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Abstract. Invasive plant populations typically consist of a large (main) focus

and several smaller outlier populations. Management of the spread of invasives
requires repeated control measures, constrained by limited funding and effort.

Posing this as a control problem, we investigate whether it is best to apply

control to the main focus, the outlier populations, or some combination of
these. We first formulate and solve a discrete-time optimal control problem to

determine where control is best applied over a finite time horizon. However,

if limited funds are available for control, this optimal solution may not be
feasible. In this case, we add an additional constraint to account for the fixed

budget and solve the new optimality system. Our results have a variety of

practical implications for invasive species management.

1. Introduction. Modern transport has greatly expanded the rate of movement
of species across the planet to regions in which they were not native. Although the
majority of species propagules transported to new habitats are unable to survive and
spread, a small fraction of such species produces successful invasives. Such invasives
can cause a variety of detrimental impacts on natural systems, including reduction
in biodiversity, habitat condition changes detrimental to native populations, and,
in a number of cases, these invasives have had major economic impact [6]. A wide
variety of programs exist around the world to limit the spread of harmful invasives,
with different control measures (e.g., spraying herbicides, cutting, and controlled
fires) applied depending upon local conditions and the treatments which are most
effective at controlling the invasive. Control attempts have had mixed success in
limiting invasive spread, and appropriate guidance for resource managers is needed
to enhance the cost-effectiveness of control measures [10].

Invasion spread can occur in a variety of ways, depending upon the transport,
dispersal, and growth properties of the particular species. Our emphasis in this
paper is on invasive plants, though our techniques are generally applicable to animal
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and disease spread as well. The spread of invasive plants typically begins from a
focus of infection, with outlier populations developing through time as long-distance
dispersal carries plant propagules to appropriate habitat locations distant from the
primary initial infection location. This situation is the one we consider here, though
there are examples of spread that are more appropriately described as a traveling
wave front, or arise from continuous input from an outside source so that numerous
invasive populations arise at disparate locations at the same time.

A wide variety of mathematical models have been applied to the spread of in-
vasives (see Shigesada and Kawasaki [9]; Petrovskii and Li [5]). Very little of the
modeling literature on invasives deals explicitly with the control problem, however.
Our objective here is to analyze a general model that accounts for spread from a
major focus and a collection of outlier populations. However, other control models
have been developed for specific invasives, including the application of mathemati-
cal programming methods to investigate optimal spatial patterns of control [3].

Recent work by Cacho et al. [1] considered an invasion of a single focus with
constant radial growth. Control was applied at discrete time intervals by treating
the invasion so that its radius was reduced, and this treatment was repeated for
several years to account for seed banks. They then maximized the uninfested area
and minimized the cost of control over the time intervals, using a discount factor.
However, they assumed that the cost of treating an area increases linearly. They
found that one of three scenarios was optimal: eradication, containment (no increase
or decrease in size), or no control depending on the initial size of the focus.

One of the most frequently cited papers on control of plant invasives is Moody
and Mack [4], and we use this as a starting point for our investigation. This pa-
per considered control of a biological invasion from an expanding point source that
produced satellites. The authors’ analysis compared two control scenarios: ap-
ply control to the main focus only or apply control to satellites only. They assume
control was applied once at the initial point in time, and then the long-term (asymp-
totic) situation was considered to compare the effects of the alternative controls on
growth of the invasives. Although this provides good insight on the control prob-
lem, the model is limited by the assumption of a single initial control and by the use
of an asymptotic solution when the growth dynamics is more appropriately valid
only over short periods, because of the eventual coalescence of the separate popula-
tions. Despite these drawbacks, the paper is often cited and advocated by natural
resource managers. Expansion on the mathematical control scenarios investigated
in Moody and Mack has been very limited, despite the fact that their scenario is
quite common. We formulate a model similar to that investigated by Moody and
Mack, allowing for a finite period, with control allowed to be applied once in each
time step. This formulation is simple enough to readily allow comparisons of the
results to those of Moody and Mack. We also consider the influence of total cost
constraints on the application of the controls.

In the next section, we describe our discrete time model for the growth of foci
of infection and explain the control format and the objective functional. In Section
3, we explain the methods used to solve the optimal control problem and explicitly
give the adjoint system and the characterization of the optimal control. We apply
an extension of the Pontryagin Maximum Principle to discrete time systems [2, 7, 8].
In the last section, we present our results from numerical solutions of the optimality
system, which is the state system coupled with the adjoint system along with the
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control characterization. We also discuss our conclusions and the limitations and
possible extensions of this work.

2. Mathematical model. Moody and Mack [4] initially considered a finite num-
ber of satellites with a main focus and either allowed all satellites to be eradicated
or an amount of the main focus to be removed, that amount being equivalent to
the total area of all satellites (assuming the focus and the satellites were disks).
Their model is phrased in terms of the radii of the main focus and the satellite
populations. They then allowed the invasive populations to expand and found that
the total area invaded was always greater, after a sufficiently long period of time,
for the second scenario (removing area from the main focus). This is not surprising,
as after an initial transient period, all disks become so large that asymptotically the
area becomes the same for each foci. Thus having two or more satellites remaining
will give greater area than just one remaining. During the transient period, the
main focus, due to its size, is larger in area than the satellites since all the disks
grow at the same rate. However, the satellites catch up, and only the number of
infestations matters.

Using a discrete time model, we consider a finite time horizon and allow control
at each time step, for a similar situation. The equations for the radius of the
invasion over time are given by

rj,t+1 =
(

rj,t +
rj,tk

ε + rj,t

)
(1− βj,t)

for t = 0, 1...T−1, where rj,t represents the radius of the focus j at time t. The initial
size of the foci will determine which is the main focus and will be specified in the
numerical simulations. The spread rate is given by k and is scaled by r

ε+r for ε small.
The scaling ensures that if a focus is eradicated, rj,t = 0, it remains eradicated and
does not grow back. The control coefficient βj,t is the amount of radius decrease
due to control at time t for the focus j. We form an objective functional comprising
the costs to be minimized. Our objective will therefore be to minimize the area
covered by the invasive species at the end of the time period. Coupled with this is
the cost of the control over the entire time period, which we take to be quadratic
for simplicity of the control analysis. Hence with controls β = (β1, β2, ..., βn) where
βj = (βj,0, βj,1, ..., βj,T−1), our cost functional or objective functional is given by

J(β) = J1(β) + J2(β)

where

J1(β) =
n∑

j=1

r2
j,T

J2(β) =
n∑

j=1

T−1∑
t=0

Bβ2
j,t.

The coefficient B is a positive-valued balancing constant that adjusts the cost of
control relative to the economic cost of the invasive. We seek to minimize J(β) over
controls with components 0 ≤ βj,t ≤ 1.
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3. Methods. The optimal control can be determined by solving the state system
and its corresponding adjoint system. The adjoint system is found from the forma-
tion of a Hamiltonian. Applying an extension of Pontryagin’s Maximum Principle
[2] to discrete systems, we find a characterization for the optimal control for the
system. Thus we obtain the following theorem.

Theorem 3.1. Given an optimal control β∗j for j = 1...n, and corresponding state
solutions rj, there exist adjoint variables λj such that the adjoint variables satisfy
the system

λj,t−1 = λj,t(1− β∗j,t)
(

1 +
εk

(ε + rj,t)2

)
(1)

for t = 1, 2...T − 1 with the transversality conditions

λj,T−1 = 2rj,T . (2)

Furthermore the optimal control is given by

β∗j,t = max
(

0,min
(

λj,t

2B

(
rj,t +

rj,tk

ε + rj,t

)
, 1

))
. (3)

Proof. The Hamiltonian is given by

H =
n∑

j=1

[
r2
j,T +

T−1∑
t=0

Bβ2
j,t + λj,t

[(
rj,t +

rj,tk

ε + rj,t

)
(1− βj,t)

]]
.

Applying the extension of Pontryagin’s Maximum Principle, we obtain

λj,t−1 =
∂H

∂rj,t

for t = 1...T , evaluated at the optimal control and corresponding states, which gives
system (1) and (2). Using the optimality conditions,

∂H

∂βj,t
= 2Bβ∗j,t − λj,t

(
rj,t +

rj,tk

ε + rj,t

)
= 0

on the set {(j, t)|0 < β∗j,t < 1} and solving for β∗j,t subject to the constraints, the
characterization is derived.

When controlling an invasion, the amount of control (or at least of funds used
for control) may be limited. For example, an agency may give a pool of money only
for controlling an invasive for a finite period of time. Thus, the optimal solution
found previously may require more money than is realistically possible. Therefore,
we create an extra constraint to insure that the sum of the cost of the controls is
fixed,

m = J2(β)

=
n∑

j=1

T−1∑
t=0

Bβ2
j,t,

where m is the fixed allocation of money available for the entire time period. Adding
this constraint gives a smaller class of feasible controls than those for the uncon-
strained problem. Also, as the cost of the control is fixed, the objective functional
becomes J(β) = J1(β) over the class of controls with the sum constraint and the
same upper and lower bounds on components. We therefore have the following
theorem.
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Theorem 3.2. Assume m < Bn. For objective functional J1, given an optimal
control β∗j for j = 1...n where m = J2(β) and corresponding state solution rj, there
exist adjoint variables λj and a constant µ such that the adjoint variables satisfy
the system

λj,t−1 = λj,t(1− β∗j,t)
(

1 +
εk

(ε + rj,t)2

)
for t = 0, 1...T − 1 with the transversality conditions

λj,T−1 = 2rj,T .

Furthermore the optimal control is given by

β∗j,t = max
(

0,min
(

λj,t

2Bµ

(
rj,t +

rj,tk

ε + rj,t

)
, 1

))
.

Proof. We introduce a new state variable Mt to track the amount of control used
up to year t. Therefore

Mt+1 = Mt +
n∑

j=1

Bβ2
j,t

for t = 0...T − 1 with initial condition M0 = 0 and terminal condition MT = m.
As this is another state, we have another adjoint variable. Thus the Hamiltonian
is given by

H =
n∑

j=1

[
r2
j,T +

T−1∑
t=0

λj,t

[(
rj,t +

rj,tk

ε + rj,t

)
(1− βj,t)

]]

+
T−1∑
t=0

µt

Mt +
n∑

j=1

Bβ2
j,t

 .

Applying the extension of Pontryagin’s Maximum Principle, the adjoint system
becomes

λj,t−1 = ∂H
∂rj,t

µt−1 = ∂H
∂Mt

= µt

for t = 1...T evaluated at the optimal control and corresponding states with final
time condition λj,T−1 = 2rj,T . Note µt is constant for all t; i.e., µt = µ for
t = 0, 1, ...T − 1. One can show if µ = 0, then for all j = 1, 2..., n, βj,t = 1 for some
tε{0, 1..., T − 1}, which contradicts m < Bn. Hence we can assume µ 6= 0. Now by
considering the optimality condition,

∂H

∂βj,t
= 2Bµβ∗j,t + λj,t

(
rj,t +

rj,tk

ε + rj,t

)
= 0,

on the set {(j, t)|0 < β∗j,t < 1} and solving for β∗j,t subject to the bounds, the
characterization is derived.

Remark 3.1. Although the upper bound on J2(β) is nBT , the realistic upper bound,
taking the dynamics into account, is nB. If β∗j,s = 1 for some j, s then rj,t = 0 for
all t > s, which implies β∗j,t = 0 for all t > s. Once a focus is eliminated, there
is no need to apply control to it afterwards. Therefore, for each j, one would only
choose β∗j,s = 1 for at most one time s. Consequently if m ≥ nB, then the optimal
strategy would be to eliminate every focus.
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4. Numerical results. We solved the optimality systems by an iterative method
with forward-solving of the state system followed by backward-solving of the adjoint
system using MATLAB. We start with an initial guess for the control at the first
iteration and then before each following iteration, we update the control by using
the characterization. We continued until convergence of successive iterates was
achieved.

When there is a fixed cost for the total amount of control we solve the optimality
system in a similar way. We let MT be free and then find the unknown adjoint
variable µ by exhaustive search method, such that MT = m.

To illustrate our results, we choose the initial radii to be r1,0 = 10, r2,0 = 0.5,
r3,0 = 1.0, r4,0 = 1.5, r5,0 = 2.0 and r6,0 = 2.5. We designate the first focus with
the largest radius as the main focus and the others are considered to be satellites.
Figures 1 and 2 show optimal control solutions for different cost coefficients, B,
with k = 1 and ε = 0.01.
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Figure 1. The optimal control solution for B = 150. Figure (a)
shows the radii of 6 populations. Figure (b) shows the portion of
radius removed from each focus.

We find that for the cost coefficient B = 150, the main focus and the satellites
are reduced by an increasing amount each year (see Figure 1(b)). However, initially
the reduction in radii of the satellites is not as great as their growth, so the satellites
increase in size (Figure 1(a)). Yet toward the end of the period, the reduction in
area becomes greater than the satellite’s growth, reducing the satellite’s size. For
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the radius of the main focus, there is a slight initial increase in size for the first
year, followed by a decrease each subsequent year. By the end of the period, the
main focus has been reduced to about half its original radius. The total amount
of control used each year increases, with more control applied to the main focus
compared to the satellites. This has the effect of reducing the main focus size
to a size comparable to the satellites’. For larger values of B, it is more costly
to control the invasion, and therefore less control is used on both the main focus
and the satellites. However, the proportion of control applied to the main focus in
comparison to the satellites increases, as B increases.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

Time (years)

Ra
di

us

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (years)

Pr
op

or
tio

n 
of

 ra
di

us
 c

on
tro

lle
d

(a) (b) 

Figure 2. The optimal control solution for B = 10. Figure (a)
shows the radii of 6 populations. Figure (b) shows the portion of
radius removed from each focus.

In Figure 2(b) we see that for a lower cost coefficient, B = 10, the optimal
solution is to apply little control to both the main focus and the satellites until
the penultimate time step. Then large amounts of control are used to reduce the
invasion to a small amount (Figure 2(a)). In this case, it has become less important
to control the main focus and satellites throughout most of the time period. This
is due to the low cost coefficient, B, and also because, in this model, the removal
of a proportion of a disk with a large radius incurs the same cost as removing the
same proportion of the radius of a small disk. We also note that throughout the
majority of the period (before the penultimate time step), a greater proportion of
radius is removed from the satellites than from the main focus. So the optimal
control strategies can be very different depending on the cost coefficient, B.
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Figure 3. Costs J(β) and J2(β) against cost per unit area of
control, B, for the optimal solution.

Figure 3 shows how the total cost, J(β), and the cost of controlling the invasion,
J2(β), changes against the cost coefficient, B. The total cost (solid line) of the
optimal strategy increases monotonically as the cost coefficient increases. We see
that the total cost increases significantly in the interval [1,4] for log10(B). For low
values of B, we see that the contribution from the cost of controlling the invasion
to the total cost is very high (solid and dashed lines are very close together); thus,
the area of the invasion is small at the final time. As B increases, the cost of
controlling the invasion also increases, however, the contribution to the total cost
decreases (dashed line increases slower than solid line) and the area of the invasion
is larger at the final time. Further increases in B cause the cost of the amount of
control to peak, and for larger values of B, the amount of control is reduced.

The above situations did not constrain the amount of control, so we next consider
the problem when limited resources or funding allow only a finite amount of control.
We assume the constraint on the total cost of the control is, m = 38.6 for cost
coefficient B = 20. Figure 4 shows the difference in optimal solutions with and
without the constraint on the total amount spent on the control.
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Figure 4. Comparison between constrained and unconstrained
optimal solutions for B = 20. Figures (a) and (b) show the un-
constrained optimal solution where J(β) = 95.4 of which 68.3 is
the cost of the control. Figures (c) and (d) show the constrained
optimal solution for fixed cost, m = 38.6. Here J1(β) = 113.8.

There is a clear difference between the constrained optimal solution and the
unconstrained optimal solution (Figure 4). The resulting total cost is much higher
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in the constrained problem due to the restriction on the amount of control used.
Strikingly, we find that the control strategy changes considerably because of the
restriction on cost. In the restrictive case, more control is used earlier in the control
period (as in Figure 1). However, in the unconstrained case, less control is used
until toward the end of the period, when a large amount of control is used (as in
Figure 2).

In Table 1 we compare the total cost of the objective functional for four different
strategies over a ten-year period. We let the initial radii be r1,0 = 10, r2,0 = 0.5,
r3,0 = 1.0, r4,0 = 1.5, r5,0 = 2.0 and r6,0 = 2.5 and let k = 1, ε = 0.01 with
B = 20. The optimal solutions for the constrained and unconstrained problems

Table 1. Comparison of total costs between both Moody and
Mack scenarios and the constrained and unconstrained optimal
solutions.

Control method Total cost of the objective
functional (cost of the control)

Satellite elimination (Moody and Mack) 499.7 (100.0)
Main focus reduction (Moody and Mack) 1042.6 (10.2)
Unconstrained optimal solution 95.4 (68.3)
Constrained optimal solution 279.8 (10.2)

compare favorably with the solutions of the two scenarios from Moody and Mack.
By constraining the total cost of the control allowed during the period to the same
cost (10.2) as in the Moody and Mack scenario in which part of the radius of the
main focus is removed, there is a considerable gain in the total cost. Therefore,
allowing the same amount of control to be applied at discrete intervals to a com-
bination of the main focus and the satellites is far more cost effective. Removing
the constraint allows use of more control, causing a further decrease in the total
cost. For our model, the cost of eliminating the satellites at the start is also high
compared to our time-dependent control solutions.

5. Discussion. Our results provide several conclusions that differ from those of
the original model by Moody and Mack. This is hardly surprising given the differ-
ent assumptions our approach takes, but we attempted to provide a method that
is sufficiently similar to theirs that comparisons could be reasonably made. Our
reasoning is that since the Moody and Mack results are widely cited as appropriate
for invasion management, it is important to determine whether use of their con-
clusions for invasive management is reasonable. We believe that, in general, their
conclusion (focus efforts on eradicating the satellite populations) is far too limiting
to be appropriate guidance for resource managers. This is in part due to our results
showing that allocation of control efforts on both a central focus and satellites is
optimal, but also because realistic invasive control is not done at a single time, but
at multiple times. Our model allows for this possibility in addition to providing
other realistic extensions of the original Moody and Mack model.

Our main result is that, rather than focusing all control effort on just the main
focus of infestation or just the satellites (these were the limited options investigated
by Moody and Mack), we find that the optimal solution is always to apply control
to both the main focus and the satellites. The proportion of control applied to
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the main focus in comparison to the satellites changes depending on the balancing
constant, B, which governs the relative costs of management to the costs of the
infestation. Larger B values lead to higher optimal control on the main focus,
while as B decreases, the optimal solution is to apply more control to the satellites.

The formulation of the optimal control problem gives a different view of how
several applications of control equally spaced over a set period affect optimal man-
agement for invasives. Additionally, our approach provides a comparison of the
explicit time course of optimal control, separately for different sizes of satellites,
and provides estimates of the differential application of control to these satellite
infestations. Thus, given an explicit set of information about sizes of infestations,
our model provides estimates of the relative amount of control, either in an uncon-
strained cost model or a constrained cost model, which should be applied to each
infestation. This offers the potential to provide explicit guidance to managers in
a considerably more realistic manner than applying a rule of thumb based on the
earlier Moody and Mack results.

Moody and Mack included a second model formulation (allowing for initiation
of new foci of infection) that we have not investigated here. Our results are ad-
ditionally limited because of the way the model is formulated, assuming the same
cost for a proportional reduction of radius for all infestations independent of their
size.

Many other extensions of our approach could be investigated, and we expect
that if implemented these could change the details of our results, though we do not
expect them to bring about changes to our main conclusion. Our model does not
include discount factors associated with the costs, in part because we view the time
horizon for practical application of this approach to be sufficiently short that such
discounting would have small effect at current interest and discount rates. If long-
term (over several decades) applications were to be considered, then discounting
would be more appropriately included. Our model has no explicit spatial compo-
nents and ignores the potential impact of distance factors in affecting the control
costs. We have focused as well only on a final-time infestation area in the objective,
but it would be relatively easy to incorporate the costs of infestation throughout
the time period rather than only at final time. It would be reasonable to investigate
how specific optimal control patterns determined from our model might change as
the spatial allocation of total area is modified—easily done by allocating a fixed
area of outliers among more or less satellites with the same total area.

In conclusion, we have developed a relatively simple methodology for developing
plans for management of invasives that might reasonably be applied to realistic
measurements of a real extent of infestations. While the biology associated with
this model is extremely naive, it may well be appropriate for situations in which only
coarse estimates of the radial spread rate of the infestation are available. At the
least, we hope that our results encourage resource managers to consider alternatives
to the simple rules based upon the earlier models, which we argue are likely too
constrained to be used for cost-effective management.
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