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Abstract. We consider the stability of single-front stationary solutions to a
spatially discrete reaction-diffusion equation which models front propagation
in a nerve axon. The solution’s stability depends on the coupling parameter,
changing from stable to unstable and from unstable to stable at a countably
infinite number of values of this diffusion coefficient.

1. Introduction. The discrete Nagumo equation, a reaction-diffusion equation
with a bistable reaction term, f(u), and a discrete diffusion term (1), has stationary
front solutions connecting the “stable” equilibria of the nonlinearity even though
the integral of the nonlinearity from one equilibrium to the other,

∫
f(u) du, is not

zero, as long as diffusion strength is weak enough. When they exist, these stationary
fronts typically exist in pairs, one stable and one unstable to local perturbations,
and the existence of these solutions is often referred to as propagation failure. When
comparing the energy of the two solutions (when evaluating the action of the maps)
one solution typically has a higher value than the other, providing a barrier to
motion, where the stationary front with the smaller energy (smaller value of the
action) is the stable one of the two. The bistable nonlinearity (2) used in this work
contains a detuning parameter which allows us to vary the value of

∫
f(u) du from

(−1/4, 1/4). It is shown in [12] that the detuning parameter can be chosen so that
propagation failure exists for almost all positive values of the diffusion coefficient,
the coefficient which specifies strength of the discrete diffusion.

In this work we apply the Evans [20] function technique adapted [4] to our
discrete system, with the zigzag nonlinearity (2), to discover whether a stationary
front solution is linearly stable. As we will see, solution stability depends on the
strength of the discrete diffusion term. The works [3, 5, 31, 32, 33] provide a detailed
overview of the implementation of the Evans function for continuous diffusion.

Saltatory conduction is the rapid propagation of action potentials along myeli-
nated axons. Quoting [23]: “Even though ions cannot flow significantly through
the thick myelin sheaths of myelinated nerves, they can flow with considerable ease
through the nodes of Ranvier. Therefore, action potentials can occur only at the
nodes. Yet, the action potentials are conducted from node to node; this is called
saltatory conduction. That is, electrical current flows through the surrounding ex-
tracellular fluids outside the myelin sheath and also through the axoplasm from
node to node, exciting successive nodes one after another. Saltatory conduction is
of value for two reasons. First, by causing the depolarization process to jump long
intervals along the axis of the nerve fiber, this mechanism increases the velocity
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Figure 1. The top two plots are of the nonlinearity f(u, a) (2)
for a = 1/2 and a = 3/4. The bottom plot is of frequently studied
nonlinearities that when used in (1) the single front stationary
solutions demonstrate similar characteristics to each other, such
as propagation failure and off-centered stability. f = .25 sin(2πu)
is in black, f = 5.4u(u− .5)(u− 1) is in red, and f = u− h(u− .5)
(where h is the unit step function) is in green.

of nerve transmission in myelinated fibers as much as 5-fold to 50-fold. Second,
saltatory conduction conserves energy for the axon, for only the nodes depolarize,
allowing perhaps a hundred times smaller loss of ions than would otherwise be
necessary and therefore requiring little metabolism for re-establishing the sodium
and potassium concentration difference across the membrane after a series of nerve
impulses.” The mathematical model of a myelinated axon that we use here comes
from postulating an equivalent electrical circuit model (cable theory) of the ex-
citable axonal membrane. The following is adapted from [25]. Consider a single
nerve fiber (axon) coated with myelin with periodically spaced gaps (nodes). As-
suming the axial currents are constant, the intracellular, Ii, and the extracellular,
Ie, currents between two consecutive nodes are (by Ohm’s law)

LnriIi,n = −(ui,n+1 − ui,n), and LnreIe,n = −(ue,n+1 − ue,n),

where Ln is the length of the myelin sheath between the nth and (n+1)st nodes, ri

and re are the intracellular and extracellular resistances per unit length of material,
and ui,n and ue,n are the intracellular and extracellular voltages in the nth node.
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Using Kirchoff’s laws, one obtains

Ii,n−1 − Ii,n = Ie,n − Ie,n−1 = µnp

(
C

∂un

∂t
+ Iion,n

)
,

where the quantities in the parentheses are the capacitive current and the ionic
current flowing through the nth node from inside to outside, un = ui,n − ue,n, µn

is the length of the nth node, p is the perimeter length of the axon (assumed to
be constant for now), C is the capacitance, and Iion,n is the ionic current at each
node. Thus the total transmembrane current at a node n is given by

p

(
C

∂un

∂t
+ Iion,n

)
=

1
µn(re + ri)

(
un+1 − un

Ln
+

un−1 − un

Ln−1

)
.

The change of variables τ = t/(CR) nondimensionalizes time (where R has units
Ωcm2) and we obtain

∂un

∂τ
= ρn

(
un+1 − un

Ln
+

un−1 − un

Ln−1

)
−RIion,n,

where ρn = R/(µnp(ri + re)). This is a description of the leading edge of the pulse
which travels down a myelinated nerve axon. To be complete, one also needs to
consider the dynamics of the trailing edge, i.e., how the nerve “resets” itself. We
consider this leading edge model here. We now let the length of each node µn = µ
and the distance between each node Ln = L for all n, we set f(un, a) = RIion,n,
we set d = ρn/L, and for convenience we rename τ as t.

Thus in this work we consider the stability of the single front monotone stationary
solutions to

u̇n(t) = d[un+1(t)− 2un(t) + un−1(t)]− f(un(t), a), (1)

where we choose the nonlinearity f to be

f(u, a) =





u, u < a/2,
a− u, a/2 ≤ u ≤ (a + 1)/2,
u− 1, u > (a + 1)/2,

(2)

and apply the boundary conditions u−∞ ≡ lim
n→−∞

un = 0 and u∞ ≡ lim
n→∞

un = 1

(connecting the “stable” equilibria of f) where n ∈ ZZ, t ≥ 0, and a ∈ (0, 1), and
where we set u̇n(t) = d

dtun(t) = 0 for all n ∈ ZZ and t ≥ 0. Thus the solutions
being considered in this paper are monotone increasing doubly infinite sequences
between 0 and 1, which we write as {un}∞n=−∞ or abbreviate as {un}.

When considering traveling wave solutions to (1), of particular interest is the
phenomenon of propagation failure, the effective resistance due to the discreteness
of the diffusion operator. The most commonly used reaction terms (nonlinearities)
are the sine [1, 2, 4, 9] and the cubic [7, 15, 24, 28, 30, 38, 39, 40] functions, as
well as the piecewise linear caricature of these nonlinearities [8, 14, 16, 17, 21, 29,
34] (bottom plot of Figure 1). For these commonly used bistable nonlinearities,
when the system’s parameters are such that fronts fail to propagate (for instance,
when the integral of the nonlinearity is zero when integrated over the range of the
dependent variable), there exist two stationary single front monotone solutions,
one stable and one unstable. For the sine, the cubic, and the piecewise linear
nonlinearities, it is generally believed that the solution centered with respect to its
range is unstable, while the solution off-centered is stable.
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Figure 2. The ω versus d plot illustrating equations (3) and (4).
The function w(d) is in black, ωo is in red, and ωe is in blue.

What makes the spatially discrete bistable reaction-diffusion equation (1) with
nonlinearity (2) draw our interest (the contribution of this paper) is that, as d is
increased from 0 to ∞, the stability of the monotone stationary fronts changes i.e.,
unstable fronts become stable and stable fronts become unstable. The values of d
at which the stability changes occur are isolated, and there are a countably infinite
number of them. This is atypical behavior even though (2) can be considered as
being in the same class as the more commonly used nonlinearities listed above. Since
often when modeling the nonlinearities chosen to represent the observed bistable
behavior are zeroth-order approximations (or first-order at best), our intent is to
point out that additional care may be needed. However since (1) with (2) only
models the leading-edge behavior (a heteroclinic orbit) the applicability of our
model to actual action potential propagation (a homoclinic orbit) is limited.

This paper is organized into two sections and a conclusion. We begin in Section
2 with definitions and applicable results concerning the stationary monotone front
solutions to (1) with (2), results that follow from [12]. Next in Section 3 we perturb
the solution and derive the associated Evans function, which we use to state various
stability results. In the conclusion we summarize our results and discuss simple
extensions.

2. Background: solutions. This section provides some necessary background
about the single stationary monotone front solutions to (1) with (2), details of
which can be found in [12]. Up to translation, for a = 1/2 there are at least two
stationary single front solutions for all d ≥ 0 and at most two solutions for almost
all d ≥ 0. The monotone front solutions can be classified by the number of elements,
the number of un, of the solution {un} that lie in the interval [a/2, (a + 1)/2], i.e.,
the middle section of (2).

Definition 2.1. Let ω ∈ ZZ+∪{0} be the number of elements of {un} in [a/2, (a+
1)/2]. In addition, let ωe = ω when ω is even and ωo = ω when ω is odd.

Definition 2.2. Let {ue
n} = {un} when ω is even and {uo

n} = {un} when ω is odd.

Figure 3 illustrates both {ue
n} and {uo

n} for values of un near the interface for
d ∈ [0, 10]. Since the diffusion coefficient d is a measure of the interface thickness,
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Figure 3. Plots of un versus d for the off-centered (ω even) and
centered (ω odd) solutions with a = 1/2 for values of un at the
interface. Here a/2 = 1/4 and (a + 1)/2 = 3/4.

we should expect that ω is a function of d. In fact, for d ≥ 3/4, the even and odd
ω’s are defined by the equations

ωe(d) = 2 Int (ρ) + 2 and ωo(d) = 2 Int
(

ρ +
1
2

)
+ 1, (3)

where ρ =
1
κ

[
tan−1

(
2−√4d + 1√

4d− 1

)]
with κ = −

∣∣∣∣cos−1

(
1− 1

2d

)∣∣∣∣ ,

and Int(x) is the integer obtained from x when truncating. For d ∈ [0, 3/4), ωe(d) =
0 and ωo(d) = 1. The relations (3) partition the interval for d, [0,∞), in terms of
ω. When a = 1/2, the solutions {ue

n} and {uo
n} satisfy the symmetry conditions

ue
n = 1 − ue

1−n and uo
n = 1 − uo

−n for almost every d ≥ 0. As it turns out, this
implies that for a = 1/2, as d increases to a value such that ω increases, ω must
increase by two (Figures 3 and 2).
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Figure 4. Two views of the a versus d plot. The shaded regions
and the blue lines show the values of (a, d) for which stationary
single front solutions exist (propagation failure). The values of dω,
the values of d for which there is no propagation failure, are
marked.

Definition 2.3. Let dω be the value of d where ω increases by 2, i.e., for a fixed
ω, the value of d for which ρ ∈ ZZ+ ∪ {−1, 0} (ω even) or ρ + 1/2 ∈ ZZ+ ∪ {0} (ω
odd).

Definition 2.4. Let D = {dω}∞0 .

Remark 2.1. The above definitions imply that ω = w(dω), where

w(d) ≡ 2
κ

[
tan−1

(
2−√4d + 1√

4d− 1

)]
. (4)

See Figure 2. The function w(d) is monotone increasing and unbounded at infinity
i.e., limd→∞ w(d) = ∞. Thus there are an infinite (countably) number values of
dω in D and ω ∈ ZZ+ ∪ {0}.
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As a demonstration of the partitioning, the first six values of dω for the off-
centered solution {ue

n} are,

ωe 0 2 2 4 4 6 6 8 8 10 10 12
dω 3/4 ∼ 4.037 ∼ 10.530 ∼ 20.258 ∼ 33.228 ∼ 49.440

d0 d2 d4 d6 d8 d10

The first six for the centered solution {uo
n} are,

ωo 1 3 3 5 5 7 7 9 9 11 11 13
dω 2 ∼ 6.879 ∼ 14.989 ∼ 26.338 ∼ 40.929 ∼ 58.762

d1 d3 d5 d7 d9 d11

Thus if d = 3.1, then for the solution {ue
n}, 3.1 = d ∈ [d0, d2) = [3/4,∼ 4.037),

and it has 2 elements in [1/4, 3/4] (ue
0 and ue

1) i.e., ω = 2. For the solution {uo
n},

3.1 = d ∈ [d1, d3) = [2,∼ 6.879), and it has 3 elements in [1/4, 3/4] (uo
−1, uo

0, and
uo

1) i.e., ω = 3.
Until this point we have focused on when a = 1/2. Using the implicit function

theorem, it can be shown that the two stationary solutions persist as a is perturbed
from 1/2 at all values of d ≥ 0 such that d 6∈ D. For d ∈ D, stationary monotone
front solutions exist only when a = 1/2 and there are an infinite number of them.
This is because the heteroclinic connection becomes integrable for d ∈ D. Figure 4
illustrates the values of a for which these solutions exist. For (d, a) in the shaded
region, we have two stationary monotone single-front solutions to (1) with (2). For
(d, a) on the boundary of the shaded region, the two solutions come together into
one. For (d, a) outside of the shaded region, no stationary monotone single-front
solutions exist. Figure 8 shows solutions plotted on the real axis for five values
of d, of which two (d1 = 2 and d2 ≈ 4.0377) are in D. For the three d 6∈ D, the
two solutions are shown on separate plots and we see that they consist of discrete
steps from 0 to 1. For the two d ∈ D, instead in a discrete stepping, we have a
continuous curve from zero to one with the centered and the off-centered solutions
marked along the curve. Besides these two solutions, the curve defines a solution
for every choice of u0 ∈ (0, 1).

3. A discrete Evans function. Our stability results are obtained by evaluating
the leading eigenvalue of the linearization of (1) about its solutions {uo

n} and {uc
n}.

We proceed by deriving a discrete Evans function (see [4] for another example) and
use it to explicitly state stability results for the single front monotone solutions to
(1) with (2). Simply put, we now perturb the solution and look for unstable modes.

3.1. The perturbation. We let

{yn(t)} = {un}+ {δn(t)}
with |δn(t)| ≤ min(|un − a/4|, |un − (a + 1)/4|) and substitute into (1) with (2) to
obtain the system of equations defined by

δ̇n(t) = d[δn+1(t)− 2δn(t) + δn−1(t)] +
{

δn(t), |m| ≤ (ω − 1)/2,
−δn(t), |m| > (ω − 1)/2,

where m = n−1/2 if ω is even and m = n if ω is odd. Thus the following exploration
for λ is valid as long as the solution {un} has no values equal to a/2 or (a + 1)/2.
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Figure 5. Contour plot where each contour line is a fixed value
of ωλ, as defined by (7). We observe that λ decreases as d increases.

We now separate variables and assume we can write δn(t) = vnαeλt, substitute,
and obtain

{
0 = dvn+1 − (2d + λ− 1)vn + dvn−1, |m| ≤ (ω − 1)/2,
0 = dvn+1 − (2d + λ + 1)vn + dvn−1, |m| > (ω − 1)/2.

(5)

Solving for vn, on each of the intervals (the middle interval |m| ≤ (ω − 1)/2 and
the left- and right-hand tails |m| > (ω − 1)/2) any monotone solution of (5) is of
the form

vn =





A+σm
+ + A−σm

− , m < −(ω − 1)/2,
C+νm

+ + C−νm
− , −(ω − 1)/2 ≤ m ≤ (ω − 1)/2,

B+σm
+ + B−σm

− , m > (ω − 1)/2,
(6)

where

σ± =
2d + λ + 1

2d
±
√

λ + 1
√

λ + 1 + 4d

2d
and

ν± =
2d + λ− 1

2d
±
√

λ− 1
√

λ− 1 + 4d

2d
.

Using the four matching equations generated by satisfying (5) where the intervals
meet (coupling the solution pieces from each interval together), A+ and A− can
be expressed as functions of B+, B−, and λ; or B+ and B− can be expressed as
functions of A+, A−, and λ. We desire that the boundary conditions lim|n|→∞ vn =
0 be satisfied, which implies that A− must equal zero since σ− ∈ (0, 1) and B+ must
equal zero since σ+ = σ−1

− > 1. If we set A− = 0, we can write B+ as a function of
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A+ and λ i.e.,

B+(d, ω) =





1 + σ−
2(1 + σ2

+)
A+, ω = 0,

σω−1
−

(ν+ − ν−)(σ+ − σ−)
[νω−1

+ (σ− − ν+)2 − νω−1
− (σ− − ν−)2]A+, ω > 0,

which has branch points at λ = −1,−1 − 4d, for ω > 0, where the integer valued
ω is defined by (3). Again, our goal is for B+ = 0. If A+ were to equal zero, then
vn = 0 for all n, hence δn(t) would be zero for all n and t > 0. Thus assuming that
A+ 6= 0 gives us the eigenvalue problem “for what values of λ does B+ = 0.” Let
λ0 be the leading eigenvalue for our problem. Then our solutions are linearly stable
when λ0 < 0 and linearly unstable when λ0 > 0. Figure 7 illustrates λ0 where we
can see that the stability of our two solutions changes at specific isolated values of
d.

Remark 3.1. A formal explanation of the behavior that the stability of the two
stationary monotone front solutions vary with d is that although ω is an increasing
function of d, λ0 is monotone increasing in ω while λ0 is monotone decreasing in
d. To see this we set B+(d, ωλ) = 0 and solve for ω to obtain

ωλ(d, λ) =
2
κλ

[
tan−1

(
2−√4d + 1 + 4dλ + 2λ + λ2

√
4d− 1− 4dλ + 2λ− λ2

)]
+ 1 (7)

=
2
κλ

[
tan−1

(
σ− − cos(κλ)

sin(κλ)

)]
+ 1

where

κλ = −
∣∣∣∣cos−1

(
1 +

λ− 1
2d

)∣∣∣∣ .

Differentiating, we find that

∂

∂λ
ωλ =

2
κ

sin2(κλ)
1 + σ2− − 2σ− cos(κλ)

∂

∂λ

(
σ− − cos(κλ)

sin(κλ)

)

− 2
κ2

λ

tan−1

(
σ− − cos(κλ)

sin(κλ)

)
∂

∂λ
κλ > 0

and hence ∂λ/∂ω > 0, where

∂

∂λ

(
σ− − cos(κλ)

sin(κλ)

)

= 2
1− λ2 − 4dλ− 8d2 + (λ− 1 + 2d)

√
4d + 1 + 4dλ + 2λ + λ2

√
4d + 1 + 4dλ + 2λ + λ2(4d− 1− 4dλ + 2λ− λ2)3/2

and

∂

∂λ
κλ =

−1√
4d− 1− 4dλ + 2λ− λ2

.

Using (7) to show that ∂λ/∂d < 0 proves to be bit more difficult and thus instead
of an algebraic verification we have included Figure 5, which shows the λ(d) level
curves for different fixed values of ωλ.

We now explore the relationship between d and the sign of λ0 in more detail.
Since the value of A+ 6= 0 is unimportant to this study, we set E(λ) = B+(A+, λ)
when A+ = 1 and examine E. The Evans function E(λ) is analytic for <λ > −1
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when ω > 0 and for <λ > 0 when ω = 0. Thus by the argument principle, for the
appropriate choice of <λ fixed, with C enclosing the region of λ to the right of <λ

1
2πi

∫

C

dE

dλ

dλ

E
=

1
2πi

∫ <λ+i∞

<λ−i∞

dE

dλ

dλ

E
= Number of zeros in C (8)

= Number of winds around 0 in the (E<, E=) plane
as =λ goes from −∞ to ∞,

where E< is the real part of E and E= is the imaginary part of E.

We now list some properties of E.

• For ω > 0, lim
<λ→−1+

1
2πi

∫ <λ+i∞

<λ−i∞

dE

dλ

dλ

E
= 1, for d 6∈ D. Figure 7 is a plot

illustrating this one value of λ for d ∈ [0, 25].
• For λ along the imaginary axis, λ = ib for b real, the real part of E is even

since E<(ib) = [E(ib) + E(−ib)]/2, and the imaginary part of E is odd since
E=(ib) = [E(ib)− E(−ib)]/2, for d ≥ 3/4.

• Since E is analytic along the imaginary axis and since dE</dλ(ib) is odd,
E<(ib) has a maximum or minimum at b = 0.

• Since lim|b|→∞E(ib) = 1, lim|b|→∞E<(ib) = 1 and lim|b|→∞E=(ib) = 0.
• For d ≥ 3/4 and b real, E<(ib, d) increases monotonically from b = 0 to

b = ±∞.
• E=(ib) is positive for b positive.

Since our concern is unstable modes, we consider for the contour in (8) the bound-
ary of the region which encloses <λ > 0. The curve produced in the (E<, E=)(ib)
plane is symmetric about the E= axis and consists of a single closed curve that goes
through the point (1, 0). The winding number is either zero (no unstable modes),
or one (one unstable mode), depending on whether the origin is contained in the
curve. Because of symmetry, this is equivalent to asking whether E<(0) is posi-
tive (winding number zero) or negative (winding number 1) see Figure 6. Since
E=(0) = 0,

E<(0) = E(0) =
d(1 + σ0)σ0

2(2d + 1)
for ω = 0 and

E<(0) = E(0)

= σω−1
0

[√
4d + 1− 2√

4d + 1
cos([ω − 1]κ) +

2
√

4d + 1− 3√
4d− 1

√
4d + 1

sin([ω − 1]κ)
]

for ω > 0, where

σ0 =
2d + 1

2d
−
√

4d + 1
2d

.

When d ∈ (0, 3/4), one proceeds in a straight forward manner to find the sign
of E<(0) for the single monotone front stationary solutions. The only two such
solutions that occur are for ω = 0 and 1. When ω = 0, E<(0) > 0 for d > 0 and
when ω = 1, E<(0) = (

√
4d + 1− 2)/

√
4d + 1 < 0 for d ∈ (0, 3/4).

For the remaining values of d we use the following function to help. Because
σω−1

0 /(
√

4d− 1
√

4d + 1) > 0 for d > 1/4, investigating the sign of E(0) is equivalent
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Figure 8. Plots of the discrete solution displayed on a continuous
axis for various values of d, for a = 1/2. The distance between
horizontal tic marks is one. The solution {uo

n} is in red and {ue
n}

is in blue. The stable solutions (negative λ) are displayed on the
left, the unstable (positive λ) on the right. For values of d ∈ D,
there exists an infinite number of monotone front solutions. In
the plots for d1 and d2 we have marked the centered (in red) and
off-centered (in blue) solutions that also exist for d 6∈ D. However,
the black line defines the solution for any choice of u0 ∈ (0, 1). See
[12] for additional details.
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Figure 9. Plot of the stable solution with respect to d for a = 1/2.
The centered solutions are in red and the off-centered solutions are
in blue.

to finding the sign of

G(d, ω) ≡ (
√

4d + 1− 2)
√

4d− 1
2
√

4d + 1− 3
+ tan(ω − 1)κ,

which is valid for d > 5/16.

Lemma 3.1. Fix ω ∈ ZZ+. Then the value of d such that G = 0 is dω−1 i.e.,
G(dω−1) = 0. In addition for d > 5/16, for each ω the value of d such that G = 0
is unique.

Proof. We begin by setting G(d, ω0) equal to zero and solving for ω0 to obtain

ω0 =
1
κ

tan−1

(
(2−√4d + 1)

√
4d− 1

2
√

4d + 1− 3

)
+ 1 = (9)

2
κ

tan−1

(
2−√4d + 1√

4d− 1

)
+ 1 = w + 1,

where w is given by (4). The values of d at which w is a nonnegative integer are
those contained in D i.e., at dw. Since w = ω0 − 1, for fixed ω0 ∈ ZZ+ the value of
d which satisfies (9) is d = dw = dω0−1.

Taking the derivative of G(d), we find that

G′(d) =
4([d + 1][

√
4d + 1]− [3d + 1])√

4d + 1
√

4d− 1(2
√

4d + 1− 3)
+

[
d

dd
(ω − 1)κ

]
sec2(ω − 1)κ > 0

for d > 5/16 since for d ∈ [1/4,∞), κ is real and increases monotonically from −π
at d = 1/4 to 0 for d →∞.

Remark 3.2. Lemma 3.1 implies that the values of d at which the stability of the
solution {ue

n} ({uo
n}) changes are the values of d at which ω changes for {uo

n}
({ue

n}).
Furthermore, it implies that for the solution associated with each ω, when d ∈

[dω−2, dω−1) there exists an unstable mode, and when d ∈ [dω−1, dω) there does not
(Figure 7).
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Figure 10. Plot of the unstable solution with respect to d for
a = 1/2. The centered solutions are in red and the off-centered
solutions are in blue.
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Figure 11. Plot of the stable solution with respect to d for
a = 0.504. The centered solutions are in red and the off-centered
solutions are in blue.

Remark 3.3. Equality (7) becomes equality (9) when λ = 0.

Figure 7 illustrates the eigenvalues λ with respect to d for <(λ) > −1. Observe
the jump in the values for one solution coincides with the zero crossing of λ for the
other solution. In the plots of Figure 8 we show the stable and unstable solutions
for five specific values of d. Figures 9 and 10 show the stable and unstable solutions,
respectively, with respect to d for a = 1/2. Figure 11 pictures the stable solution
with respect to d for a = 0.502. Notice that the solution does not exist for all d ≥ 0
and does not exist for any d > 6.0771.

4. Conclusion. We have studied the stability of stationary single-front monotone
solutions to the reaction-diffusion (1) with the zigzag-shaped piecewise linear non-
linearity (2). For a = 1/2, at every value of d ≥ 0 there exist two fronts, one
centered at a = 1/2 and one off-centered. At almost every value of d ≥ 0, one of
the fronts is stable and one is unstable, and at a countably infinite number of values
of d ≥ 0 the stability of the two solutions switch.
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Figure 12. A plot of the smoothed zigzag nonlinearity
(10) with g1 = −

[
u2 − au + (a/2− δ)2

]
/(2δ) and g2 =[

u2 − (a + 1)u + ((a + 1)/2− δ)2 − 2δ
]
/(2δ), where δ = 0.05.

At the values d where the stability switching occurs, there exists a heteroclinic
connection between 0 and 1 (see [13] for more detail) i.e., the two-dimensional
system (map) becomes integrable. The stationary system studied here, for a = 1/2
and f(u) (2) redefined for u outside of [0,1] to be f(mod(u, 1)) (making f periodic
with period 1), is a standard-like map. There are a number of reactions terms
that when used in (1) with u̇n = 0 produce integrable maps for isolated values of
the coupling coefficient (for example, the standard maps of Suris [36]). For our
interests the most significant consequence of the map defined by (1) with u̇n = 0
being integrable is that there is no lattice resistance to motion, no propagation
failure due to the discreteness of the diffusion operator.

We are continuing the work in this paper along two paths. The first involves
exploring the stability of stationary front solutions to (1) with other bistable non-
linearities (bistable for u ∈ [0, 1]) that are known to produce integrable maps for
isolated d values. The second involves exploring the stability of the stationary
monotone front solutions to ün(t) = d[un+1(t) − 2un(t) + un−1(t)] − f(un(t), a)
which produces an Evans function with branch points on the imaginary axis at
λ = ±i and at ±(1 + 4d)i.

Our original motivation in studying nonlinearity (2) was to work with a piecewise
linear approximation to the sine and cubic functions, an approximation that was
in some sense better than the McKean approximation. Specifically, the potential
function associated with the McKean approximation has no spinodal region. How-
ever, while the potential function which gives the nonlinearity (2) has a spinodal
region, (2) does lack smoothness. We now show that this lack of smoothness is
not essential for the changes in stability as d is continued. This can be seen by
considering the nonlinearity

f(u, a) =





u, u < a/2− δ,
g1(u, a, δ), a/2− δ ≤ u ≤ a/2 + δ,
a− u, a/2 + δ < u < (a + 1)/2− δ
g2(u, a, δ), (a + 1)/2− δ ≤ u ≤ (a + 1)/2 + δ,
u− 1, u ≥ (a + 1)/2 + δ,

(10)

where δ ∈ [0, a/2) ∩ [0, (a + 1)/2). The functions g1 and g2 are chosen to give
whatever degree of smoothness is desired to f . Figure 12 illustrates (10) for specific
choices of g1, g2, and δ. For this demonstration we set a = 1/2 so that the centered
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and off-centered solutions are guaranteed to exist for all d ≥ 0 because of the
symmetry of f . When δ = 0, (10) equals (2). Now for δ > 0 small, the solutions of
(1) with (10) are exactly the same solutions of (1) with (2) for all d ≥ 0, excluding
the d within ε neighborhoods of the dω. Because the interface width increases with
d, so does the size of the neighborhoods. For d large enough, the neighborhoods
overlap, and we should no longer expect the solutions for the two nonlinearities to
be the same.

More explicitly, suppose that 0 ≤ δ ≤ 0.05. Then for d ∈ [0, .4] and for d ∈
[.96, 1.08] the solutions to (1) with (2) and to (1) with (10) are the same, and so is
their stability. Since these intervals lie on either side of d0 and both intervals lie to
the left of d1, there is a least one change in stability between d = .4 and d = .96.
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