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Abstract. In this paper we propose a mathematical model for nematode
sperm cell crawling. The model takes into account both force and energy
balance in the process of lamellipodium protrusion and cell nucleus drag. It is
shown that by specifying the (possibly variable) efficiency of the major sperm
protein biomotor one completely determines a self-consistent problem of the
lamellipodium-nucleus motion. The model thus obtained properly accounts
for the feedback of the load on the lamellipodium protrusion, which in general
should not be neglected. We study and analyze the steady crawling state
for a particular efficiency function and find that all nonzero modes, up to
a large magnitude, are linearly asymptotically stable, thus reproducing the
experimental observations of the long periods of steady crawling exhibited by
the nematode sperm cells.

1. Introduction. In this paper we present a model of cell crawling achieved via
the process of polymerization/depolymerization of a lamellipod with the nucleus
(or the cell body) carried above it. Our model is specific to the motion of a ne-
matode sperm cell, which crawls in a cycle of protrusion, adhesion and retraction.
Although this cycle is similar to that of other eucaryotic cells, such as amoebae, the
nematode sperm lacks the machinery of actin cytoskeleton and motor proteins of
these eucaryotic cells. Instead, the nematode sperm cell uses major sperm protein
(MSP), which can act as a biomotor by itself [B, W]. The ability of MSP to act
as a biomotor in the absence of other proteins makes the nematode sperm cell the
simplest biological crawling system and an easy object for a quantitative analysis.
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Figure 1. Schematic diagram of a crawling nematode sperm cell.

In [B] and [W] the motor action of MSP was related to the process of MSP gel
contraction, initiated by the change of pH value near the nucleus. In a broader
sense, as the major sperm protein molecules circulate around the cell in the process
of crawling, the MSP gel undergoes the same thermodynamic cycle of contraction
and expansion, accompanied by an input of external energy (chemical energy in
this case) and production of mechanical work, as any medium in a heat engine.
From the thermodynamic point of view, the contraction of the gel is a particular
case of the phase transitions encountered in the work of other known engines, e.g.,
the water to vapor transition used the steam engine or the chemical transition as-
sociated with the burning of gas in the combustion engine. The main goal of the
present paper is to make the MSP biomotor model self-consistent by taking into
account not only the difference between the elastic states of the gel before and after
the transition [B, W], but also the balance of energy released in the contraction
process and in the mechanical work required to drag the nucleus forward.

We consider the one-dimensional model of cell motion. As depicted in Figure 1
the lamellipod extends from the rear end r = r(t) to the front end at f = f(t),
while the nucleus lies over the lamellipod with its front end at a = a(t) and its rear
end at a(t)− ln; here ln is a fixed parameter. The nucleus is viewed as a solid-like
body, moving with velocity Vn = Vn(t), so that, in particular, a(t) moves with the
same velocity Vn. The total resistance of the outside world to this motion acts as a
force µVn, where µ is a fixed parameter. A forward force Fn acting on the nucleus
is produced by the biomotor. In the high viscosity (low Reynolds number) regime,
the equation of motion of the cell nucleus is Fn = µVn. As the nucleus moves
forward, the pH gradient moves with it and forces the new portions of the MSP gel
to undergo the phase transformation. That releases more chemical energy stored
in the gel and allows the biomotor to continue its operation.

The motion of the lamellipod can be described as follows. The main reasons
for the leading edge protrusion and rear end retraction are the polymerization and
depolymerization of the gel.

The lamellipodium protrudes to the right in the polymerization process and
contracts on the left by depolymerization. The forward diffusion of depolymerized
proteins completes the cycle of MSP rotation. The MSP gel undergoes a phase
transition under the leading edge of the nucleus. The tensile stress produced in the
transition is converted into the force Fn, dragging the nucleus to the right. This
force is balanced by the total viscous friction µVn acting on the nucleus. The actual
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speed of the gel relative to the ground is very small, and its motion is similar to the
motion of the lower part of the tractor tracks. To continue the analogy with tractor
tracks, one notices that the forward diffusion of depolymerized MSP through the
cell volume completes the rotation cycle and plays the role of the upper part of the
tracks (Figure 1). The phase transformation of the gel in the middle of the cell is
not required for the lamellipodium motion. If there were no phase transformation
and no need to carry the nucleus, the motion of the gel would be exactly like the
one of the tractor tracks: a piece of the gel would be created when the front of the
lamellipodium reaches a certain point. Then it would not move until the rear end of
the lamellipodium reached its location and the piece depolymerized. The purpose
of the gel phase transformation is to transfer the motion from the lamellipodium
to the cell nucleus. When present, the phase transition allows for the work of
the biomotor, which produces a force dragging the nucleus. There is of course a
feedback effect: the opposite force acts on the gel and modifies it’s motion.

In the steady-state motion, the speed of the nucleus Vn is equal to the speed
of protrusion and retraction, and thus the nucleus has to slide forward over the
lamellipodium. The exact mechanism that couples the nucleus to the zone of phase
transformation in the lamellipodium is not yet clear. To highlight the nontriviality
of the motor action, we note that it is not enough to couple the nucleus to any
fixed piece of the gel, because the nucleus has to move faster than any point of the
lamellipodium. This complication was already acknowledged by Bottino et al. [B,
Sec. “Contraction” of the Appendix]. In the absence of the explicit model of the
biomotor, many different mathematically consistent descriptions of the nematode
sperm crawling can be proposed [B, W]. For example, the model of Bottino et al.
assumes that the force Fn is generated at the rear end of the lamellipodium, away
from the contraction zone, and is independent of Vn. The model of Wolgemuth et
al. calculates the motion of the gel with a phase transformation, but ignores the
modifications due to the presence of the load.

However, an additional set of constraints on the motor action has yet to be used in
the studies of crawling. These are the constraints imposed by energy conservation.
In the present paper we show that if an explicit assumption about the efficiency
of the biomotor is added to the gel state equations on both sides of the phase
transformation, the equations of motion of the lamellipod-nucleus system can be
uniquely determined. We then choose a particular form of efficiency and search for
the travelling-wave solution of the resulting problem. Such a solution describes the
steady crawling of the cell. We finally study the stability of this solution and find
that it is stable and thus reproduces the behavior of the actual nematode sperm
cells.

New experimental evidence in the literature suggests that the nematode sperm
produces force by depolymerization of the gel (cf. [M]), which was modelled by
Wolgemuth et al. [WM]. They suggest a slightly different model for the force
generation.

2. The model.

2.1. Differential equations of gel motion. We denote by w(y, t) the velocity
of the gel (i.e., the polymerized MSP) within the lamellipod, by ϕ(y, t) the volume
fraction of the gel, and by γ the density of the gel. The gel motion is assumed to
happen at constant temperature. Then the stress σ = σ(ϕ) of the elastic gel is a
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function of the volume fraction and is related to its free energy E(ϕ) as (see [O],
also [W]):

σ = ϕ
∂E
∂ϕ

− E . (2.1)

In the low Reynolds number regime, the motion of the elastic medium is described
by two equations:

∂(γϕ)
∂t

+
∂j

∂y
= 0, (2.2)

∂σ

∂y
= −ςw. (2.3)

Here j = γϕw is the flux of mass, and ς is the constant friction coefficient between
the lamellipodim and the substrate assumed to be large [B, W]. As was assumed
in [B] and justified in [W], the motion of water in the cell crawling process can be
ignored.

For the purposes of this paper we will assume the following form of the stress
function in the two states of the gel:

σ (ϕ) =





σ0 − E

ϕ
if y < a (t) ,

σ0 − E

ϕ
+ τ if y > a (t) ,

(2.4)

where σ0, E, τ are positive constants; this form is similar to the one used by [B],
and may also be viewed as an approximation to the form used by [W] for small ϕ.
The free energies corresponding to this stress function are given by

E (ϕ) =





−σ0 +
E

2ϕ
if y < a (t) ,

−σ0 +
E

2ϕ
− τ + Cϕ if y > a (t) ,

(2.5)

where C has a sense of the chemical energy difference between the states of the gel
before and after the phase transition.

From (2.2) and (2.3) one can derive the following energy flow equation:

∂E
∂t

+
∂Q

∂y
= −ςw2, (2.6)

where Q = (σ+E)w is the energy flux and the term on the right-hand side represents
the energy dissipation due to the friction between the gel and the substrate.

2.2. Boundary conditions and the motion of the nucleus. As explained
in the introduction, we assume that the phase transformation happens in a very
narrow zone and will be approximated by an abrupt phase change at the leading
edge point of the nucleus a(t). We also assume that the MSP biomotor acts at the
same point and therefore there is a force F = −Fn = −µVn applied to the gel at
a(t). When two phases of the material are in contact at the phase transition point
a(t), equations (2.3) and (2.6) acquire additional terms proportional to δ (y − a),
where δ is the Dirac function:

∂σ

∂y
= −ςw + Fδ(y − a), (2.7)

∂E
∂t

+
∂Q

∂y
= −ςw2 − Pδ(y − a). (2.8)
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Here P is the energy dissipation at the contact point. There is no universal ex-
pression for P ; P depends on actual details of the phase transition and biomotor
operation.

For any function ψ we shall denote by ψL the restriction of ψ to the left of
y = a (t) and by ψR the restriction of ψ to the right of y = a (t).

To obtain transition conditions from (2.7) (the Rankine-Hugoniot conditions
associated with this equations), we integrate it along a small interval (y1, y2) such
that a (t) ∈ (y1, y2) :

σR (y2)− σL (y1) = −
y2∫

y1

ςw(y)dy + F.

When y2− y1 → 0, the integral
∫ y2

y1
ςw(y)dy converges to zero, and we are left with

σR (a (t))− σL (a (t)) = F.

If we denote by [X] the jump XR−XL of a function X at a (t) , then we can express
the transition condition for (2.7) in the form

[σ] = F.

The mass is conserved, so from (2.2) we get [j − γϕVn] = 0 and similarly from
(2.8) we get [Q− EVn] = −P . For later references we rewrite the three jump
relations at a (t):

[j − γϕVn] = 0, j = γϕw, (2.9)
[σ] = F = −µVn, (2.10)
[Q− EVn] = −P, Q = (σ + E)w. (2.11)

Using (2.10), equation (2.11) can be rewritten as

[(σ + E)(w − Vn)] = −P0, (2.12)

where P0 = P + FVn = P − µV 2
n has a sense of the energy that could not be used

by the biomotor and was dissipated in the form of heat or chemical energy that
leaves the gel. The useful work of the biomotor is given by FnVn = −FVn = µV 2

n .
Next, we need to write the boundary conditions at the rear and front endpoints

of the lamellipod. As in [W] we take

σ |r(t)= 0, σ |f(t)= 0, (2.13)
dr

dt
= Vd + w |r(t),

df

dt
= Vp (l) + w |f(t), (2.14)

where Vd is the speed of depolymerization at the rear, which is assumed to be
constant, l = l (t) is the length f (t)− r (t) of the lamellipod, and Vp (l), the speed
of polymerization at the front, is a function of l, which is decreasing as l increases;
for example [W],

Vp (l) =
V 0

p

l − d
L, (2.15)

where V 0
p , d, L are constants.

Finally, we recall that the motion of the nucleus is given by

µVn = −F (2.16)
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and governs the position of the phase transformation point according to

∂a

∂t
= Vn. (2.17)

We complete the model by imposing initial conditions

r (0) = r0, f (0) = f0, a (0) = a0, ϕ (y, 0) = ϕ0 (y) . (2.18)

The system of equations (2.2), (2.3) with the jump conditions (2.9)–(2.11) at
point a(t), boundary conditions (2.13), (2.14) at points r(t) and f(t), respectively,
the nucleus motion equations (2.16), (2.17), and initial data (2.18) form the system
of equations describing the crawling. The problem is completely determined if
the function P0(ϕL, ϕR, wL, wR, Vn) is known. Alternatively, one can specify the
efficiency of the biomotor η = µV 2

n /(µV 2
n + P0).

We are now going to specialize to a particular form of P0. In view of the lack of
knowledge about the biomotor operation, our main goal is to choose an expression
which would not contradict the laws of physics and would correspond to some model
of the energy production at the phase transition point. We represent the energy of
the gel in the front part of the lamellipodium (2.5) as

E = E1 + E2

E1 = −σ0 +
E

2ϕ

E2 = −τ + Cϕ.

We then formally assume that the gel in front of the lamellipodium consists of two
elastic components with the energies E1 and E2, and stresses σ1 = σ0 − E/ϕ and
σ2 = τ , respectively. The first component is responsible for the whole density of
the gel, while the second component is massless. The state of the gel for y > a is
determined by the equilibrium between the two components, which creates strain
in both of them. We then assume that at the phase transition component “2” is
discarded and component “1” remains in the gel in its strained (expanded) state.
Now the stress of this component is no longer balanced by the presence of component
“2”, and its release can provide the energy for the biomotor operation. It is clear
with such assumptions that P0 equals to the total energy E2 of the second component
discarded per second, namely,

P0 = E2R(Vn − wR). (2.19)

Using this expression and (2.10), one transforms (2.12) into

[(σ + E1)(w − Vn)] = 0, (2.20)

which will now be used as a jump condition.

3. Characteristic parameter values and the dimensionless form of equa-
tions. We will use the following values for the gel and nucleus parameters. The
elastic modulus of the gel is cited in [B, p. 380] for the stress-strain relation of the
form σ = Y ∂u/∂x and equals Y ∼ 102pN/µm2. We relate it to the elastic mod-
ulus E used in our formulae by equating the stress increments corresponding to
infinitesimal deformations of the gel. A small deformation with a change of volume
fraction δϕ produces the strain (∂u/∂x)δx = −δϕ/ϕ. This gives

E

ϕ
= Y ∼ 102pN/µm2. (3.1)
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The values of σ0 and τ are then obtained from the boundary conditions (2.13), and
the values of the gel volume fraction at the rear and front of the lamellipodium
cited in [W, p. 149, Fig. 3(a)],

ϕ (r) ∼ 4× 10−2, (3.2)
ϕ (f) ∼ 3× 10−2. (3.3)

For definiteness we assume that (3.1) applies at the rear end of the lamellipodium
and get

σ0 ∼ 102pN/µm2, (3.4)

τ =
(

ϕ(r)
ϕ(f)

− 1
)

σ0 ∼ 0.32× 102pN/µm2. (3.5)

In our notation the friction coefficient ς is identical to the coefficient ζex of Wolge-
muth et al. which is estimated as ζex ∼ 6× 102pN · sec/µm4 in [W, p. 157; p. 149,
Table 2]. In Bottino et al. the same coefficient is denoted by µ and estimated as
µ ∼ 102pN · sec/µm4 [B, p. 379]. We will use an intermediate value,

ς ∼ 2× 102pN · sec/µm4. (3.6)

For the characteristic sizes and velocities we take (cf. [B], [MV])

ln ∼ 3µm. (3.7)

As in [MV, p. 1176] we take

Vd ∼ 1.25µm/ sec, (3.8)

and using formula (11) on page 1179 as well as V0 on page 1176 of [MV] as guides,
we take

V 0
p ∼ 1.5µm/ sec, L ∼ 10µm; (3.9)

we also take 0 < d < ln.
Finally we estimate the nucleus friction coefficient µ. As noted in the intro-

duction, this coefficient accounts for all friction processes that impede the motion
of the nucleus, and its complete evaluation is difficult. To estimate µ we will use
the Stokes formula for the force acting on the spherical body moving in the vis-
cous fluid. Then the total force acting on the nucleus is f ∼ 6πηRVn, where R is
the radius of the nucleus. To calculate the characteristic of the drag in the one-
dimensional model, we use the formula µ = f/(AVn), where A is the area of the
gel cross-section that can be estimated as A ∼ Rh, with h being the thickness of
the gel. As a result µ ∼ 6πη/h. The thickness of the lamellipodium is estimated
as h ∼ 1µm [B, p. 380]. The viscosity of the intracellular fluid is given in [W,
p. 149, Table 2] as η ∼ 10 pN s/µm2 and is much larger than water viscosity
ηwater ∼ 10−3 pN s/µm2. The effective η has some unknown intermediate value
and we conclude that

µ is between 2× 10−2 and 2× 102 pN s/µm3.
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We can now write the model in the dimensionless form:

E = E/σ0, τ = τ/σ0, σ = σ/σ0, F = F/σ0, E1 = E1/σ0,

y = y/ln, f(t) = f(t)/ln, r(t) = r(t)/ln, a(t) = a(t)/ln,

t = tVd/ln,

ϕ
(
y, t

)
= ϕ (y, t) ,

w
(
y, t

)
= w (y, t) /Vd,

V n = Vn/Vd,

Vp

(
l
)

= Vp (l) /Vd = V
0

p/
(
l − d

)
, V

0

p = LV 0
p /(Vdln),

ς = ςVdln/σ0,

µ = µVd/σ0,

and

σ (ϕ) = 1− E/ϕ + τH
(
y − a

(
t
))

, E1 = −1 + E/2ϕ,

where H(y) is the Heaviside function.
To simplify notations we shall henceforth drop all the bars in the above notations.

Then our model problem consists of the differential equations

∂ϕ

∂t
+

∂

∂y
(ϕw) = 0, ςw = −∂σ

∂y
, (3.10)

the jump conditions at a (t) (using (2.20))

[(w − Vn) ϕ] = 0, [σ] = F, F = −µVn,

[(σ + E1) (w − Vn)] = 0, Vn =
da

dt
,

(3.11)

boundary conditions

σ |r(t)= 0, σ |f(t)= 0,
dr

dt
= Vd + w |r(t),

df

dt
= Vp (l) + w |f(t),

(3.12)

and initial conditions

r = r0, f = f0, a = a0, ϕ = ϕ0(y) at t = 0, (3.13)

where

σ (ϕ) = 1− E/ϕ + τH (y − a (t)) , E1 = −1 + E/ (2ϕ) , (3.14)

and

Vd = 1, Vp(l) =
V 0

p

l − d0
, 0 < d0 < 1. (3.15)

The dimensionless constants in the new notations are:

ς ∼ 7.5, E ∼ 0.04, τ ∼ 0.32, V 0
p ∼ 4.0, (3.16)

µ is between 2× 10−4 and 2.0. (3.17)
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4. Travelling wave solutions. In this section we consider solutions of (3.10)–
(3.12) that travel with uniform velocity V. We introduce the new spatial variable
z = y − V t and set r(t) = V t, a(t) = a0 + V t, f(t) = l0 + V t, ϕ(y, t) = u(z),
w(y, t) = w̃(z). Since now ϕt = −uzV , we get the equations

∂

∂z
((w̃ − V )u) = 0, (4.1)

ςw̃ = −∂σ

∂z
, (4.2)

the jump relations at z = a0

[u (w̃ − V )] = 0, [σ] = −µV, [(σ + E1) (w̃ − V )] = 0, (4.3)

and the boundary conditions

u (0) = E, u (l0) =
E

1 + τ
, V = 1 + w̃ (0) , V = Vp (l0) + w̃ (l0) (4.4)

where
σ (u) = 1− E/u + τH (z − a0) , E1 = −1 + E/2u.

From (4.1) and the first jump relation in (4.3), we obtain u (w̃ − V ) = const. = c1,
and from the boundary conditions it follows c1 = −E, so that u(V − w̃) = E, and
Vp (l0) = E/u(l0) = 1 + τ . Then, by (3.15), l0 is uniquely determined:

l0 = d0 +
V 0

p

1 + τ
∼ d0 + 3. (4.5)

It will be convenient to work with the function ψ (z) = 1/u (z). Clearly

ψ(0) =
1
E

, ψ(l0) =
1 + τ

E
, (4.6)

w̃ = V − Eψ, (4.7)

and from the second equation in (4.2)

dψ

dz
+ ςψ =

ςV

E
on 0 < z < a0, a0 < z < l0. (4.8)

Solving for ψ we get

ψ (z) =
1
E

(
V + (1− V ) e−ςz

)
, 0 < z < a0, (4.9)

ψ (z) =
1
E

(
V + (1 + τ − V ) e−ςz+ςl0

)
, a0 < z < l0. (4.10)

To write the jump relations, we introduce the notations fL (a0) = f (a0 − 0) ,
fR (a0) = f (a0 + 0) for any function f . By (4.6),

ψL (a0) =
1
E

(
V + (1− V ) e−ςa0

)
, (4.11)

ψR (a0) =
1
E

(
V + (1 + τ − V ) eς(l0−a0)

)
. (4.12)

The last two jump conditions in (4.3) can be written in the form

−EψR (a0) + τ + EψL (a0) = −µV, (4.13)
(

τ − E

2
ψR (a0)

)
(w̃R (a0)− V ) +

E

2
ψL (a0) (w̃L (a0)− V ) = 0. (4.14)
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Using (4.7) we can reduce (4.14) to

τψR (a0)− E

2
(
ψ2

R (a0)− ψ2
L (a0)

)
= 0. (4.15)

Solving ψR(a0) and ψL(a0) from (4.15), (4.13), we get

ψL(a0) =
( τ

2µV
− 1

2

)τ + µV

E
, (4.16)

ψR(a0) =
( τ

2µV
+

1
2

)τ + µV

E
. (4.17)

Comparing (4.11) with (4.16), we get
1

2µV

(
τ2 − (µV )2

)
− V = (1− V ) e−ςa0 . (4.18)

Similarly, comparing (4.13) with (4.17), we find that
1

2µV
(τ + µV )2 − V = (1 + τ − V ) eς(l0−a0). (4.19)

Physically the value of V should be larger than the velocity of depolymerization;
i.e., V > 1. Dividing (4.19) by (4.18) we obtain the equation

1 + τ − V

1− V
eςl0 =

(τ + µV )2 − 2µV 2

τ2 − µ2V 2 − 2µV 2
. (4.20)

Suppose we can solve V from (4.20). Then we can determine a0 uniquely from
(4.18), and, if a0 lies in the interval 1 < a0 < l0, then we obtain a travelling wave

0.02 0.04 0.06 0.08 0.1

0.5

1

1.5

2

µ

V

1+τ

a0

l
0

1

Figure 2. Velocity of the travelling wave solution as a function
of nucleus friction coefficient µ. The inset shows the behavior of
a0(µ) in the interval where the solution exists and satisfies 1 <
a0 < l0.
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solution. The solution (V, a0) will depend on the parameter µ, which is a friction
coefficient that depends on the environment where the cell is moving.

Using the value d0 = 0.5 we solve l0 from (4.5): l0 = 3.5303, so that the length of
the lamellipod is 3.5303·ln = 10.59µm. The solution for the travelling wave velocity
is shown in Figure 2. We see that for 1 < V < 1 + τ , parameter a0 indeed resides
within the limits 1 < a0 < l0. Thus there is an interval of friction coefficients
supporting the travelling wave solution. Numerically we find this interval to be
µ ∈ (0.03, 0.05). A travelling wave solution was also found in the model [B]. We
note that the model of [MV] (which is based on entirely different assumptions) also
has travelling wave solutions, and it was shown numerically to be stable.

We also study the linear stability of this travelling wave solution. Our computa-
tions (Appendices I–III) show that, for a certain range of parameters, all nonzero
modes are linearly asymptotically stable, and thus our model can describe the con-
tinuous stable crawling of the nematode sperm.

5. Conclusion. In this paper we improved the model of nematode sperm crawling
based on the MSP gel phase transformation [B, W] by taking into account the
conservation of energy which is extracted from the gel in the process of phase
transition and partially used by the biomotor to drag the cell body. We showed
that the biomotor efficiency function is the last piece of information needed to close
the system of equations describing the crawling.

After choosing a consistent expression for the efficiency, we proved the existence
of a travelling wave solution in some range of parameters. Our numerical computa-
tion suggests that the travelling wave solution we obtained is linearly asymptotically
stable in all nonzero modes.

6. Appendix I. Linearization about the travelling wave solution. In this
section we consider the linearized the system (2.2),(2.3),(2.9)–(2.18) about the trav-
elling wave solution (u (z) , w̃ (z) , a0, l0, V ), and in the next section we shall consider
the stability of the linearized system.

For the travelling wave solution, z varies in the interval 0 ≤ z ≤ l0 and the point
of phase transition is z = a0. For the linearized system

z = 0 will change into z = ερ1 (t) ,

z = l0 will change into z = l0 + ερ2 (t) , (6.1)
z = a0 will change into z = a0 + ερ3 (t) .

Let χ (x) be a smooth function such that χ (x) = 1 if |x| < δ0 and χ (x) = 0 if
|x| > 2δ0 where δ0 is a small number (δ0 << min (a0, l0 − a0)) , and set

R (x, t) = ρ1 (t)χ (x) + ρ3 (t) χ (x− a0) + ρ2 (t)χ (x− l0) . (6.2)

By the change of variable

z = x + εR (x, t) (|ε| is small) (6.3)

the three curves in (6.1) become x = 0, x = a0 and x = l0, respectively; furthermore,
dz/dx > 0, and

Rx (x, t) = 0 if x lies in the δ0-neighborhood of one of the
points x = 0, a0, l0.

(6.4)
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To derive the linearized system in the fixed interval 0 < x < l0 with the phase
transition point x = a0, we write the solution (ϕ (y, t) , w (y, t)) of (2.2),(2.3),(2.9)–
(2.18) first in terms of the variable z as in section 4 (y = z + V t), namely,

ϕ (y, t) = ϕ (z + V t, t) ≡ ϕ (z, t) ,

w (y, t) = w (z + V t, t) ≡ w (z, t) ,

and then rewrite (ϕ,w) as a perturbation of (u, w̃),

ϕ (z, t) = u (x) + εv (x, t) ,
w (z, t) = w̃ (x) + εη (x, t) ,

(6.5)

where x is related to z by (6.3). We have

∂x

∂t
= − εRt

1 + εRx
,

∂x

∂z
=

1
1 + εRx

.

Hence
∂ϕ

∂t
=

∂(u + εv)
∂x

∂x

∂t
+

∂(u + εv)
∂t

= ε

(
− εRt

1 + εRx

∂v

∂x
+

∂v

∂t

)
− εRt

1 + εRx

∂u

∂x
,

∂ϕ

∂z
=

(
∂u

∂x
+ ε

∂v

∂x

)
1

1 + εRx
.

We want to write the linearized system as a parabolic problem for the function
v. To do that we shall need to eliminate w from the relation

w (z, t) = −1
ς

E

ϕ2

∂ϕ

∂z
(6.6)

and substitute it into the equation (2.2), written in terms of the (z, t) variables

∂ϕ

∂t
− V

∂ϕ

∂z
+

∂

∂z
(ϕw) = 0.

We then obtain for v(x, t) the equation

L (ε) [v] ≡ ε
∂v

∂t
− ε2 Rt

1 + εRx

∂v

∂x
− ε

∂u

∂x

Rt

1 + εRx

− 1
1 + εRx

∂

∂x

{
(u + εv)

(
E

ς

1
1 + εRx

(u + εv)x

(u + εv)2
+ V

)}
= 0.

(6.7)

Recalling (4.8), that
E

ς

ux

u
+ V u = E (6.8)

so that
E

ς

uxx

u
− E

ς

(ux)2

u2
+ V ux = 0, (6.9)

we find that the zero order terms in ε disappear from (6.7). Dropping also the
ε-terms of order ≥ 2, we arrive at the parabolic equation

∂v

∂t
−Rt

∂u

∂x
− ∂

∂x

{
E

ς

(vx

u
− v

ux

u2
−Rx

ux

u

)
+ vV

}
= 0. (6.10)

We can simplify this parabolic equation by introducing a dependent variable,

ϑ (x, t) = v (x, t)− ∂u

∂x
R (x, t) . (6.11)
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Then, by (6.9),
∂ϑ

∂t
=

∂

∂x

{
E

ς

(
1
u

∂ϑ

∂x
− ux

u2
ϑ

)
+ ϑV

}
,

or
∂ϑ

∂t
=

E

ς

∂2

∂x2

(
ϑ

u

)
+ V

∂ϑ

∂x
. (6.12)

To express the jump relations at x = a0 we use the notation [f ] = f(a0 + 0) −
f(a0 − 0) for any function f . Then the first jump relation in (4.3) is

[
(u + εv)

{
−E

ς

1
1 + εRx

∂

∂x

( −1
u + εv

)
−

(
V + ε

dρ3

dt

)} ]
= 0.

Using (6.8), we obtain (after dropping ε− terms of order ≥ 2)
[
−E

ς

vx

u
+

E

ς

ux

u
Rx + v

(
E

u
− 2V

)
− u

dρ3

dt

]
= 0. (6.13)

Expressing this condition in terms of ϑ and using (6.8) and (6.9), we reduce this
condition to [

−E

ς

ϑx

u
+ ϑ

(
E

u
− 2V

)
− u

dρ3

dt

]
= 0. (6.14)

The second jump condition in (4.3) leads to
[

E

u2

(
ϑ +

∂u

∂x
ρ3

)]
+ µ

dρ3

dt
= 0. (6.15)

The third jump condition is j+
3 (ε)− j−3 (ε) = 0, where

j+
3 (ε) =

{(
τ − E

2 (u + εv)

){
−E

ς

∂

∂x

(
− 1

u + εv

)
−

(
V + ε

dρ3

dt

)} }

x=a0+0

,

j−3 (ε) =

{
− E

2 (u + εv)

{
−E

ς

∂

∂x

(
− 1

u + εv

)
−

(
V + ε

dρ3

dt

)} }

x=a0−0

.

After some calculations, using (6.8), we get
[
vxµ1 (x) + vµ2 (x)− dρ3

dt
µ3 (x)

]
= 0 (6.16)

where

µ1 (x) =
E

ςu2

(
E

2u
− τ (x)

)
, τ (x) = τH (x− a0) ,

µ2 (x) =
E

ς

2ux

u3

(
τ (x)− E

2u

)
− E2

2u3
, (6.17)

µ3 (x) = τ (x)− E

2u
.

Using (6.8), (6.9) we compute

ν1 (x) ≡ uxxµ1 (x) + uxµ2 (x) =
ux

u

(
τ(x)

E

u
− E2

u2

)
. (6.18)

Hence, expressed in terms of ϑ, the third jump condition in (4.3) takes the form
[
ϑxµ1 (x) + ϑµ2 (x) + ρ3ν1 (x)− dρ3

dt
µ3 (x)

]
= 0. (6.19)
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We now turn to the boundary conditions. Since v = 0 at x = 0 and x = l0,

ϑ |x=0= −∂u

∂x
(0) ρ1 (t) , (6.20)

ϑ |x=l0= −∂u

∂x
(l0) ρ2 (t) . (6.21)

The free boundary condition at x = 0 is

dρ1

dt
+

{
E

ς

1
u2

(
∂ϑ

∂x
+

∂2u

∂x2
ρ1

)}

x=0

= 0. (6.22)

Since the velocity of the polymerization Vp(l) depends on the length l = l0 + ε(ρ2−
ρ1), the second free boundary condition takes the form

dρ2

dt
+

{
E

ς

1
u2

(
∂ϑ

∂x
+

∂2u

∂x2
ρ2

)}

x=l0

− V ′
p (l0) (ρ2 − ρ1) = 0. (6.23)

Finally, we complement the system (6.12)–(6.23) with initial conditions

ρj (0) = ρj0, (j = 1, 2, 3) , ϑ (x, 0) = ϑ0 (x) . (6.24)

We would like to eliminate ρ3 and dρ3/dt from the jump conditions (6.14), (6.15)
and (6.19). To do that we write (6.19) and (6.15) in the form

dρ3

dt
[µ3]− ρ3 [ν1] = [ϑxµ1 + ϑµ2] , (6.25)

µ
dρ3

dt
+ ρ3

[
E

ux

u2

]
= −

[
E

ϑ

u2

]
. (6.26)

If

D ≡
∣∣∣∣

[µ3] − [ν1]
µ

[
E ux

u

]
∣∣∣∣ 6= 0, (6.27)

then we can solve the two equations for ρ3 and dρ3/dt:

dρ3

dt
=

1
D

{[
E

ux

u

]
[ϑxµ1 + ϑµ2] +

[
E

ϑ

u2

]
[ν1]

}
, (6.28)

ρ3 =
1
D

{
− [µ3]

[
E

ϑ

u2

]
− µ [ϑxµ1 + ϑµ2]

}
. (6.29)

Next we write the jump condition (6.14) in the form

dρ3

dt
=

1
[u]

[ϑxν2 + ϑν3] (assuming [u] 6= 0), (6.30)

where

ν2 (x) = − E

ςu
, ν3 =

E

u
− 2V, (6.31)

and compare it with (6.26). We obtain

ρ3

[
E

ux

u

]
= −

[
E

ϑ

u2

]
− µ

[u]
[ϑxν2 + ϑν3] . (6.32)

Finally we compare dρ3/dt from (6.30) and (6.28) and ρ3 from (6.32) and (6.29).
This leads to the following jump relations for ϑ at x = a0 :

[ϑxa1 (x) + ϑb1 (x)] = 0, (6.33)

[ϑxa2 (x) + ϑb2 (x)] = 0, (6.34)
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where

a1 (x) =
1
D

[
E

ux

u

]
µ1 (x)− ν2 (x)

[u]
,

a2 (x) =
µ[

E ux

u

]
(

1
D

[
E

ux

u

]
µ1 (x)− ν2 (x)

[u]

)
,

b1 (x) =
1
D

[
E

ux

u

]
µ2 (x)− ν3 (x)

[u]
+

E [ν1]
Du2

, (6.35)

b2 (x) =
µ[

E ux

u

]
(

1
D

[
E

ux

u

]
µ2 (x)− ν3 (x)

[u]

)
+

E [µ3]
Du2

− 1[
ux

u

]
u2

.

Since a2 = µ
(
E

[
ux

u

])−1
a1, by multiplying the equation (6.33) by µ

([
E ux

u

])−1

and subtracting from (6.34), we get

[ϑc (x)] = 0, (6.36)

where

u2(x)c (x) =
1[
ux

u

]
( µ

D
[ν1] + 1

)
− E [µ3]

D
≡ c0, (6.37)

where c0 is a constant. If c0 6= 0, then (6.36) is equivalent to
[ ϑ

u2(x)

]
= 0. (6.38)

Substituting ρ1 and dρ1/dt from (6.20) into (6.22), we obtain{
−ϑt +

E

ςu2
(ϑxux − ϑuxx)

}

x=0

= 0. (6.39)

Similarly, substituting ρ2 and dρ2/dt from (6.21)–(6.22) into (6.23), we obtain{
−ϑt +

E

ςu2
(ϑxux − ϑuxx)

}

x=l0

+ V ′
p (l0)

{
ϑ (l0, t)− ϑ (0, t)

ux (l0)
ux (0)

}
= 0. (6.40)

Summary: The linearized problem consists of the parabolic equation (6.12) for ϑ,
the jump conditions (6.38), (6.33), the nonlocal boundary conditions (6.39)–(6.40),
and the initial conditions (6.24).

7. Appendix II. Expressing solutions through the hypergeometric func-
tions. Using the Pochhammer symbol

(x)n =
Γ(x + n)

Γ(x)
= x(x + 1) · · · (x + n− 1),

the hypergeometric function F , or 2F1, is defined by

F (a, b, c, z) ≡ 2F1(a, b, c, z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

where a, b, and c are complex numbers. The function y = F (a, b, c, z) is a solution
of the differential equation

(z − z2)y′′ + {c− (a + b + 1)z}y′ − aby = 0. (7.1)

If c 6= 1, a second linearly independent solution of (7.1) is given by

z1−cF (a− c + 1, b− c + 1, 2− c, z). (7.2)

For any constant k the functions

ỹ = F (a, b, c, kz), and ỹ = z1−cF (1 + a− c, 1 + b− c, 2− c, kz) (7.3)
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satisfy the equation
(
− 1

k
z + z2

)
ỹ ′′ +

{
− c

k
+ (a + b + 1)z

}
ỹ ′ + abỹ = 0. (7.4)

Using Stirling’s formula one can readily check (see [G, p. 1066, 9.102]) that

if a, b, c, z ∈ C and c 6= −n (n = 0, 1, 2, 3, · · · ), then the power
series for F (a, b, c, z) converges in the unit circle |z| < 1. (7.5)

We also have (see [WW, p. 281, 14.1]) that

d

dz
F (a, b, c, z) =

ab

c
F (a + 1, b + 1, c + 1, z). (7.6)

8. Appendix III. Stability. By Section 4,

1
u(x)

= ψ (x) =
V

E
+

1− V

E
e−ςx ≡ V

E
+ d1e

−ςx, 0 < x < a0, (8.1)

1
u(x)

= ψ (x) =
V

E
+

1 + τ − V

E
e−ςx+ςl0 ≡ V

E
+ d2e

−ςx, a0 < x < l0, (8.2)

where

d1 =
1− V

E
< 0, d2 = eςl0

1 + τ − V

E
> 0. (8.3)

A direct computation shows

ux(0)
u2(0)

=
ς(1− V )

E
,

uxx(0)
u2(0)

=
ς2(V − 1)

E
(2V − 1), (8.4)

ux(l0)
u2(l0)

=
ς(1 + τ − V )

E
,

uxx(l0)
u2(l0)

=
ς2(1 + τ − V )

E

1 + τ − 2V

1 + τ
, (8.5)

and
ux(l0)
ux(0)

=
1

(1 + τ)2
1 + τ − V

1− V
. (8.6)

Thus we can rewrite (6.39), (6.40) as
{
− ϑt − (V − 1)ϑx − ς(V − 1)(2V − 1)ϑ

}
x=0

= 0, (8.7)
{
− ϑt + (1 + τ − V )ϑx − ς(1 + τ − V )

1 + τ − 2V

1 + τ
ϑ
}

x=l0

+V ′
p(l0)

{
ϑ(l0, t) +

1
(1 + τ)2

1 + τ − V

V − 1
ϑ(0, t)

}
= 0.

(8.8)

We next compute the jump conditions. From (8.1), (8.2) we get
(u(a0+)

u(a0−)

)2

=
( V + (1− V )e−ςa0

V + (1 + τ − V )eς(l0−a0)

)2

,

and by (4.18)–(4.19), the right-hand side is equal to
(τ2 − (µV )2

(τ + µV )2
)2

.

Hence we can rewrite the jump relation (6.38) in the form

ϑ
∣∣∣
x=a0+

= ϑ
∣∣∣
x=a0−

(τ2 − (µV )2

(τ + µV )2
)2

. (8.9)



ENERGY CONSIDERATIONS IN NEMATODE SPERM CELL CRAWLING 363

We next express the jump condition (6.33) in a more computable form. We begin
by computing

u(a0+) =
E

V + (1 + τ − V )eς(l0−a0)
,

ux(a0+) =
Eς(1 + τ − V )eς(l0−a0)

(V + (1 + τ − V )eς(l0−a0))2
,

u(a0−) =
E

V + (1− V )e−ςa0
,

ux(a0−) =
Eς(1− V )e−ςa0

(V + (1− V )e−ςa0)2
,

and
[
E

ux

u

]
= E

(ux(a0+)
u(a0+)

− ux(a0−)
u(a0−)

)
,

[µ3] = τ − E

2u(a0+)
+

E

2u(a0−)
,

[ν1] =
ux(a0+)
u(a0+)

(
τ

E

u(a+
0 )
− E2

u2(a0+)

)
+

ux(a0−)
u(a0−)

E2

u2(a0−)
,

D = µ[ν1] + [µ3]
[
E

ux

u

]
,

[u] = u(a0+)− u(a0−).

We write (6.33) as

ϑx(a0+, t)a1(a0+) + ϑ(a0+, t)b1(a0+)
−ϑx(a0−, t)a1(a0−)− ϑ(a0−, t)b1(a0−) = 0.

(8.10)

We now proceed to compute the four constants a1(a0+), b1(a0+), a1(a0−), and
b1(a0−). By (6.17), (6.31),

a1(a0+) =
1
D

[
E

ux

u

]
µ1(a0+)− ν2(a0+)

[u]

=
1
D

[
E

ux

u

] E

ςu2(a0+)

( E

2u(a0+)
− τ

)
+

1
[u]

E

ςu(a0+)
,

a1(a0−) =
1
D

[
E

ux

u

]
µ1(a0−)− ν2(a0−)

[u]

=
1
D

[
E

ux

u

] E

ςu2(a0−)

( E

2u(a0−)

)
+

1
[u]

E

ςu(a0−)
,

b1(a0+) =
1
D

[
E

ux

u

]
µ2(a0+)− ν3(a+)

[u]
+

E[ν1]
Du2(a0+)

=
1
D

[
E

ux

u

]{2Eux(a0+)
ςu3(a0+)

(
τ − E

2u(a0+)

)
− E2

2u3(a0+)

}

− 1
[u]

( E

u(a0+)
− 2V

)
+

E[ν1]
Du2(a0+)

,
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b1(a0−) =
1
D

[
E

ux

u

]
µ2(a0−)− ν3(a−)

[u]
+

E[ν1]
Du2(a0−)

=
1
D

[
E

ux

u

]{2Eux(a0−)
ςu3(a0−)

(
− E

2u(a0−)

)
− E2

2u3(a0−)

}

− 1
[u]

( E

u(a0−)
− 2V

)
+

E[ν1]
Du2(a0−)

.

Introduce a change of variables

y = e−ςx.

Then
∂

∂x
= −ςy

∂

∂y
,

∂2

∂x2
= ς2y2 ∂2

∂y2
+ ς2y

∂

∂y
,

and
1
u

=
V

E
+ djy,

∂

∂x

( 1
u

)
= −djςy,

∂2

∂x2

( 1
u

)
= djς

2y, (8.11)

where j = 1 for 0 < x < a0 and j = 2 for a0 < x < l0. In the new variables the
equation (6.12) reduces to

1
Eς

ϑt = (
V

E
y2 + djy

3)ϑyy + 3djy
2ϑy + djyϑ. (8.12)

The boundary conditions (8.7), (8.8) in the new coordinate system take the form
{
− ϑt + ς(V − 1)ϑy − ς(V − 1)(2V − 1)ϑ

}
y=1

= 0, (8.13)
{
− ϑt − ςy(1 + τ − V )ϑy − ς(1 + τ − V )

1 + τ − 2V

1 + τ
ϑ
}

y=e−ςl0

− V 0
p

(l0 − d0)2
{

ϑ
∣∣∣
y=1

+
1

(1 + τ)2
1 + τ − V

V − 1
ϑ
∣∣∣
y=e−ςl0

}
= 0.

(8.14)

We look for (nontrivial) solutions of the form

ϑ(t, y) = estξ(y, s).

Then
1

Eς
sξ = (

V

E
y2 + djy

3)ξyy + 3djy
2ξy + djyξ, (8.15)

and {
− s

V − 1
ξ + ςξy − ς(2V − 1)ξ

}
y=1

= 0, (8.16)
{
− s

1 + τ − V
ξ + ςyξy − ς

1 + τ − 2V

1 + τ
ξ
}

y=e−ςl0

− V 0
p

(l0 − d0)2
{ 1

1 + τ − V
ξ
∣∣∣
y=1

+
1

(1 + τ)2
1

V − 1
ξ
∣∣∣
y=e−ςl0

}
= 0,

(8.17)

with (noting that if y0 = e−ςa0 , then y = y0+ corresponds to x = a0−, y = y0−
corresponds to x = a0+, and thus estξR(e−ςa0 , s) = ϑ(a0−, t), estξL(e−ςa0 , s) =
ϑ(a0+, t)):

ξL(e−ςa0 , s) = ξR(e−ςa0 , s)
(τ2 − (µV )2

(τ + µV )2
)2

, (8.18)

and

β1ξL(e−ςa0 , s) + β2
∂ξL

∂y
(e−ςa0 , s) + β3ξR(e−ςa0 , s) + β4

∂ξR

∂y
(e−ςa0 , s) = 0, (8.19)
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where

β1 = b1(a0+),
β2 = −ςe−ςa0a1(a0+),
β3 = −b1(a0−),
β4 = ςe−ςa0a1(a0−).

We make a change of variable yλξ̃ = ξ, where λ = λ(s) is to be determined. Then
ξ̃ satisfies

(
V

E
y2 + djy

3)ξ̃yy +
{

2λ(
V

E
y + djy

2) + 3djy
2
}

ξ̃y

+
{

λ(λ− 1)(
V

E
+ djy) + 3λdjy + djy − 1

Eς
s
}

ξ̃ = 0.
(8.20)

If we choose λ such that

λ(λ− 1)
V

E
− 1

Eς
s = 0, (8.21)

then (8.20) is reduced to
( V

Edj
y + y2

)
ξ̃yy +

{
2λ

V

Edj
+ (2λ + 3)y

}
ξ̃y + (λ2 + 2λ + 1)ξ̃ = 0, (8.22)

so that there are explicit solutions given in terms of the hypergeometric functions

ξ̃j(y, s) = F (aj , bj , cj , kjy), (8.23)

or
ξ̃j(y, s) = y1−cj F (aj − cj + 1, bj − cj + 1, 2− cj , kjy), (8.24)

where
1
kj

= − V

Edj
, cj ≡ cj(λ) = 2λ, (8.25)

aj + bj + 1 = 2λ + 3, ajbj = λ2 + 2λ + 1. (8.26)

From (8.25), cj is actually independent of j. It is important to note that, from
(8.3),

k1 =
V − 1

V
∈ (0, 1), −k2e

−ςa0 =
1 + τ − V

V
eς(l0−a0) ∈ (0, 1). (8.27)

This guarantees the convergence of the series given in (8.23) and (8.24), by (7.5).
Actually, for our data 0 < k1 < 1/4, and 0 < −k2e

−ςa0 < 2/3, so the convergence
is very fast for numerical computations.

From (8.26)

aj = aj(λ) = λ + 1, bj = bj(λ) = λ + 1.

We can solve (8.21)

λ± = λ±(s) =
1
2
± 1

2

√
1 +

4s

ςV
. (8.28)

The function F (a, b, c, y) has poles at c = 0,−1,−2,−3, · · · . We take in (8.23) and
(8.24) for λ = λ+(s). Then, both the functions F (aj(λ+), bj(λ+), cj(λ+), kjy) and
F (aj(λ+)− cj(λ+) + 1, bj(λ+)− cj(λ+) + 1, 2− cj(λ+), kjy) are smooth functions
when

4s

ζV
6= (n + 1)2 − 1, n = 0, 1, 2, 3, · · · ;
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i.e.,

0 < s <
3
4
ζV,

3
4
ζV < s < 2ζV, · · · ,

(n + 1)2 − 1
4

ζV < s <
(n + 2)2 − 1

4
ζV, · · · .

Then the general solution of (8.15) is given by:

ξ(y, s) = mj1y
λ+(s)F (aj(λ+), bj(λ+), cj(λ+), kjy) + mj2y

λ+(s)+1−cj(λ
+)

×F (aj(λ+)− cj(λ+) + 1, bj(λ+)− cj(λ+) + 1, 2− cj(λ+), kjy),
(8.29)

where j = 1 for 1 > y > e−ςa0 , j = 2 for e−ςa0 > y > e−ςl0 . We now want to
determine the four coefficients m11 = m11(s), m12 = m12(s), m21 = m21(s), and
m22 = m22(s) using two boundary conditions and two jump conditions.

In the formula (7.29) we could also use λ = λ−(s). Actually, the solution
yλ+(s)F (aj(λ+), bj(λ+), cj(λ+), kjy) is a scalar multiple of F (aj(λ−) − cj(λ−) +
1, bj(λ−)− cj(λ−) + 1, 2− cj(λ−), kjy).

This is a homogeneous linear system of four equations with four unknowns m11,
m12, m21, and m22, of the form

qp1m11 + qp2m12 + qp3m21 + qp4m22 = 0, p = 1, 2, 3, 4. (8.30)

Since we look for nontrivial solutions, the determinant det(qij)4i,j=1 must be 0, and
this is the transcendental equation for s.

We now proceed to compute the 16 coefficients in the matrix (qij).
From (8.16) and (7.6),

ς

{
m11

{
λ+G11(s) + Gd11(s)

}
+ m12

{
(λ+ − c1(λ+) + 1)G12(s) + Gd12(s)

}}

=
{ s

V − 1
+ ς(2V − 1)

}{
m11G11(s) + m12G12(s)

}
, (8.31)

where

G11(s) = F (a1(λ+), b1(λ+), c1(λ+), k1),

Gd11(s) = k1
a1(λ+)b1(λ+)

c1(λ+)
F (a1(λ+) + 1, b1(λ+) + 1, 1 + c1(λ+), k1),

G12(s) = F (a1(λ+)− c1(λ+) + 1, b1(λ+)− c1(λ+) + 1, 2− c1(λ+), k1),

Gd12(s) = k1
(a1(λ+)− c1(λ+) + 1)(b1(λ+)− c1(λ+) + 1)

2− c1(λ+)
×F (a1(λ+)− c1(λ+) + 2, b1(λ+)− c1(λ+) + 2, 3− c1(λ+), k1);

from this we obtain the equation for p = 1:





q11 =
{

ςλ+ − s

V − 1
− ς(2V − 1)

}
G11(s) + ςGd11(s),

q12 =
{

ς(λ+ − c1(λ+) + 1)− s

V − 1
− ς(2V − 1)

}
G12(s) + ςGd12(s),

q13 = 0,
q14 = 0.

(8.32)
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Similarly, we define

G21(s) = F (a2(λ+), b2(λ+), c2(λ+), k2e
−ςl0),

Gd21(s) = k2
a2(λ+)b2(λ+)

c2(λ+)
F (a2(λ+) + 1, b2(λ+) + 1, 1 + c2(λ+), k2e

−ςl0),

G22(s) = F (a2(λ+)− c2(λ+) + 1, b2(λ+)− c2(λ+) + 1, 2− c2(λ+), k2e
−ςl0),

Gd22(s) = k2
(a2(λ+)− c2(λ+) + 1)(b2(λ+)− c2(λ+) + 1)

2− c2(λ+)

×F (a2(λ+)− c2(λ+) + 2, b2(λ+)− c2(λ+) + 2, 3− c2(λ+), k2e
−ςl0);

then from (8.17)

{ −s

1 + τ − V
− ς

1 + τ − 2V

1 + τ
+

V 0
p

(l0 − d0)2(1 + τ)2(V − 1)

}

×
{

m21e
−ςl0λ+

G21(s) + m22e
−ςl0{λ++1−c2(λ

+)}G22(s)
}

+ς

{
m21

{
λ+e−ςl0(λ

+−1)G21(s) + e−ςl0λ+
Gd21(s)

}

+m22

{
(λ+ − c2(λ+) + 1)e−ςl0{λ+−c2(λ

+)}G22(s)

+e−ςl0{λ+−c2(λ
+)+1}Gd22(s)

}}

=
V 0

p

(l0 − d0)2(1 + τ − V )

{
m11G11(s) + m12G12(s)

}
. (8.33)

From this equation we obtain the equation for p = 2:





q21 =
−V 0

p

(l0 − d0)2(1 + τ − V )
G11(s),

q22 =
−V 0

p

(l0 − d0)2(1 + τ − V )
G12(s),

q23 =
{ −s

1 + τ − V
− ς

1 + τ − 2V

1 + τ
+

V 0
p

(l0 − d0)2(1 + τ)2(V − 1)

}
e−ςl0λ+

G21(s)

+ς
{

λ+e−ςl0(λ
+−1)G21(s) + e−ςl0λ+

Gd21(s)
}

q24 =
{ −s

1 + τ − V
− ς

1 + τ − 2V

1 + τ
+

V 0
p

(l0 − d0)2(1 + τ)2(V − 1)

}

×e−ςl0{λ++1−c2(λ
+)}G22(s)

+ς
{

(λ+ − c2(λ+) + 1)e−ςl0{λ+−c2(λ
+)}G22(s) + e−ςl0{λ+−c2(λ

+)+1}Gd22(s)
}
.

(8.34)
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We next define

G31(s) = F (a1(λ+), b1(λ+), c1(λ+), k1e
−ςa0),

Gd31(s) = k1
a1(λ+)b1(λ+)

c1(λ+)
F (a1(λ+) + 1, b1(λ+) + 1, 1 + c1(λ+), k1e

−ςa0),

G32(s) = F (a1(λ+)− c1(λ+)+ 1, b1(λ+)− c1(λ+)+ 1, 2− c1(λ+), k1e
−ςa0),

Gd32(s) = k1
(a1(λ+)− c1(λ+) + 1)(b1(λ+)− c1(λ+) + 1)

2− c1(λ+)
×F (a1(λ+)− c1(λ+) + 2, b1(λ+)− c1(λ+) + 2, 3− c1(λ+), k1e

−ςa0);
G41(s) = F (a2(λ+), b2(λ+), c2(λ+), k2e

−ςa0),

Gd41(s) = k2
a2(λ+)b2(λ+)

c2(λ+)
F (a2(λ+) + 1, b2(λ+) + 1, 1 + c2(λ+), k2e

−ςa0),

G42(s) = F (a2(λ+)− c2(λ+)+ 1, b2(λ+)− c2(λ+)+ 1, 2− c2(λ+), k2e
−ςa0),

Gd42(s) = k2
(a2(λ+)− c2(λ+) + 1)(b2(λ+)− c2(λ+) + 1)

2− c2(λ+)
×F (a2(λ+)− c2(λ+) + 2, b2(λ+)− c2(λ+) + 2, 3− c2(λ+), k2e

−ςa0).

From (8.18),

m21e
−ςa0λ+

G41(s) + m22e
−ςa0{λ++1−c2(λ

+)}G42(s)

=
(τ2 − (µV )2

(τ + µV )2
)2{

m11e
−ςa0λ+

G31(s) + m12e
−ςa0{λ++1−c1(λ

+)}G32(s)
}

. (8.35)

From this we obtain the equation for p = 3:





q31 =
(τ2 − (µV )2

(τ + µV )2
)2

e−ςa0λ+
G31(s),

q32 =
(τ2 − (µV )2

(τ + µV )2
)2

e−ςa0{λ++1−c1(λ
+)}G32(s),

q33 = −e−ςa0λ+
G41(s),

q34 = −e−ςa0{λ++1−c2(λ
+)}G42(s).

(8.36)

Finally, from (8.19),

m21β1e
−ςa0λ+

G41(s) + m22β1e
−ςa0{λ++1−c2(λ

+)}G42(s)

+m21λ
+β2e

−ςa0(λ
+−1)G41(s) + m22(λ+ + 1− c1(λ+))β2e

−ςa0{λ+−c2(λ
+)}G42(s)

+m21β2e
−ςa0λ+

Gd41(s) + m22β2e
−ςa0{λ++1−c2(λ

+)}Gd42(s)

+m11β3e
−ςa0λ+

G31(s) + m12β3e
−ςa0{λ++1−c1(λ

+)}G32(s)

+m11λ
+β4e

−ςa0(λ
+−1)G31(s) + m12(λ+ + 1− c1(λ+))β4e

−ςa0{λ+−c1(λ
+)}G32(s)

+m11β4e
−ςa0λ+

Gd31(s) + m12β4e
−ςa0{λ++1−c1(λ

+)}Gd32(s) = 0. (8.37)
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From this we obtain the equation for p = 4:




q41 = β3e
−ςa0λ+

G31(s) + λ+β4e
−ςa0(λ

+−1)G31(s) + β4e
−ςa0λ+

Gd31(s),
q42 = β3e

−ςa0{λ++1−c1(λ
+)}G32(s)

+(λ+ + 1− c1(λ+))β4e
−ςa0{λ+−c1(λ

+)}G32(s)
+β4e

−ςa0{λ++1−c1(λ
+)}Gd32(s),

q43 = β1e
−ςa0λ+

G41(s) + λ+β2e
−ςa0(λ

+−1)G41(s) + β2e
−ςa0λ+

Gd41(s),
q44 = β1e

−ςa0{λ++1−c2(λ
+)}G42(s)

+(λ+ + 1− c2(λ+))β2e
−ςa0{λ+−c2(λ

+)}G42(s)
+β2e

−ςa0{λ++1−c2(λ
+)}Gd42(s).

(8.38)
Let Q(s) = det(qij). Then the equation for s is

Q(s) = 0. (8.39)

First of all, one can show that Q(0) = 0 and thus s = 0 is an eigenvalue. The
presence of a zero eigenvalue is a direct consequence of the invariance symmetry
of the travelling wave solution. From (4.8) the travelling wave solution satisfies an
equation,

E

ς

ux

u
+ V u = E ,

so that
E

ς

d2

dx2

(ux

u

)
+ V

d2u

dx2
= 0 . (8.40)

This shows that the function ϑ = ux(x) is the solution of (6.12). One can check,
that ϑ = ux and ρk = −1, k = 1, 2, 3, satisfy the boundary conditions (6.22), (6.23)
and the jump conditions (6.14), (6.15), and (6.19). (To see that (6.14) and (6.19)
are satisfied for ϑ = ux, note that if ϑ = ux, (6.14) is equivalent to (6.13) with
v = 0, and (6.19) is equivalent to (6.16) with v = 0.) In other words, s = 0 is the
eigenvalue of the linearized homogeneous problem with the corresponding eigenvec-
tor (ux,−1,−1,−1). The ϑ = ux perturbation corresponds to an infinitesimal shift
of the travelling wave solution and thus simply reveals the presence of an infinite
number of travelling wave solutions related to each other by a shift along x. Such
ambiguity in the choice of the particular travelling wave solution is eliminated by
the initial conditions, and therefore the presence of the s = 0 eigenvalue represents
not a real loss of stability, but an artifact of the linear stability analysis in the
translationally invariant systems.

Next, numerical computations show that for µ = 0.04, which is the middle range
of our parameter, d0 = 0.5 and the other parameters given by (3.16), with a mesh
size of 0.1, Q(s) does not vanish on the node of 100× 200 in the range

{s ∈ C; 0 < Re s < 10, |Im s| < 10}.
Thus there are no unstable modes in this range. The same result is also valid for
µ near 0.04. Such behavior suggests that there should be no unstable modes in
{s ∈ C; Re s > 0} as well.
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