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Abstract. This paper presents a statistical study of a deterministic model
for the transmission dynamics and control of severe acute respiratory syn-
drome (SARS). The effect of the model parameters on the dynamics of the
disease is analyzed using sensitivity and uncertainty analyses. The response
(or output) of interest is the control reproduction number, which is an epi-
demiological threshold governing the persistence or elimination of SARS in a
given population. The compartmental model includes parameters associated
with control measures such as quarantine and isolation of asymptomatic and
symptomatic individuals. One feature of our analysis is the incorporation of
time-dependent functions into the model to reflect the progressive refinement
of these SARS control measures over time. Consequently, the model contains
continuous time-varying inputs and outputs. In this setting, sensitivity and
uncertainty analytical techniques are used in order to analyze the impact of
the uncertainty in the parameter estimates on the results obtained and to
determine which parameters have the largest impact on driving the disease
dynamics.

1. Introduction. A novel disease known as severe acute respiratory syndrome
(SARS) was reported in March, 2003 by the World Health Organization (WHO)
[31]. This respiratory disease, caused by a previously unknown coronavirus, SARS-
CoV [6, 14, 18, 22, 32], spread to 32 countries and regions, causing 774 deaths
and 8,096 infections globally [30]. The high mortality and morbidity associated
with the virus, coupled with its rapid global spread, prompted a coordinated global
effort spearheaded by WHO and aimed at determining effective control strategies for
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combatting the spread of SARS. Thankfully, these efforts resulted in the elimination
of all cases of SARS by August 2003 [7, 30].

Numerous mathematical models have been designed and used to evaluate control
strategies against SARS in some of the SARS-stricken regions (see, for instance,
[5, 7, 9, 11, 12, 13, 21, 28, 29, 33]). These models, generally in the form of systems
of deterministic or stochastic differential and difference equations, contain many
parameters. The study of the dynamics of such a new emerging disease presents
important challenges not only because of the uncertainty in the estimates of the
model parameters, but also because control measures are gradually refined as more
data (and further knowledge about the disease) become available.

This paper, which focuses on the mathematical model presented in [7], aims to
investigate the effect of the uncertainty associated with the parameter estimates
used in [7]. In this work we (i) extend the model in [7] by incorporating continuous
time-dependent functions into the model to reflect the gradual refinement of con-
trol measures over time and (ii) apply sensitivity and uncertainty analysis (SUA)
techniques to the resulting model containing continuous inputs and outputs.

It is known that the behaviour of nonlinear and multidimensional mathematical
models can be explored using SUA (see [23] and the references therein). While
an uncertainty analysis quantifies the variability in the outcome of the model at-
tributable to the uncertainty in the values of the associated input parameters, a
sensitivity analysis enables the determination of the most influential parameters
driving a model.

In the context of disease epidemiology, SUA has been used (notably by Blower
and co-workers [2, 3, 4, 24]) to gain insights into the transmission and control dy-
namics of many human diseases such as HIV and tuberculosis. For example, in
[2], SUA was used to investigate a model for the evolution of drug-resistant HIV in
San Francisco. This model featured two continuous time-varying outcome variables
(prevalence and transmission of drug resistance). Our paper incorporates contin-
uous time-varying input functions (Section 3) into the underlying mathematical
model in [7], and we use SUA techniques similar to those in [2, 3, 4, 24] to assess
the epidemiological significance of the input parameters, including those associ-
ated with the new functions that we introduce to model the gradual refinement of
anti-SARS control measures.

In this paper, SUA techniques are used to identify the key epidemiological pa-
rameters affecting the dynamics (persistence or elimination) of SARS. Owing to the
uncertainty in parameter estimation associated with a new emerging disease such
as SARS (where some of the key biological and epidemiological features are not
precisely known at the beginning of the epidemic), a detailed SUA is imperative
to ascertain the effect of such uncertainties on the results obtained from associated
mathematical models.

Unlike most epidemiological models, the modified model considered here involves
time-varying, continuous, control parameters in addition to a time-dependent re-
sponse. The time-varying control parameters are used to model the progressive
refinement of quarantine and isolation measures for SARS-infected individuals.
Furthermore, the model includes a time-varying component representing the grad-
ual implementation of hygienic precautions by health workers and others in close
contact with infected individuals in isolation. The existence of a time-dependent
response implies that functional data is obtained as output. Functional data arise
in many different fields, with the characteristic feature that the output consists
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of (typically smooth) curves [19, 20]. In the SUA literature, however, little use is
made of the functional analytic concepts described in [19] and [20]. Although the
analytical techniques used in this paper do not fully exploit the functional nature
of the data, they do provide a starting point and the motivation for future research
on the development of SUA techniques for epidemiological models with functional
output.

The paper is organized as follows. The underlying SARS transmission model is
briefly described in Section 2. Section 3 presents time-dependent control strategies
used to further refine the model of Section 2. SUA techniques employed in the
analysis of the modified model are described in Section 4.

2. Mathematical model. The model proposed in [7], which subdivides a given
SARS-affected region into six mutually exclusive subpopulations (susceptible (S),
asymptomatically infected (E), quarantined (Q), symptomatic (I), isolated (J) and
recovered (R) individuals), consists of the following differential equations:

dS

dt
= Π− S(βI + εEβE + εQβQ + εJβJ)

N
− µS, (1)

dE

dt
= p +

S(βI + εEβE + εQβQ + εJβJ)
N

− (γ1 + κ1 + µ)E, (2)

dQ

dt
= γ1E − (κ2 + µ)Q, (3)

dI

dt
= κ1E − (γ2 + δ1 + σ1 + µ)I, (4)

dJ

dt
= γ2I + κ2Q− (σ2 + δ2 + µ)J, (5)

dR

dt
= σ1I + σ2J − µR. (6)

In (1)-(6), the total population at time t, denoted by N(t), is given by N(t) =
S(t) + E(t) + Q(t) + I(t) + J(t) + R(t). The associated model parameters and
variables are described in Tables 1 and 2. Since the above model monitors human
populations, all parameters and state variables are assumed nonnegative for all t.
For further details about the model and its associated parameters, the reader may
refer to [7].

The model has a disease-free equilibrium (DFE) given by

(S∗, E∗, Q∗, I∗, J∗, R∗) =
(

Π
µ

, 0, 0, 0, 0, 0
)

. (7)

Following [7], let

Rc =
εEβ

D1
+

βκ1

D1D2
+

εQβγ1

D1D4
+

εJβκ1γ2

D1D2D3
+

εJβγ1κ2

D1D3D4
, (8)

with D1 = γ1 + κ1 + µ,D2 = γ2 + δ1 + σ1 + µ,D3 = σ2 + δ2 + µ and D4 = κ2 + µ.
By linearizing the model around the DFE with p = 0, the following result can be
proven.

Lemma 1. The DFE, (7), of the model (1)-(6), is locally asymptotically stable if
Rc < 1 and unstable if Rc > 1.

The threshold quantity Rc is called the control reproduction number [1], which
represents the average number of new infections generated by a single infective
when SARS control measures are in place. Lemma 1 shows that introducing a
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Table 1. Descriptions of State Variables and Time-Independent Parameters

Variable
or Par. Interpretation

β Infectiousness and contact rate between a
susceptible and symptomatic individual

κ1 Rate of development of clinical symptoms in asymptomatic
population

κ2 Rate of development of clinical symptoms in quarantined class
σ1 Rate of recovery in symptomatic class
σ2 Rate of recovery in isolated class
δ1 Disease induced death rate in symptomatic class
δ2 Disease induced death rate in isolated class
µ Natural death rate
εE Modification parameter associated with infection from

asymptomatic individual
εQ Modification parameter associated with infection from

quarantined individual
Π Rate of inflow of individuals into a region or community
p Rate of inflow of individuals that are infected asymptomatically
S Subpopulation of susceptible (noninfected) individuals
E Subpopulation of asymptomatically infected individuals

(exhibiting no SARS symptoms)
Q Subpopulation of quarantined asymptomatically infected

individuals
I Subpopulation of individuals with clinical symptoms of SARS
J Subpopulation of isolated symptomatic individuals
R Subpopulation of individuals who recovered from SARS

Table 2. Control-Related Parameters

Variable Interpretation
γ1 Quarantine rate (per day) of asymptomatic individuals
γ2 Isolation rate of symptomatic individuals
εJ Modification parameter associated with infection from

isolated individual

small number of infectives into the population will not lead to a major epidemic if
Rc < 1 (i.e., in this case, SARS will be eliminated if Rc < 1). Similarly, SARS will
persist in the population if Rc > 1. For a review of reproduction numbers, see [8].

2.1. Parameters for control measures. In the absence of a rapid diagnostic
test, therapy or vaccine, SARS control measures were based on quarantine (of ex-
posed individuals), isolation (of symptomatically infected individuals) and stringent
hygienic precautions during isolation (prescribed for health care personnel). In the
model (1)-(6), parameters corresponding to the health control measures (HCMs)—
quarantine, isolation and hygienic precautions—are denoted by γ1, γ2 and εJ , re-
spectively (see Table 2). It should be noted that, in the model, individuals in
quarantine are assumed to be asymptomatically infected.
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In [7], γ1 and γ2 were set to 0 on the day (February 23, 2003) the index case
was reported in the Greater Toronto Area (GTA) and switched to γ1 = 0.1 and
γ2 = 0.5 a few weeks later (March 30, 2003), signifying the full implementation of
the quarantine and isolation programs.

One key feature of the 2003 SARS outbreak was that, subsequent to the introduc-
tion of quarantine and isolation measures, a large number of nosocomial infections
were reported. These infections were attributed to inadequate hygienic precautions
taken by health care workers who came in contact with isolated infectives. The
modification factor, εJ , was introduced into the model in [7] to reflect the level
of hygienic precautions undertaken during isolation. Perfect hygienic precautions
would mean εJ = 0, implying that further SARS infections were not arising through
contact with isolated individuals. The transmission coefficient, εJβ, associated with
SARS transmission during isolation was larger before stringent hygienic measures
were put in place. In [7], εJ was set to 0.36 prior to April 30, 2003, after which εJ

was switched to 0.
Although γ1, γ2 and εJ are modelled as discontinuous step functions in [7], as

described above, such functions are somewhat simplistic in reflecting the progressive
refinement of HCMs over time. Rather, it seems more plausible to model γ1, γ2

and εJ as continuous, time-varying functions. In this manuscript we construct
such input functions, and analyze the resulting continuous, time-varying, output
functions.

3. Development of time-varying control functions. As mentioned in Section
2, it is assumed that the aforementioned SARS control measures were ineffective at
the beginning of the epidemic, but were progressively refined over time. In contrast
with modelling γ1, γ2 and εJ via simple step-functions, as in [7], this paper intro-
duces continuous, time-varying functions for better representing the gradual imple-
mentation of HCMs. Notationally, γ1(t), γ2(t) and εJ(t) are now time-dependent,
and their functional forms are described in detail below.

As a starting point for constructing the time-varying control functions, consider
the following cumulative distribution function, defined on <:

He(z) =





0, z < −1,
0.5(1 + z)1+e, −1 ≤ z < 0,
1− 0.5(1− z)1+e, 0 ≤ z < 1,
1, z ≥ 1,

where e ≥ 0. The function He is a standardized version of a control function, where
the parameter e determines how quickly the anti-symmetric function He moves from
its initial value of 0, at z = −1, to its final value of 1, at z = 1. To allow for the
possibility of initial and final values other than 0 and 1 and for alternative ranges for
the support of the distribution, the following continuous time-dependent function

h(t; a, b, c, d, e) = a + (b− a)He

( t− c

d

)

is used. The functional forms (with inflection point at t = c) for γ1(t), γ2(t) and
εJ(t) are now defined by setting

γi(t) = h(t; ai, bi, (ri + si)/2, (si − ri)/2, ei),

for i = 1, 2 and
εJ(t) = h(t; aJ , bJ , (2rJ + dJ)/2, dJ/2, eJ ),

yielding
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γ1(t) =





a1, t < r1,

a1 + (b1 − a1)0.5
(
1 +

(
t−(r1+s1)/2
(s1−r1)/2

))1+e1

, r1 ≤ t < (r1 + s1)/2,

a1 + (b1 − a1)
(
1− 0.5

(
1−

(
t−(r1+s1)/2
(s1−r1)/2

))1+e1
)
, (r1 + s1)/2 ≤ t < s1,

b1, t ≥ s1,

γ2(t) =





a2, t < r2,

a2 + (b2 − a2)0.5
(
1 +

(
t−(r2+s2)/2
(s2−r2)/2

))1+e2

, r2 ≤ t < (r2 + s2)/2,

a2 + (b2 − a2)
(
1− 0.5

(
1−

(
t−(r2+s2)/2
(s2−r2)/2

))1+e2
)
, (r2 + s2)/2 ≤ t < s2,

b2, t ≥ s2,

and

εJ(t) =





aJ , t < rJ ,

aJ + (bJ − aJ)0.5
(
1 +

(
t−(2rJ+dJ )/2

dJ/2

))
, rJ ≤ t < (2rJ + dJ)/2,

aJ + (bJ − aJ)
(
1− 0.5

(
1−

(
t−(2rJ+dJ )/2

dJ/2

)))
, (2rJ + dJ)/2 ≤ t

< (rJ + dJ),
bJ , t ≥ sJ .

Although the functions above may appear somewhat complex at first glance, they
are actually quite simple and easy to interpret. They represent a natural way of
moving from an initial value of a to a final value of b in a continuous antisymmetric
manner between times t = r and t = s. The parameter e reflects the speed at
which implementation of the relevant control measure takes place between times r
and s. Other functional forms could have been used instead; in fact, any suitably
parameterized cumulative distribution function for a continuous random variable on
the interval (−1, 1) could have been used in place of He. The function need not be
antisymmetric. Moreover, the standardized function could be defined on an infinite
range, such as (0,∞), with appropriate modifications being made to the definition
of h. This would permit time-varying functions analogous to exponential decay
to be used. However, it is thought that the functions used in this paper provide
a suitable representation of the implementation of SARS control measures, while
being flexible enough to permit a SUA to be performed on the model parameters.

3.1. Parameters for the time-dependent functions. Prior to implementation
of quarantine, γ1(t) = a1 = 0. That is, no one is quarantined for t < r1, where the
parameter r1 represents the time (number of days since onset of epidemic) at which
health care professionals first introduce quarantine measures for asymptomatically-
infected individuals. The parameter s1 represents the number of days (since onset
of epidemic) until quarantine is implemented throughout the region of interest. At
t = s1, the function γ1(t) = b1, the limiting (final) value for γ1(t). It is assumed that
the maximum attainable quarantine rate is reached at time t = s1. The parameter
e1 determines the “shape” of γ1(t) between days r1 and s1. For example, if e1 = 0,
then γ1(t) will be linear between days r1 and s1. Furthermore, e1 > 0 implies
that implementation of HCMs are slower near days r1 and s1, and faster near the
inflection point, (r2 + s2)/2.
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Table 3. The Time-Dependent Functions

Functions
& Par. Interpretation
γ1(t): Quarantine rate (per day) of asymptomatic individuals

a1 Nonpublic health-imposed quarantine (self-reporting) rate
b1 Quarantine rate after quarantine HCMs are fully implemented
r1 Time (days since onset of epidemic) at which quarantine HCMs are

first introduced
s1 Time (days since onset of epidemic) at which quarantine HCMs are

fully implemented
e1 Shape parameter for γ1(t) between r1 and s1

γ2(t): Isolation rate of symptomatic individuals
a2 Nonpublic health-imposed isolation (self-reporting) rate
b2 Isolation rate after isolation HCMs are fully implemented
r2 Time (days since onset of epidemic) at which isolation HCMs are

first introduced
s2 Time (days since onset of epidemic) at which isolation HCMs are

fully implemented
e2 Shape parameter for γ2(t) between r2 and s2

εJ(t): Infectiousness and contact rate between susceptible and individual
in isolated class

aJ Infectiousness and contact rate before hygienic precautions are
first introduced

bJ Infectiousness and contact rate after hygienic precautions are
fully implemented

rJ Time (days since onset of epidemic) at which proper hygienic
precautions are introduced

dJ Time (number of days) taken to fully implement proper hygienic
precautions

eJ Shape parameter for εJ(t) between rJ and sJ

From a health policy standpoint, it is also useful to consider the reparametriza-
tion d1 = s1−r1, the number of days required to fully adhere to quarantine HCMs.
An analysis (see Section 4) investigating the time required for the health-care sys-
tem to respond completely and effectively to the SARS epidemic will shed light
on how delays in implementation could significantly increase the number of SARS
cases.

Table 4 provides ranges (and nominal values) of the parameters associated with
the function γ1(t). While the parameter ranges were selected so that the SUA
analysis could investigate a wide variety of plausible disease scenarios, the nominal
values correspond to reasonable baseline values for the parameters based on the
GTA estimates contained in [7]. The functional form for γ1(t) is depicted in Figure 1
using the nominal values of a1, b1, r1, s1 and e1 (given in Table 4).

The parameters associated with the function γ2(t) are similarly defined (see
Table 3), although several distinctions are noted below. First, before isolation
measures are introduced (t < r2), it is assumed that a small number of individuals
may voluntarily “isolate” themselves at hospitals because of rapidly failing health.
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Table 4. Ranges and Nominal Values for the Time-Dependent Functions

Functions & Parameters Range Nominal Values
γ1(t):

a1 Fixed at 0 0
b1 [0.05, 0.2] 0.1
r1 [15 ≤ r2 ≤ r1 ≤ 35] 25
s1 [35 ≤ s2 ≤ s1 ≤ 75] 55
e1 [0, 2] 1

γ2(t):
a2 [0, 0.2] 0.1
b2 [0.4, 0.6] 0.5
r2 See r1 See r1

s2 See s1 See s1

e2 [0,2] 1
εJ(t):
aJ [0.3, 1] 0.36
bJ Fixed at 0 0
rJ [r2 + 10, r2 + 20] 40
dJ [0, 14] 7
eJ Fixed at 0 0

Table 5. Ranges and Nominal Values for the Time-Independent Parameters

Parameter Range Nominal Values
β [0, 0.6] 0.2
κ1 [0.1 ≤ κ1 ≤ κ2 ≤ 0.167] 0.1
κ2 See κ1 0.125
σ1 [0.027 ≤ σ1 ≤ σ2 ≤ 0.058] 0.0337
σ2 See σ1 0.0386
δ1 [0.005 ≤ δ2 ≤ δ1 ≤ 0.02] 0.0079
δ2 See δ1 0.0068
µ Fixed at 0.000034
εE Fixed at 0
εQ Fixed at 0

This possibility is incorporated by letting a2 vary between 0 and 0.2 (Table 4) so
that a2 ≥ a1. In line with [7], it is assumed that the isolation rate is greater than
the quarantine rate so that b2 > b1. From the preceding discussion, it is reasonable
to expect that control measures will be introduced and subsequently implemented
sooner for symptomatic individuals than for asymptomatic individuals (so that
r2 ≤ r1 and s2 ≤ s1).

The infectiousness and contact rates between a susceptible and a SARS-infected
individual in the asymptomatic, quarantined and isolated classes are denoted by
εE , εQ and εJ , respectively. As in [7], we set εE = εQ = 0 since small values for
these modification parameters yield similar simulation results. However, the infec-
tiousness and contact rate between a susceptible and a SARS-infected individual
in the isolated class is modelled as a function of time using εJ(t). The modification
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Figure 1. Functional form of γ1(t), the quarantine rate of asymp-
tomatic individuals, with a1, b1, r1, s1 and e1 at their nominal val-
ues

parameter, εJ (t), adjusts β to reflect changes in the baseline SARS infectiousness
and contact rate as hygienic precautions are gradually implemented by health care
workers.

We assume that εJ(t) is initially positive by setting εJ(t) = aJ until t = rJ ,
the time at which proper hygienic precautions (gloves, face masks, etc.) are first
introduced. When hygienic precautions are fully implemented (at time t = dJ),
then εJ(t) = bJ = 0.

4. SUA of the refined SARS model. This section employs analytical tools from
the field of SUA to identify key parameters in the refined SARS model, given by
(1)-(6), with γ1(t), γ2(t) and εJ(t) as defined in Section 3. We begin the section by
describing techniques for sampling the input parameter values from their proposed
ranges (Tables 4 and 5). This is followed by application of uncertainty analysis
techniques to the refined SARS model. An uncertainty analysis is conducted to
quantify how the uncertainty in the choice of input parameter values produces
variability in the response(s). The uncertainty analysis is followed by a sensitivity
analysis to ascertain those parameters in the model which are most influential (this
enables the ranking of input parameters in terms of their effect on the response).

It is worth stating that replacing the control parameters γ1, γ2 and εJ in the
autonomous model (1)-(6) with their respective time-dependent formulations from
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Section 3 makes the model nonautonomous. Nonetheless, since the control repro-
duction number for the autonomous case (Rc) governs the persistence or effective
control of SARS near the DFE, it is instructive to analyze the dynamics of this
threshold when time-dependent functions are used. In other words, this study
monitors, as output, the behavior of Rc as a function of time (Rc(t)).

Before assessing the effect of parameter uncertainty on the response, a method-
ology for selecting (sampling) input parameter values has to be chosen. Many
sampling techniques are available to practitioners, but each must be judged in the
light of model assumptions, resource availability and other practical considerations.

For the SARS model under consideration, a given sampling approach must en-
sure reasonable coverage of the high-dimensional parameter space while remaining
parsimonious in terms of total sample (run) size. To accomplish this, we employ a
sampling technique known as Latin hypercube sampling (LHS) [2, 3, 15, 23, 24, 25].
In terms of its space-filling qualities, LHS is typically superior to simple random
sampling (SRS) in cases where many parameters are present in a model and limi-
tations exist on the number of runs that are computationally practical. The supe-
riority of LHS is particularly realized when the response of interest is a monotonic
function of each of the input parameters.

LHS has been extended to include other criteria in the sample selection process to
produce samples with additional desirable space-filling properties [16, 17, 25, 26, 27].
These refinements to LHS are not required here, because of the ease with which
relatively large samples can be selected in this problem.

Parameters are treated as random variables in LHS. Thus, probability distribu-
tions must be assigned to each parameter prior to the selection of the parameter
values. Our ensuing analysis assumes that the parameters are either independently
uniformly distributed, pairwise uniform on constrained (triangular) regions, or con-
ditionally specified. In the context of the refined SARS model, ranges for the pa-
rameters are provided in Tables 4 and 5. It should be noted that the parameters a1,
bJ , eJ , µ, εE and εQ are fixed. Using the preceding methodology, samples of size
n = 1, 000 and n = 2, 000 were generated. Although the SUA in the subsequent
sections will focus only on the results obtained for n = 1, 000, the plots, analy-
ses and conclusions were similar for the case with n = 2, 000. As noted above, it
was relatively easy to obtain a large sample in this problem, so it was possible to
compare the results from different sample sizes. The sample size of n = 1, 000 was
chosen because the curves were smooth and the results were stable by that point.
In general, the required sample size will depend on the number of parameters and
the characteristics of the problem. However, it is of interest to note that [2, 3] also
use n = 1, 000 in their simulations.

4.1. Uncertainty analysis. For each of the 1,000 runs of the LHS, a “curve”,
Rc(t), is generated as the response. A question that arises is how to conduct
a SUA when the output has such functional characteristics. In our uncertainty
analysis, we adopt a cross-sectional approach, except when analyzing the response
t∗ below. Although the cross-sectional approach does not fully exploit the functional
analytic nature of the output, it will be shown that this approach leads to useful
conclusions in this problem. This is largely because the curves of interest are
monotone decreasing for the parameter combinations under consideration. The
cross-sectional approach would not work nearly as well if the curves were more
complex. The approach used here provides a starting point for conducting a SUA
for a model with functional output and serves as a springboard for future research.
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Figure 2. Control reproduction number, Rc(t) vs. number of
days since onset of epidemic

Figure 2 displays the boxplots of the response, y = Rc(t), for days t = 0, 10, . . . , 100.
At a given day, each boxplot displays the 25th(Q1) and 75th(Q3) percentiles of Rc(t).
The 25th and 75th percentiles are denoted by the lower and upper horizontal lines
on a box, respectively. The horizontal line within a box denotes the median value
(50th percentile) of Rc(t). The “whiskers” protruding from each box extend to the
most extreme values for Rc(t), which are no more than 1.5(Q3 − Q1) away from
the box. Any value for Rc(t) plotted beyond the whiskers is classified as an outlier.
Finally, the solid line depicts the line Rc(t) = 1. Although no theoretical analyses
of the nonautonomous model are reported here, it is reasonable to infer that val-
ues of Rc(t) less than one correspond to cases where initial SARS outbreaks are
effectively controlled, and values greater than one correspond to cases where SARS
will persist (in line with the theoretical results for the autonomous case given by
Lemma 1).
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The boxplots of Rc(t) are monotonically decreasing over t = 0, 10,
. . . , 100. Most Rc(t) curves become less than one at around 40 to 60 days after
the onset of the epidemic, although some Rc(t) values are less than one at t = 0.
Figure 2 further demonstrates that there are no changes in the Rc(t) curves between
t = 0 and t = 10. Also, there is very little movement in these curves between t = 10
and t = 20. Recall that health control measures are not implemented until t = 15
(Table 4); therefore, changes in values for the time-dependent functions (γ1(t), γ2(t)
and εJ(t)) comprising Rc(t) do not occur until after this time. Lastly, the presence
of outliers in Figure 2 indicates that certain parameter configurations result in
values of Rc(t) that are markedly higher than the “typical” values inside of the
boxes. Under these parameter configurations, SARS would persist for a longer
period of time.

We now consider the distribution of the response, y = t∗, the first day at which
Rc(t) = 1. Figure 3 presents a boxplot and histogram of t∗. The median number
of days (since the onset of epidemic) until Rc(t) = 1 is just over 40. Aside from the
values for which t∗ = 0, the histogram exhibits a roughly symmetric distribution.

4.2. Sensitivity analysis. Sensitivity analysis employs quantitative methods for
determining which parameters have the largest impact on a model’s response vari-
ables. From the previous section, it should be recalled that the response variables
are Rc(t) at fixed time points (days) and t∗, the first day at which Rc(t) = 1.

Many sensitivity analytical techniques are available [23]; some of the more popu-
lar techniques include various graphical methods (scatterplots, cobweb plots), cor-
relation measures (partial correlation, rank correlation), regression methods (step-
wise regression, rank regression, nonparametric regression) and more advanced ap-
proaches such as
variance-based methods (sensitivity indices, total effect indices).

4.2.1. Partial rank correlation coefficients. In line with [2, 3, 4, 10, 23, 24], our
sensitivity analysis begins with the calculation of partial rank correlation coefficients
(PRCCs). This means that, in our case, the PRCCs must be calculated between
each of the k = 19 nonconstant parameters and the responses Rc(t) at each time t
and t∗. Calculating PRCCs between inputs and a response is a useful exploratory
technique for ascertaining the importance of individual parameters, or main effects.
The attraction of PRCCs also lies in their computational simplicity and in their
ability to parallel conclusions obtained by more advanced sensitivity procedures.

To calculate PRCCs, we first convert the input parameter values to their respec-
tive rank (1 to n) with a response. The reasons for using ranks in place of the actual
parameter and response values are two-fold. First, unlike the actual measurements,
the ranks for each parameter and output automatically have the same scale and
range. More importantly, whereas the output (Rc(t) or t∗) is monotone in each
parameter, the relation between any particular parameter, xi, and the output may
be highly nonlinear. In this scenario, the usual partial correlation coefficient, being
suited for assessing a linear relationship between a parameter and a response, may
not properly reflect the strength of the influence of an xi on the output. Once
PRCCs have been calculated, parameters can be ranked in descending order of epi-
demiological importance, according to the magnitude of their PRCCs. Parameters
having PRCCs approaching the bounds −1 or +1 signify a stronger impact on the
output (Rc(t)).
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Figure 3. The distribution of t∗, the first day at which Rc(t) = 1

Note that, in this section, we consider d1 = r1− s1 and d2 = r2− s2 rather than
s1 and s2, explicitly. As mentioned in Section 3.1, this reparametrization will assist
in the interpretability of the model and the development of useful health policy
strategies.

PRCC curves between each of the 19 nonconstant parameters (Tables 4 and 5)
and Rc(t) are plotted continuously as a function of time, t (Figure 4). (It is worth
emphasizing that this approach is similar to that used in [2], in which PRCCs were
calculated for different years, when modelling the transmission of drug-resistant
HIV.) To reduce “clutter,” we use separate graphs when plotting the PRCC curves
for the time-independent parameters (Figure 4(d)) and the parameters correspond-
ing with the time-dependent functions, γ1(t), γ2(t) and εJ(t) (Figures 4(a)-(c)).

Figure 4(d) shows that for all t, β has the largest positive PRCC of the time-
independent parameters. This large PRCC for β implies that as the infectiousness
and contact rate between a susceptible and symptomatic individual increases, so
too will the length of time required before SARS is eliminated. Justification for
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Figure 4. Partial rank correlation coefficients, over time, of the
time-independent and time-dependent parameters with the control
reproduction number, Rc(t)

such a strong relationship between β and Rc(t) may also be obtained directly from
the equation for Rc(t) in (8), from which it is evident that β is (positively) linearly
related to Rc(t) (since β could be factored out from each numerator in (8)). Of
the remaining time-independent parameters, the most influential are κ1 (rate of
development of clinical symptoms in the asymptomatically infected population)
and σ2 (rate of recovery in the isolated class). The parameter σ2 has PRCCs of
about −0.4 until (approximately) t = 25 days, at which point its correlation with
Rc(t) drifts toward zero. The parameter κ1 has PRCCs of approximately 0.4 when
t > 60 days. For t > 40 days, the PRCCs of all remaining time-independent
parameters tend toward zero (suggesting their marginal significance in driving the
disease dynamics).

For the 12 nonconstant parameters associated with γ1(t), γ2(t) and εJ(t), Fig-
ures 4(a)-(c) suggest three distinct stages in the transmission and control dynamics
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independent and time-dependent parameters with t∗, the first day
at which Rc(t) = 1

of SARS. In the early stages of the outbreak (approximately 0 - 30 days), the two
parameters (other than β) that most influence Rc(t) are a2, the rate of self-reporting
(self-isolation) and aJ , the infectiousness of SARS prior to the implementation of
hygienic precautions during isolation. In the intermediate stage (approximately
30 - 60 days), the influence of a2 and aJ on Rc(t) decreases. During this second
stage, there is also a marked increase in the influence of d1 (the number of days
taken to fully implement quarantine HCMs) and dJ (the number of days needed to
fully adhere to proper hygienic precautions) on Rc(t). In the third and final stage
(approximately 60 days and beyond), the influences of d1 and dJ wane while the
influence of b1 (the asymptotic quarantine rate) and b2 (the asymptotic isolation
rate) become prominent.

Figure 5 displays the PRCCs of the time-independent and time-dependent pa-
rameters with t∗. The parameters most influential in determining the time at which
Rc(t) = 1 are β, dJ and rJ . Although β is intrinsic to SARS, the parameters dJ

and rJ can be controlled by health care professionals, and as suggested by Fig-
ure 5, an early and rapid implementation of stringent hygienic precautions will
have a significant impact on the timely elimination of SARS.
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4.2.2. Contour plots of two-parameter interactions. Although PRCCs are suitable
for determining the effect of individual parameters on a response, they fail to pro-
vide insight regarding the effect of parameter interactions on the model output.
As a means for investigating interactions amongst parameters, we construct two-
dimensional contour plots of (xi, xj) for Rc(t) and t∗. Clearly, an investigation
of all 19C2 = 171 possible two-parameter interactions for each response would be
formidable. Instead, rank regression models [23, 25] can be used to identify which
two-parameter interactions to investigate. In rank regression analysis one replaces
the original data with their corresponding ranks to form first- and second-order
regression models. Those interactions having the largest (statistically significant)
impact on Rc(t) and t∗ can be identified and plotted.

Figures 6(a) and (b) display contour plots of Rc(40) for the two-parameter in-
teractions βd1 and βd2, both of which were found to have a significant impact on
Rc(40). Given that we have no control over β, these two-parameter interactions
suggest that, in the presence of a large β, it is imperative that health care personnel
implement quarantine and isolation as quickly as possible, once such measures are
deemed necessary.
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Figure 6. Contour plot of Rc(40) by (a) β and d1 and (b) β and d2

5. Conclusions. In this paper we modify a deterministic model for the transmis-
sion dynamics of SARS to include the progressive refinement of anti-SARS con-
trol measures. This is accomplished by introducing monotone, continuous, time-
dependent functions that mimic the introduction and subsequent implementation
of quarantine, isolation and hygienic precautions. Consequently, the model con-
tains time-varying inputs and functional output. SUA techniques are applied to
determine those parameters having the largest effect on the disease dynamics, as
represented by Rc(t).

Our analysis demonstrates the existence of three distinct stages in the evolution
of SARS transmission dynamics where, other than the transmission rate (β), (i) in
stage 1 (0 - 30 days of the epidemic), the self-isolation rate (a2) and the infectious-
ness and contact rate prior to the implementation of hygienic precautions (aJ ) are
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the most critical parameters in determining the fate of the epidemic; (ii) in stage 2
(30 - 60 days of the epidemic), the number of days taken to fully implement quar-
antine (d1), isolation (d2) and hygienic precautions (dJ ) are the most influential;
(iii) in stage 3 (after 60 days), the maximum attainable rates of quarantine (b1)
and isolation (b2) are the most critical parameters.

It is hoped that the conclusions drawn from this study will enhance our under-
standing of SARS and that the manner in which we have modelled the implemen-
tation of control measures will prove useful in other disease scenarios.
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