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Abstract. Dispersal delays are introduced into a competition model for two
species that disperse among n identical patches. The model is formulated as
a system of integro-differential equations with an arbitrary distribution of dis-
persal times between patches. By identifying steady states and analyzing local
stability, conditions for competitive exclusion, coexistence or extinction are de-
termined in terms of the system parameters. These are confirmed by numerical
simulations with a delta function distribution, showing that all solutions ap-
proach a steady state and that high dispersal is generally a disadvantage to a
species. However, if the two species have identical local dynamics, then small
dispersal rates (with certain parameter restrictions) can be an advantage to
the dispersing species. If the number of species is increased to three, then
oscillatory coexistence with dispersal delay is possible.

1. Introduction. Lotka (1932) and Volterra (1926) developed a classical model
of competition; see, for example, [4, Section 3.5]. Realistically, most species exist
in patchy environments; thus, dispersal needs to be incorporated into the classical
Lotka-Volterra competition model. For two species competing on two patches, ordi-
nary differential equation (ODE) models have been studied by several authors; see,
for example, Levin [3], Takeuchi [7, Chapter 5, Section 5.6], Gourley and Kuang
[1].

In Takeuchi [7] a four-dimensional ODE system model is formulated for two
species that compete on two non-identical patches. Let Nij (for i, j = 1, 2) de-
note the density of species i on patch j, rij and Kij denote the growth rate and
carrying capacity for species i on patch j, respectively, and α12j and α21j denote
the interspecific competition parameters on patch j. Furthermore, let Di be the
dispersal rate for species i (the model given in [7, page 121] assumes that dispersal
is both species and patch dependent). All parameters are assumed to be positive.
The model equations [7, page 121] are

dNij

dT
=

rij

Kij
Nij(Kij −Nij − αikjNkj) + Di[Ni` −Nij ], (1)
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in which i, j, k, ` = 1, 2, where i 6= k and j 6= `. Note that in the absence of dispersal
(Di = 0), system (1) reduces to the classical competition model on each patch.
Possible boundary steady states of (1) are E0 = (0, 0, 0, 0), EN1 = (N̄11, N̄12, 0, 0),
EN2 = (0, 0, N̄21, N̄22), which exist for any Di > 0. The boundary steady state ENi

is globally stable with respect to the positive Ni subspace. In addition, there may
also exist a unique positive equilibrium point for (1), in which case it is globally
stable; see [7, page 121]. For the case in which the patches are identical (i.e.,
rij = ri, Kij = Ki, αikj = αik), the condition α21 < 1 < 1/α12 ensures a positive
equilibrium point exists for each patch [7, page 124]. This is equivalent to α12 < 1
and α21 < 1 as in the classical case of competition between two species. Hence,
species that compete on two identical patches have a globally asymptotically stable
equilibrium point for any Di > 0, i = 1, 2, provided the above condition holds.

Another approach to analyzing competition models with dispersal was taken by
Levin [3], who analyzed the case of two species on two patches; see also [9, Section
5.4.1]. As a special case of (1), identical local dynamics and dispersal rates for the
two species between the two patches are assumed. Therefore, rij = r, Kij = K,
αikj = α and Di = D. The assumption is made that the two species cannot coexist
locally within one patch, i.e., α > 1. With D = 0, the model is the classical case
of competition between two species; thus only one species will be present in each
patch. Due to the clear symmetry of this system, an obvious assumption is made
in the case D > 0, namely, N11 = N22 and N21 = N12, thus reducing system (1) to
two dimensions, namely

dNi1

dT
=

r

K
Ni1(K −Ni1 − αNk1) + D[Nk1 −Ni1],

for i, k = 1, 2, i 6= k. For sufficiently small dispersal rates, the two species can co-
exist in this coupled patch model. However, as dispersal rates increase, “complete
mixing” occurs and the distinction between the two patches is lost, and coexistence
is no longer possible [9, Section 5.4.1].

An ODE competition model is analyzed in a recent paper by Gourley and Kuang
[1]. Species 1 and 2 have identical dispersal rates between the two patches, but have
different birth rates within each patch. This is a special case of (1) with rij = Kij ,
Di = D and αikj = 1. If rij > ri` and if species k widens the disparity between
these birth rates (i.e., if species k adopts a higher birth rate in patch j and a lower
birth rate in patch `, while maintaining the same average birth rate), then species
k will outcompete species i, for a sufficiently large dispersal rate D.

Competition models in patchy environments discussed so far demonstrate the ef-
fect of dispersal on the outcome of competition but assume that dispersal is instan-
taneous. Realistically individuals that disperse take time to re-enter their patch.
An arbitrary distribution of dispersal (travel) times between identical patches is
now introduced. In this model, which is formulated in Section 2, both species dis-
perse among an arbitrary number of identical patches. Local stability analysis of
the spatially homogeneous steady states in which at least one species is absent (i.e.,
boundary steady states) is carried out in Section 3, and the results are summarized
in Theorem 3.2. All analytical results are valid for an arbitrary distribution of
dispersal times and can be applied to special cases of the general models, such as
constant travel time (as in the case of a delta function distribution) and zero travel
time (ODE models). To support analytical results for the models in which both
species disperse, in Section 4 results of some numerical simulations are given. These
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assume a delta function distribution for dispersal times (i.e., all dispersing individ-
uals take the same traveling time). A similar model for three competing species can
have oscillatory solutions (Section 5). A one-patch model with dispersal is briefly
considered in Section 6, and concluding remarks are given in Section 7.

2. Model Formulation and Steady States. This model assumes that two species
interact competitively and disperse between an arbitrary number n ≥ 2 of identical
patches. Let Nij denote the density of species i on patch j, for i = 1, 2 and j = 1,
. . ., n. Species i is assumed to have positive constant growth rate (the difference be-
tween birth and death rate) and carrying capacity, ri > 0 and Ki > 0, respectively.
The interspecific competition constant of species 2 on 1 is denoted by α12 > 0,
while that of species 1 on 2 is denoted by α21 > 0.

Species i disperses at a rate Di ≥ 0, for i = 1, 2. Individuals of the same
species have the same traveling time distribution between patches, and each patch
is coupled to every other patch. Different individuals in a species may have differ-
ent dispersal times, and also, for a single individual, the traveling time may vary
between trips. For this reason, a general probability density function, as in [5],
denoted by Gi(S) ≥ 0, is used to account for the time it takes an individual of
species i to disperse, given that the individual survives the trip. Hence, the prod-
uct Gi(S)dS is the probability that an individual disperses successfully, departing
at time T and completing the trip between time T + S and time T + S + dS. Con-
sequently,

∫∞
0

Gi(S)dS = 1.
For species i, death during traveling is exponentially distributed with parameter

Mi ≥ 0. The probability of such an individual dying during a trip of duration S
is represented by the cumulative distribution function 1 − e−MiS . Thus the prob-
ability that this individual survives the trip is e−MiS , where Mi is the death rate
during travel, for i = 1, 2. Note that mortality during travel is treated differently
from mortality within a patch. Given that the patches are assumed to be identical,
the parameters ri, Ki, α12, α21, Di, Gi and Mi are assumed to be the same in each
patch. Incorporating dispersal into the classical competition equations gives the
model for j = 1, . . ., n as

dN1j

dT
=

r1

K1
N1j(K1 −N1j − α12N2j)

+ D1[
1

n− 1

n∑

`=1, ` 6=j

∫ ∞

0

G1(S)e−M1SN1`(T − S)dS −N1j ]

dN2j

dT
=

r2

K2
N2j(K2 −N2j − α21N1j)

+ D2[
1

n− 1

n∑

`=1, ` 6=j

∫ ∞

0

G2(S)e−M2SN2`(T − S)dS −N2j ]. (2)

In these equations and in all that follow it is understood that if time dependence
is omitted, then the variable is evaluated at the current time. For species i, the
integral

∫∞
0

Gi(S)e−MiSNi`(T −S)dS realistically is
∫ Li

0
Gi(S)e−MiSNi`(T −S)dS,

where Li is the maximum life span of species i. The system is assumed to be closed;
i.e., individuals must have left one patch in order to enter another. For all t ≥ 0,
existence and uniqueness of the solution of the initial value problem follow from
standard results; see, for example, [2, Chapter 2, Section 2.2].
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The following result shows that the region

X2n = {(N11, . . . , N1n, N21, . . . , N2n) : 0 ≤ Nij ≤ Ki}
is positively invariant and attracts all solutions, so it suffices to consider the dy-
namics on X2n. Note that biologically Nij(S) = 0 for S ∈ (−∞,−Li).

Proposition 2.1. If 0 ≤ Nij(S) ≤ Ki for S ∈ (−∞, 0] with Nij(0) > 0, then for
system (2), 0 ≤ Nij(T ) ≤ Ki for all T ≥ 0, for i = 1, 2 and j = 1, . . ., n.

Proof: Assume that Ti is the first positive time that Nij = 0 for any j. Then

dNij(Ti)
dT

= Di[
1

n− 1

n∑

`=1, 6̀=j

∫ ∞

0

Gi(S)e−MiSNi`(T − S)dS] ≥ 0,

and therefore, by [6, Theorem 2.1, page 81], Nij(T ) ≥ 0 for all T ≥ 0. Now suppose
that Ti is the first positive time that Nij = Ki for any j. Then for k 6= i

dNij(Ti)
dT

= −riαikNkj

+Di[
1

n− 1

n∑

`=1, 6̀=j

∫ ∞

0

Gi(S)e−MiSNi`(T − S)dS −Ki]

≤ 0,

and therefore Nij(T ) ≤ Ki for all T ≥ 0. 2

The analysis of the model (2) is simplified by rescaling variables and parameters
and setting uij = Nij

Kij
, di = Di

ri
, mi = Mi

ri
, for i = 1, 2, and a12 = α12

K2
K1

,

a21 = α21
K1
K2

, t = r1T , s = r1S, and ρ = r2
r1

. This results in the non-dimensional
system

du1j

dt
= u1j(1− u1j − a12u2j)

+ d1[
1

n− 1

n∑

`=1, 6̀=j

∫ ∞

0

g1(s)e−m1su1`(t− s)ds− u1j ]

du2j

dt
= ρu2j(1− u2j − a21u1j)

+ ρd2[
1

n− 1

n∑

`=1, 6̀=j

∫ ∞

0

g2(s)e−ρm2su2`(t− s)ds− u2j ], (3)

where gi(s) = 1
r1

Gi( s
r1

), for i = 1, 2; thus
∫∞
0

gi(s)ds = 1.
The dynamics of the system in (3) are analyzed below in the region

Y2n = {(u11, . . . , u1n, u21, . . . , u2n) : 0 ≤ uij ≤ 1} .

Define

g̃1(m1) =
∫ ∞

0

g1(s)e−m1sds and g̃2(ρm2) =
∫ ∞

0

g2(s)e−ρm2sds, (4)

h1 = 1− d1(1− g̃1(m1)) ≤ 1 and h2 = 1− d2(1− g̃2(ρm2)) ≤ 1. (5)

Here g̃i is the one-sided Laplace transform of the travel time distribution gi(s).
Note that for mi ≥ 0, g̃i is a positive, decreasing function with g̃i(0) = 1. The
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dimensionless parameter hi is a measure of the difference between growth and dis-
persal; hi decreases with increasing dispersal rate, and vice versa.

The non-dimensional system (3) may admit four non-negative spatially homo-
geneous steady states lying in Y2n. These are of the form (ū1, ū2) in which the
n-dimensional vector ūi = (ūi1, . . . , ūin) represents the steady state densities of
species i on all n ≥ 2 patches, for i = 1, 2. With the n-dimensional vector
hi = (hi, . . . , hi) for i = 1, 2, these steady states are

(0,0) (h1,0) for h1 > 0 (0,h2) for h2 > 0

(u∗1,u∗2) for u∗1 = (u∗1, . . . , u
∗
1) and u∗2 = (u∗2, . . . , u

∗
2)

where u∗1 =
h1 − a12h2

1− a12a21
and u∗2 =

h2 − a21h1

1− a12a21
, (6)

provided that u∗1 and u∗2 are positive. In biological terms, the steady states in
(6) represent extinction of both species on all n patches, competitive exclusion of
species 2 on all patches with species 1 below its carrying capacity (due to dispersal),
competitive exclusion of species 1 on all n patches with species 2 below its carrying
capacity (due to dispersal) and coexistence of both species with the same densities
of each species on all n patches. Inhomogeneous steady states (u∗1,u∗2) can occur
for a small set of parameter values if d1 = d2 and g̃1(m1) = g̃2(ρm2), but have not
been ruled out analytically for the general system (3) with d1 6= d2 and g̃1(m1) 6=
g̃2(ρm2).

3. Local Stability Analysis. When applying linear stability analysis to the steady
states in (6), the following lemma involving g̃1(m1) is used. Replacing m1 with ρm2

and interchanging subscripts 1 and 2 in all the other parameters yields an identical
result for g̃2(ρm2).

Lemma 3.1. Let λ− 1+ c+d1 = ±bd1g̃1(m1 +λ) be a characteristic equation in λ,
where c > h1 is a non-negative constant and b is a constant with 0 < b ≤ 1. Then
Re(λ) < 0 for all roots λ.

Proof: Let λ = x + iy, where y ∈ R, and suppose that x ≥ 0. Then by taking the
modulus of each side and squaring

|x + iy − 1 + c + d1|2 = |bd1g̃1(m1 + x + iy)|2

=
bd1

∫ ∞

0

g1(s)e−m1se−xse−iysds


2

≤
(

bd1

∫ ∞

0

g1(s)e−m1s
 ds

)2

= b2d2
1g̃

2
1(m1)

⇒ (x− 1 + c + d1)2 + y2 ≤ b2d2
1g̃

2
1(m1)

⇒ (x− 1 + c + d1 − bd1g̃1(m1))(x− 1 + c + d1 + bd1g̃1(m1)) ≤ −y2.

For c > h1 ≥ 1 − d1 ± bd1g̃1(m1), the product on the left-hand side of the above
inequality is positive, whereas the right-hand side is non-positive, giving a contra-
diction and completing the proof. 2

Let uij = ūij + vij with |vij | ¿ ūij , for i = 1, 2 and j = 1, . . ., n. Thus
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linearization of the system (3) in the neighbourhood of a non-negative steady state
(ū1, ū2) yields

dv1j

dt
= v1j(1− 2ū1j − a12ū2j)− a12ū1jv2j

+ d1[
1

n− 1

n∑

`=1, ` 6=j

∫ ∞

0

g1(s)e−m1sv1`(t− s)ds− v1j ]

dv2j

dt
= ρv2j(1− 2ū2j − a21ū1j)− ρa21ū2jv1j

+ ρd2[
1

n− 1

n∑

`=1, ` 6=j

∫ ∞

0

g2(s)e−ρm2sv2`(t− s)ds− v2j ] (7)

for j = 1, . . ., n. We now seek solutions to (7) of the form

vij = Cije
λt for i = 1, 2 and j = 1, . . . , n,

where Cij is an arbitrary constant. Substituting these assumed solutions into the
linearized equations and setting w̄ij = 1 − 2ūij − di for i = 1, 2 and j = 1, . . ., n
gives

0 = C1j [w̄1j − a12ū2j − λ]

+[
1

n− 1
d1g̃1(m1 + λ)]

n∑

`=1, ` 6=j

C1` − C2j [a12ū1j ]

0 = −C1j [a21ū2j ]

+C2j [w̄2j − a21ū1j − λ

ρ
] + [

1
n− 1

d2g̃2(ρm2 + λ)]
n∑

`=1, 6̀=j

C2` .

Accordingly, the linearized coefficient matrix can be written as

B =
(

C D
E F

)
,

where C, D, E and F are n×n matrices. Let I denote the n×n identity matrix and J
denote the n×n matrix with every entry equal to one. With p1 = 1

n−1d1g̃1(m1+λ),
C = p1J−(p1 + λ) I+diag (w̄1i − a12ū2i). Similarly, with p2 = 1

n−1ρd2g̃2(ρm2+λ),
F = p2J − (p2 + λ) I + ρdiag (w̄2i − a21ū1i). Matrices D and E are diagonal,
D = −a12diag (ū1i) and E = −ρa21diag (ū2i). The coefficient matrix B is now
applied to each of the spatially homogeneous steady states in (6). Theorem 3.2
summarizes the local stability results.

Theorem 3.2. For system (3) with hi defined as in (5), the stability properties
of the extinction and the competitive exclusion steady states in (6) are given as
follows:
(a) The steady state (0,0) is

locally asymptotically stable if h1, h2 < 0,
unstable if h1 > 0 or h2 > 0.

(b) The steady state (h1,0) is

locally asymptotically stable if a21h1 > h2,
unstable if a21h1 < h2.
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(c) The steady state (0,h2) is

locally asymptotically stable if a12h2 > h1,
unstable if a12h2 < h1.

Proof: The linearized coefficient matrix B has C, D, E and F as given above.
(a) At the steady state (0,0), B is a direct sum since D(0,0) = E(0,0) = 0, the
n × n zero matrix. Thus all that remains is to find the sign of Re(λ) for each of
detC = 0 and detF = 0 at (0,0).

For detC(0,0) = 0, summing all rows, taking out the resulting common factor
from row 1 and subtracting the first column from all other columns yields the
following equation in λ:

(1− d1 + d1g̃1(m1 + λ)− λ)(1− d1 − d1g̃1(m1 + λ)
n− 1

− λ)n−1 = 0. (8)

Consider the first factor in (8). If h1 < 0, then Lemma 3.1 for c = 0 implies
Re(λ) < 0. On the other hand, suppose h1 > 0 and let λ = x ∈ R; then from (8)

f(x) = x− 1 + d1 − d1g̃1(m1 + x) = 0.

Then f(0) = −h1 < 0, f(1) > 0 and f ′(x) = 1 − d1g̃
′
1(m1 + x) > 0. By the inter-

mediate value theorem, there exists a positive x satisfying f(x) = 0, which implies
that there is a λ for (8) with Re(λ) > 0, and so the steady state (0,0) is unstable.
For the second factor in (8), by Lemma 3.1 with b = 1

n−1 , it follows that Re(λ) < 0
for all roots λ whenever h1 < 0.

Interchanging subscripts 1 and 2 and replacing λ in the matrix F (0,0) with ρν,
then factoring out the positive constant ρ, yields a matrix which is identical to
C(0,0). Thus Re(λ) > 0 for some λ which is a root of the equation detF (0,0) = 0
whenever h2 > 0, and Re(λ) < 0 for all λ if h2 < 0. This proves part (a) of the
theorem.

(b) At the steady state (h1,0) for h1 > 0, the matrix B is reducible since
E(h1,0) = 0 and detC(h1,0) = det((1 − 2h1 − d1 − λ − p1)I + p1J). Setting
detC(h1,0) = 0 yields the following equation in λ:

(1− 2h1 − d1 + d1g̃1(m1 + λ)− λ) x

(1− 2h1 − d1 − d1g̃1(m1 + λ)
n− 1

− λ)n−1 = 0. (9)

Since 2h1 > h1 > 0, it follows from Lemma 3.1, using b = 1 and b = 1
n−1 , that

Re(λ) < 0 for all roots λ of both factors in (9). Similarly setting detF (h1,0) = 0
yields

ν − 1 + a21h1 + d2 − d2g̃2(ρm2 + ρν) = 0, (10)

ν − 1 + a21h1 + d2 +
d2g̃2(ρm2 + ρν)

n− 1
= 0. (11)

For a21h1 > h2, Lemma 3.1 implies that Re(ν) < 0 (i.e., Re(λ) < 0) for all roots ν
of (10) and (11). Otherwise, if a21h1 < h2, then, by using the intermediate value
theorem as in (a) above, Re(λ) > 0 for some λ in (10) whenever a21h1 < h2, and
therefore, the steady state (h1,0) is unstable.
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(c) At the steady state (0,h2) for h2 > 0, results follow from (b) by symmetry,
thus completing the proof. 2

Note that if there is no mortality during travel (m1 = m2 = 0), then the steady
states in (6) have h1 = h2 = 1. Thus in the results of Theorem 3.2 there is no
dependence on the dispersal or delay.

Due to the difficulty of the expressions in the 2n × 2n matrix B resulting from
linearization about the positive steady state (u∗1,u∗2), local stability analysis for
this case has not been resolved. Existence and local stability conditions for the
homogeneous steady states of the non-dimensional system (3) with n = 2 patches
and h1, h2 > 0 are summarized in Table 1. For the case in which h1 > 0 and h2 < 0,
species 1 outcompetes species 2 (as in I ). Whereas if h1 < 0 and h2 > 0, then
species 2 wins the competition (as in IV ). If h1, h2 < 0, then the extinction steady
state (0,0) is the only stable spatially homogeneous steady state, while all others
cease to exist. As examples, some numerical simulations are presented in the next
section for the case of two species dispersing among two and three patches. These
show homogeneous coexistence is possible for some parameter values. Moreover,
these simulations indicate that inhomogeneous coexistence steady states for (3)
with n = 2 patches exist only in very restricted cases (see Figure 3).

For h1, h2 < 0, the linear stability result of Theorem 3.2(a) can be strengthened,
as given in Theorem 3.3 below.

Theorem 3.3. If h1, h2 < 0, then the extinction steady state (0,0) of (2) is globally
asymptotically stable.

Proof: From (3) and the positivity of solutions, the following differential inequality
results:

duij

dt
≤ ρiuij + ρidi[

1
n− 1

n∑

`=1, ` 6=j

∫ ∞

0

gi(s)e−ρimisui`(t− s)ds− uij ],

for i = 1, 2 and j = 1, . . ., n, with ρ1 = 1 and ρ2 = ρ.
Consider this system with equality, namely,

dũij

dt
= ρiũij + ρidi[

1
n− 1

n∑

`=1, ` 6=j

∫ ∞

0

gi(s)e−ρimisũi`(t− s)ds− ũij ],

for t > 0 and the same initial conditions on (−∞, 0] as for uij(t). This system is
linear, and thus its global dynamical behavior can be determined from the linear
theory carried out in Theorem 3.2(a). For h1, h2 < 0, this implies that (0,0)
is globally stable (not just locally stable) for the ũij(t) system. Moreover, since
uij(t) ≤ ũij(t), it follows by comparison using the quasimonotonicity property [6,
Theorem 1.1, page 78] that (0,0) of (2) is globally asymptotically stable for h1,
h2 < 0. 2

4. Numerical Simulations. To support and complement analytical results, nu-
merical simulations are carried out by integrating the non-dimensional system (3)
using MatLab (dde23). A delta function distribution for the probability density
functions gi(s) is assumed, namely, gi(s) = δ(s− τ) for i = 1, 2. This implies that
all dispersing individuals have the same traveling time out of the patch, and thus
from (4) for some fixed τ (in dimensionless time) with 0 < τ < min {r1Li},

g̃1(m1) = e−m1τ and g̃2(ρm2) = e−ρm2τ . (12)
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Table 1. Summary of existence and local stability conditions for
all spatially homogeneous steady states of the two-patch model (3)
for n = 2, with both species dispersing. The abbreviations DNE,
UN and SN denote “does not exist,” “unstable numerically” and
“stable numerically,” respectively.

h1, h2 > 0 a21h1 > h2 a21h1 < h2

a12h2 < h1

I: Competitive Exclusion
(Species 1 wins)

(0, 0, 0, 0)-unstable
(h1, h1, 0, 0)-STABLE
(0, 0, h2, h2)-unstable

(u∗11, u
∗
11, u

∗
21, u

∗
21)-DNE

II: Coexistence?

(0, 0, 0, 0)-unstable
(h1, h1, 0, 0)-unstable
(0, 0, h2, h2)-unstable
(u∗11, u

∗
11, u

∗
21, u

∗
21)-SN

a12h2 > h1

III: Initial Condition
Dependent Competitive

Exclusion †
(0, 0, 0, 0)-unstable

(h1, h1, 0, 0)-STABLE
(0, 0, h2, h2)-STABLE
(u∗11, u

∗
11, u

∗
21, u

∗
21)-UN

IV: Competitive Exclusion
(Species 2 wins)

(0, 0, 0, 0)-unstable
(h1, h1, 0, 0)-unstable
(0, 0, h2, h2)-STABLE

(u∗11, u
∗
11, u

∗
21, u

∗
21)-DNE

† In special cases, two inhomogeneous steady states are found numerically and can
be locally stable.

For all densities, constant initial values in the interval (0, 1) for t ∈ [−τ, 0] are
assumed. For the two-patch model with both species dispersing, Figure 1 illustrates
stable coexistence, while Figure 2 illustrates initial condition dependent competitive
exclusion.

As a special case of the two (identical) patch model, assume that the two
competing species have identical local dynamics, d = d1 = d2 < 0.1, m = m1 = m2,
g̃1(m1) = g̃2(ρm2) with ρ = 1 and a12 ≈ a21 > 1. For a small set of parameter
values, these restrictions can result in spatially inhomogeneous coexistence with
small dispersal rates and travel delay (for some carefully chosen initial conditions).
This is illustrated in Figure 3. For two species competing on three patches, an
example of coexistence is illustrated in Figure 4. Numerical simulations for the
case in which only species 1 disperses are qualitatively similar to the general cases
discussed above with the restriction h2 = 1 (since d2 = 0). In the two-patch case,
none of the new steady states introduced by d2 = 0 are found to be stable.

5. More than Two Competitors: Oscillations Are Possible. For the case in
which only two species compete between the patches, all found solutions approach a
steady state. However increasing the number of competitors results in oscillations
as a possible outcome for some parameter values. For three species competing
among two patches, oscillatory coexistence is possibly due to a Hopf Bifurcation;
see Kuang [2, page 60]. With a delta function distribution δ (S − T ) for dispersal,
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Figure 1. Coexistence steady state as in II of Table 1. The pa-
rameter values taken for illustration are a12 = 0.5, a21 = 1.2,
ρ = 1, m1 = 1.5, m2 = 1.3 and τ = 0.3. Here d1 = 1.2 and
d2 = 0.9, implying h1 = 0.57 and h2 = 0.71. The coexistence
steady state (u∗11, u

∗
11, u

∗
21, u

∗
21) = (0.54, 0.54, 0.07, 0.07) is locally

asymptotically stable.
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Figure 2. Initial condition dependent competitive exclusion as in
III of Table 1, with d1 = 1.5 and d2 = 0.9, implying h1 = 0.46
and h2 = 0.71. The other parameter values taken are a12 = 0.8,
a21 = 1.8, ρ = 1, m1 = 1.5, m2 = 1.3 and τ = 0.3.
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Figure 3. Stable inhomogeneous coexistence steady state for two
competing species with identical local dynamics on two identical
patches. Parameters taken are d = 0.09, a12 = 2, a21 = 1.9,
m = 0.5 and τ = 0.3.
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Figure 4. Coexistence of the two species on three patches as in
(3) with n = 3, d1 = 0.7 and d2 = 0.3 (h1 = 0.902 and h2 = 0.943).
Other parameters taken are a12 = 0.6, a21 = 0.2, m1 = 0.5, m2 =
0.7 and τ = 0.3. Here u∗i = u∗ij for i = 1, 2, j = 1, 2, 3.

the system of equations is

dNij

dT
=

ri

Ki
Nij(Ki −Nij −

3∑

k=1,k 6=i

αikNkj)

+ Di[
1

n− 1

n∑

`=1, 6̀=j

e−MiT Ni`(T − T )−Nij ], (13)
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where i = 1, 2, 3 and j = 1, . . ., n. Numerical simulation of (13) for n = 2 patches
illustrates the oscillatory outcome for some carefully chosen parameter values [8,
Example A] with T = 0.01, as in Figure 5, in which the time axis is shown from 25
to 45.
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Figure 5. A two (identical) patch model in which three species
disperse with small travel delay. The numerical data set used is:
D1 = 0.3, D2 = 0.4, D3 = 0.1, M1 = 0.5, M2 = 0.4, M3 = 0.6,
T = 0.01, r1 = 25, r2 = 16, r3 = 60, K1 = 250, K2 = 160,
K3 = 240, α12 = 1.5, α21 = 0.5, α13 = 1, α31 = 1.1, α23 = 1 and
α32 = 1.1.

6. One-Patch Model. The two species on two patches competition model (2)
does not apply in the one-patch case (n = 1) in which it is assumed that individuals
disperse out of the patch and then return (given that they survive). With i, k = 1,
2, k 6= i and ρ1 = 1, ρ2 = ρ, the non-dimensional model equations for the one-patch
model are

dui

dt
= ρiui(1− ui − aikuk)

+ ρidi[
∫ ∞

0

gi(s)e−ρimisui(t− s)ds− ui]. (14)

This situation is qualitatively similar to the general model (3). Coexistence is
possible and locally stable for some parameter values. Existence and linear stability
for the one-patch model with only species 1 dispersing (h2 = 1) are summarized in
Table 2, in which u∗1 and u∗2 are as stated in (6), with h2 = 1. The coexistence steady
state is proved analytically to be locally asymptotically stable in II and unstable in
III by considering the characteristic equation and using techniques similar to those
in the proof of Theorem 3.2. A case of coexistence is illustrated in Figure 6.



COMPETITION AND DISPERSAL DELAYS IN PATCHY ENVIRONMENTS 295

Table 2. Summary of existence and local stability conditions for
all steady states of the one-patch model (14) with only species 1
dispersing.

h1 > 0 a21h1 > 1 a21h1 < 1

a12 < h1

I: Competitive Exclusion
(Species 1 wins)
(0, 0)-unstable

(h1, 0)-STABLE
(0, 1)-unstable

(u∗1, u
∗
2)-does not exist

II: Coexistence

(0, 0)-unstable
(h1, 0)-unstable
(0, 1)-unstable

(u∗1, u
∗
2)-STABLE

a12 > h1

III: Initial Condition
Dependent Competitive

Exclusion
(0, 0)-unstable

(h1, 0)-STABLE
(0, 1)-STABLE

(u∗1, u
∗
2)-unstable

IV: Competitive Exclusion
(Species 2 wins)

(0, 0)-unstable
(h1, 0)-unstable
(0, 1)-STABLE

(u∗1, u
∗
2)-does not exist
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Figure 6. Phaseplane plot for II of Table 2 for (14), with d2 = 0.
The dispersal rate used is d1 = 1.2, implying h1 = 0.57. Other
parameter values taken are a12 = 0.5, a21 = 1.2, ρ = 1, m1 = 1.5
and τ = 0.3. The coexistence steady state (u∗1, u

∗
2) = (0.17, 0.79)

is locally asymptotically stable.

7. Concluding Remarks. For the models formulated here, two competitors on
a patchy environment with dispersal delay always approach a non-negative steady
state (no periodic solutions are found). Linear stability and numerical simulation
support this statement, but global asymptotic stability of steady states remains an
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open problem. For the general n-patch model, Section 2, there are four possible
outcomes: competitive exclusion of one species, coexistence, initial condition de-
pendent competitive exclusion and extinction of both species. The dynamics of the
system depends on the competition coefficients and the ratio h1

h2
measuring the ratio

of the effects of dispersal on the linear increase of each species. For most parameter
values, a dispersing species is at a disadvantage (i.e., a situation in which species
2 is extinct may be turned into a coexistence situation if species 1 disperses). As
dispersal rates of one species increase, the other species eventually wins the compe-
tition. Extinction results when both species have positive dispersal mortality (m1,
m2 > 0) and disperse at a very high rate (h1, h2 < 0). For a small range of param-
eter values, equal small dispersal rates can be an advantage to one of the species
as exclusion is turned into coexistence (see Figure 3). Increasing the number of
competitors to three may change the dynamics of the system, for then oscillatory
coexistence is a possible outcome, as illustrated in Figure 5.

Some patchy environments are connected via a corridor in which the dispersing
species compete for resources. In these and similar situations, competition during
dispersal should be incorporated into the models, as this could change the overall
outcome.
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