
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It follows that
gmFM = 0.114 day−1.

Then the grazing rate gm can be computed as follows. The adult 200 mg insect is
assumed to have a crop structure that holds 0.5 ml of food. If it eats 5 meals per
day when the food quality is maximum, then it consumes a total of 2.5 ml of food
per day. This gives

gm =
2.5
200

= 0.0125 ml/day ·mg.

This corresponds to a maximum food density of

FM = 9.12 mg/ml.

This value is a reasonable estimate when compared to the carbon and nitrogen in a
leaf; it is measured in mg of dry mass that contributes to the growth of the insect,
per ml of plant material.

Finally, we determine the respiration constants b0 and b1. From (4.15) we have

b0 − b1FM = 0.016.

This assumes a respiration rate that is 20% of the net intake rate. If food density
decreases, we expect that the respiration will require greater expenditure of energy
caused by increased grazing and foraging. At half the maximum food density, or
at 4.56 mg/ml, we assume the respiration rate increases to 30% of the maximum
intake, or

b0 − 4.56b1 = (0.3)(0.7gmFM ) = 0.024. (4.16)
Now, (4.15) and (4.16) may be solved simultaneously to obtain

b0 = 0.0324, b1 = 0.0018.

Our assumption regarding respiration differs from the assumption of Rinke &
Vijverberg [46], who assume, for Daphnia, that maintenance increases with food
supply due to the costs of digestion. They observed that the maximal maintenance
coefficient was significantly reduced under food shortage, with up to a 50% reduction
with no food. Based on terrestrial insects, grazing expenditures exceed digestion
costs in our model. This may be a result of insects having to chew the indigestible
fiber in the plants they consume.

The predation and vigilance parameters are taken to be

k = 0.5, A = 100, P = 0.01, d = 0.5, c = 4,

and the parameters in the rate function (2.6) are (Lactin et al. [28]):

α = 0.119357, ∆ = 8.348083, θ0 = 44.186047, λ = −0.0748, Rmax = 0.02.

Values for the natural mortality rate and the size-dependent predation factor are
given in figure 4.

The body temperature as a function of air temperature is modeled by a piecewise
linear function from the experimental data in Harrison & Fewell [21], and it is
shown in figure 6. Specifically, below 17◦C the body temperature is equal to the
air temperature. As the air temperature rises the insect quickly (over the interval
17◦ ≤ θ ≤ 22◦) thermoregulates, and its body temperature increases to 36◦, after
which it is maintained at a constant level.

One important observation is that the mass and survivorship curves are relatively
robust to stochastic variations of temperature; that is, they do not exhibit the strong
variations of the average daily temperature—they are smoothed out. On the other
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Figure 6. The body temperature vs. air temperature for a
thermo-regulating grasshopper.
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Figure 7. Simulation of the model (3.12)–(3.13): the stochastic
input of temperature over a 100-day period, the mass of an indi-
vidual over its nymphal period, and the survivorship of a cohort.

hand, the final output of values T and survivorship at the end of the nymphal period
were strongly sensitive to the amplitude of the temperature variation on each day.
See the discussion below. Table 2 shows the results of several simulations. Values
of the nymphal period T and the percent survivorship (denoted in the sequel by
%N) at the end of the period are calculated for different levels of vigilance v and
initial temperature θ0 = Θ(0), the temperature on the first day of the season. The
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Table 2. Development period T and survivorship %N for various
values of vigilance and temperatures.

θ0 = 17 θ0 = 19 θ0 = 21
v
0

0.1
0.2
0.3
0.4

T % N
75 0.4
84 1.0
93 1.5
108 1.5
– –

T % N
68 1.5
75 2.8
84 3.6
98 3.7
119 2.7

T % N
60 7.4
68 9.0
77 9.2
91 7.5
110 4.9

expected daily temperature on day t (0 ≤ t ≤ 100) is E(Θ(t)) = θ0 + 0.2547t −
0.0014t2, which fits temperature data collected during a period beginning June
1 at a western Nebraska site. The daily amplitude is fixed at 10 degrees, and
food density is maximum (FM = 9.12). The dash in the table means the nymphal
period exceeded 120 days, which is considered death for the cohort. Figure 7 shows,
graphically, a typical simulation.

The first observation is that the insect has an optimal vigilance level that max-
imizes its survivorship. For example, at θ0 = 19 the survivorship is maximized at
a value near v = 0.3, or 70% foraging effort.

Also observe that the insect can maintain stability in its nymphal development
under increased temperature by increasing its vigilance level, thereby decreasing
predation risk and increasing considerably its survivorship. For example, at θ0 = 19
with v = 0.1 development period is 75 days. If temperature increases by an average
of 2◦, the animal can increase its vigilance to 0.2 with an accompanying decrease
in predation to nearly maintain its nymphal period (77 days) while increasing its
survivorship by over 200% (from 2.8 to 9.2). On the other hand, if the average
temperature is lowered to 17, the insect must lower its vigilance, thereby increasing
its risk; its survivorship drops significantly to 0.4.

Table 2 reveals that regulation of a stable survivorship under temperature changes
is impossible, regardless of the level of vigilance. Thus, temperature is the over-
riding factor in survivorship. At low temperatures the development period is long,
causing the insect to experience high mass-dependent mortality rates in critical
instars. Predation from spiders appears to be only a minor regulatory factor in
controlling populations.

The simulations may also be examined to assess responses to food quality. At
θ0 = 19, Table 3 shows the nymphal period and survivorship for various vigilance
levels when the daily food density decreases linearly, F (0) = FM − (FM/200)t.
Compare to column 2 of Table 2, which is for constant, maximum food density.
The effect of a lower food density is a few additional days to develop, more at
higher vigilance levels, and a few tenths of percent decrease in survivorship, again
at higher vigilance levels. One of the strongest effects observed in the simulations
is the sensitivity of the nymphal period and survivorship to the daily temperature
amplitude A(t). Take θ0 = 19, v = 0, with maximum food density; fixing A(t) = 7
gives T = 62 and %N = 6.3, while fixing A(t) = 13 gives T = 75 and %N = 0.53.
We can compare these values to column 2 in Table 2 where A(t) = 10. Decreasing
the daily amplitude by 3 degrees decreases the nymphal period 8.8% and increases
survivorship over 300%. Increasing the daily amplitude 3 degrees has an equal,
but opposite effect. The conclusion is that the insects will experience much greater
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Table 3. Effect of variable food density.

v 0 0.1 0.2 0.3
T 71 79 91 110

%N 1.4 2.4 3.2 2.9

fitness under uniform temperatures than under erratic temperature variations. This
conclusion may have been expected, but not of the order of magnitude indicated.

5. Concluding remarks. We have constructed a model of population response
(survivorship) and phenology (development period) that depends upon environ-
mental temperature, food density, and predation risk with prey vigilance. The
model allows us to assess the changes when three potentially regulatory factors
(biophysical, behavioral, and predatory) are interrelated in a single dynamical pro-
cess. The model simulations confirm intuitively held views that temperature plays
an essential, if not the major, role in the regulation of population. One important
prediction that is perhaps unexpected is that daily temperature amplitudes affect
the dynamics considerably. Therefore, increased temperature uncertainties, such as
those that might be expected under global environmental change, lead to significant
changes in survivorship and development.

Another general prediction is that the insect can, under a fixed temperature
regime, choose a vigilance level that maximizes its survivorship, which is a measure
of its fitness. We can also conclude that an insect can maintain a stable development
period under a temperature increase by adjusting its vigilance level, and, as a result,
considerably increase its survivorship. Under lower temperature regimes, the insect
may be able to stabilize its development period by reducing vigilance, but it always
comes with the cost of reduced survivorship. In general, under temperature changes,
the insect will not be able to stabilize its survivorship by changing its vigilance,
even if food density is high. These conclusions again point to temperature as a
major driving force in insect population regulation; moreover, higher temperatures
are greatly beneficial to insects.

In this model there is no feedback from fecundity of reproducing adults; the initial
cohorts are hatched from eggs in the spring laid by females the previous fall. Year-
to-year dynamics is a complicated issue that involves the dynamics of reproducing,
adult females and survivability of the eggs over the winter. For grasshoppers, for
example, these issues involve food quality at the end of the nymphal season, the
number of egg clutches and clutch size, environmental conditions like winter sever-
ity, and egg fungi and parasitoids. (see Chapman & Joern [9]). We can however,
suggest some general implications from our model. First, greater temperatures and
optimal vigilance lead to shorter development periods and higher survivorship. This
means the adult stage will have a longer end-of-season for reproduction. Under sea-
sonal environmental conditions and sufficient food quality, more clutches with more
eggs per adult female will result, giving the possibility of higher hatch rates in the
spring. Overall, a model that includes year-to-year dynamics must have a strong
stochastic component for the over-wintering period. These ideas are discussed in
another communication.
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