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Abstract. For a reaction-diffusion model of microbial flow reactor with two
competing populations, we show the coexistence of weakly coupled traveling
wave solutions in the sense that one organism undergoes a population growth
while another organism remains in a very low population density in the first
half interval of the space line; the population densities then exchange the
position in the next half interval. This type of traveling wave can occur only
if the input nutrient slightly exceeds the maximum carrying capacity for these
two populations. This means, lacking an adequate nutrient, two competing
organisms will manage to survive in a more economical way.

Dedicated to Professor Zhien Ma on the occasion of his 70th birthday

1. Introduction. Recently, a model of microbial competition for a nutrient in a
tubular reactor was introduced and studied in [2] to understand the circumstance
under which a population of microorganisms can survive in a flow reactor and
to understand the circumstances under which the coexistence of two populations
is possible. This model is a modification of a model formulated earlier in [7].
Unlike most models of microbial growth in a limited nutrient where the nutrient
and population are assumed to be homogeneously distributed, the diffusion effect
has been accounted for in the model. Consider a reactor occupying the part of a
long thin tube from x = 0 to x = L. Suppose a fresh flow containing an amount S0

of nutrient enters at the end x = 0 with velocity α, and carries unutilized nutrient
and organism out of the reactor at x = L. Let the nutrient density at time t and
location x be denoted by S(x, t), and let Pi(x, t) denote the density of organisms i,
for i = 1, 2. Then the competition model is given by a system of reaction-diffusion
equations

∂S

∂t
= ρ

∂2S

∂x2
− α

∂S

∂x
− f1(S)P1 − f2(S)P2,

∂Pi

∂t
= di

∂2Pi

∂x2
− α

∂Pi

∂x
+

[
fi(S)−Ki

]
Pi,

i = 1, 2. (1.1)

with Danckwerts boundary conditions (see [2] for the detail), where ρ, d1, and d2

are diffusion coefficients, fi, i = 1, 2, is uptake function for the organism i.
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Although the main interest of [2] is to investigate effects of random motility on
the competition and coexistence of populations in the reactor, our interest in this
paper is to study the phenomenon of wave propagation. To best describe this phe-
nomenon (see [8]), let us consider a long flow reactor that we treat it mathematically
to be infinitely long. Suppose that the amount S0 of nutrient is input at a constant
velocity α at one end of the flow reactor, says at x = −∞. If there is no bacteria
population, then the concentration of nutrient remains constant and is washed out
at the other end of reactor. On the other hand, suppose that the uptake function
fi(S) of bacteria cell i is increasing with respect to S and fi(S0) − Ki > 0, and
let a small quantity of bacteria i for i = 1, 2 be introduced, then the population Pi

increases when growth rate fi(S) −Ki > 0. The growth rate eventually becomes
negative because of the reduction of the nutrient so that the bacteria population
declines. Hence one may expect that a hump-shaped bacteria population density
Pi(x, t), as t increases, moves towards the other end of reactor. That is, we expect
that there are constants c, S0, with f(S0) < K, and a nonnegative traveling wave
solution

(S(x, t), P1(x, t), P2(x, t))) = (U(x + ct), V1(x + ct), V2(x + ct))

such that

lim
z→−∞

U(z) = S0, lim
z→∞

U(z) = S0,

lim
z→−∞

Vi(z) = lim
z→∞

Vi(z) = 0, i = 1, 2,
(1.2)

where z = x + ct.
A particular case of Eq.(1.1) is the absence of one organism, that is Pi(x, t) ≡ 0

for i = 1 or i = 2. In this circumstance Eq.(1.1) is reduced to a single population
model. For this case, the existence and uniqueness of traveling wave solution with
boundary condition (1.2) has recently been completely solved (see [1,3,4,5,6,8]).
However, the existence of traveling wave solutions for two competing populations
has not been studied yet. In this paper we will investigate the coexistence of
traveling wave solutions with both V1(z) and V2(z) are positive.

The paper is organized as follows. In Section 2 we provide some known result on
the existence of traveling wave solutions for a single population. The coexistence
of traveling wave solutions will be established in Section 3 by using a perturbation
method with the utility of the results in Section 2. A short conclusion will be given
in Section 4.

2. Traveling wave solutions for a single model. Let us begin with a single
population model

∂S

∂t
= ρ

∂2S

∂x2
− α

∂S

∂x
− f(S)P

∂P

∂t
= d

∂2P

∂x2
− α

∂P

∂x
+

[
f(S)−K

]
P,

(2.1)

where ρ, d, K are all positive constants. Upon a substitution of S(x, t) = U(x+ ct)
and P (x, t) = V (x + ct) we obtain the equations for the traveling wave U and V as

CU̇ = ρÜ − f(U)V
CV̇ = dÜ + [f(U)−K]V

(2.2)
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with C = c + α. For the convenience of discussion we further reverse the time by
letting u(t) = U(−t) and v(t) = V (−t) for t ∈ IR. Then the equations for u and v
are

ρü = −Cu̇ + f(u)v
dv̈ = −Cv̇ − [f(u)−K]v.

(2.3)

We state two known results that can be found in the reference.

Lemma 2.1. ([5. Theorem 1.1]) Suppose that f is monotone increasing with
f(0) = 0 and f(SK) = K for some positive number SK . Then, given u0 > SK

and C > 0, there exists u0 < SK such that Eq. (2.3) has a nonnegative traveling
wave (or heteroclinic) solution (u(t), v(t)) satisfying the boundary condition

lim
t→−∞

u(t) = u0, lim
t→∞

u(t) = u0,

lim
t→−∞

v(t) = lim
t→∞

v(t) = 0,

if and only if

C2 ≥ 4d[f(u0)−K]. (2.4)
Moreover,
a. The number u0 is uniquely determined by u0;
b. u(t) is strictly monotone decreasing;
c. v(t) is strictly positive for t ∈ IR and there is a unique t0 such that v(t) is
increasing in (−∞, t0) and decreasing in (t0,∞).

Lemma 2.2. ([5. Theorem 3.3]) Given C > 0 and ũ0 > SK with

C2 ≥ 4d[f(ũ0)−K],

for each u0 ∈ (SK , ũ0] let ξ(u0) be the unique number such that Eq. (2.3) admits a
positive traveling wave solution (u(t), v(t)) connecting (ξ(u0), 0) and (u0, 0). Then
(1) ξ(u0) is a decreasing function on u0 for u0 ∈ (SK , ũ0].
(2) ξ((SK , S̃0]) = [ξ(ũ0), SK), where ξ((SK , S̃0]) denotes the range of ξ.

The following lemma is also needed in the next section to establish the coexis-
tence of traveling wave solutions.

Lemma 2.3. For the second order differential equation

dv̈ = −Cv̇ + g(t)v, (2.5)

where d, C are positive number and g(t) is continuous and g(t) > 0 for all t ∈
(−∞, t0], if either v(t0) > 0 and v̇(t0)) = 0 or v(t0) = 0 and v̇(t0) > 0, then
(v(t), v̇(t)) can not converge to (0, 0) as t → −∞.

Proof. We shall prove the lemma only for the case v(t0) > 0 and v̇(t0)) = 0. The
proof for another case is analogous. First we have

dv̈(t0) = g(t0)v(t0) > 0.

This implies that for a small ε > 0, v̇(t) < 0 for all t ∈ [t0 − ε, t0). It follows that
v(t) is decreasing in [t0−ε, t0] and hence v(t) > v(t0) > 0 for t ∈ [t0−ε, t0]. Observe
that

dv̈(t) = −Cv̇(t) + g(t)v(t) > 0
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whenever v̇(t) < 0 and v(t) > 0, one therefore easily concludes that v̇(t) < 0 for all
t ≤ 0. Hence v(t) is increasing as t decreases. Thus (v(t), v̇(t)) can not converge to
(0, 0) as t → −∞.

3. Coexistence of traveling wave solutions. Now let us return to the two-
population model. Let

S(x, t) = U(x + ct), Pi(x, t) = Vi(x + ct), i = 1, 2,

be a traveling wave solution, then (U(t), V1(t), V2(t)) satisfies the system

CU̇ = ρS̈ − f1(U)V1 − f2(U)V2

CṖi = diP̈i −+
[
fi(U)−Ki

]
Vi,

(3.1)

i = 1, 2.

As in the single population model, we let u(t) = U(−t), vi(t) = Vi(−t), t ∈ IR and
i = 1, 2. Then

ρü = −Cu̇ + f1(u)v1 + f2(u)v2

div̈i = −Cv̇i − [fi(u)−Ki]vi,
(3.2)

i = 1, 2.

Throughout the paper we suppose that, for i = 1, 2,
A1 fi(u) is strictly increasing and is Lipschitz continuous.
A2 fi(0) = 0, and there is a SKi > 0 such that fi(SKi) = Ki (SKi serves as the
carrying capacity for the population i.)

In addition, we suppose SK1 6= SK2 . To be specific we suppose

SK1 < SK2 . (3.3)

Notice that SKi is the carrying capacity for population i. So to support a
coexistence traveling wave the input nutrient u0 must be larger than SK2 . Choose
u∗ > SK2 . Let C > 0 such that

C2 > max{4di[fi(u∗)−Ki], i = 1, 2}. (3.4)

Then C2 > 4d2[fi(u∗)−K2]. By Theorem 2.2 there is a SK2 < ū0 ≤ u∗ such that
for each u0 with SK2 < u0 < ū0, there is a unique number ξ(u0) with

SK1 < ξ(u0) < SK2

such that Eq.(3.2) has a traveling wave solution (u2(t), 0, v22(t)) joining the equi-
librium points (ξ(u0), 0, 0) and (u0, 0, 0), where u2(t) is increasing and v22(t) > 0
for all t ∈ IR. Since SK1 < ξ(u0) < SK2 implies that

C2 > 4d1[f1(ξ(u0)−K1],

again by Theorem 2.2 there is a unique u0(u0) < SK1 such that Eq.(3.2) has a trav-
eling wave solution (u1(t), v11(t), 0) connecting (u0(u0), 0, 0) and (ξ(u0), 0, 0). In
what follows we show that, under an appropriate perturbation on the traveling wave
(u1(t), v11(t), 0), we can obtain a positive coexistence traveling wave solution that
is close to (u1(t), v11(t), 0) for sufficiently negative t and close to (u2(t), 0, v22(t)) for
sufficiently large t. To this end let us first study the unstable manifold associated
with the equilibrium

E(u0) = (u, u̇, v1, v̇1, v2, v̇2) = (u0, 0, 0, 0, 0, 0), u0 = u0(u0).

Here we consider Eq.(3.2) as a six-dimensional system. A straightforward compu-
tation shows that the linearization of (3.2) at the equilibrium E(u0) is
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ρü = −Cu̇ + f1(u0)v1 + f2(u0)v2

div̈i = −Cv̇i − [fi(u0)−Ki]vi, i = 1, 2 (3.5)

and the corresponding characteristic equation is

∆(λ) =
[
ρλ2 + Cλ

] [
d1λ

2 + Cλ + f1(u0)−K1

] [
d2λ

2 + Cλ + f2(u0)−K2

]
= 0.

(3.6)
Since u0 = u0(u0) < SK1 implies that K1 > f1(u0)and K2 > f2(u0), form (3.6) it
follows that the equilibrium E(u0) has one zero eigenvalue, three negative eigenval-
ues, and two positive eigenvalues

λi =
−C +

√
C2 + di[Ki − fi(u0)]

2di
, i = 1, 2.

Moreover, following a straightforward computation we obtain the eigenvector hi

associated to the positive eigenvalue λi as

h1 =
(

f1(u0)
ρλ2

1+Cλ1
, λ1f1(u0)

ρλ2
1+Cλ1

, 1, λ1, 0, 0
)

,

h2 =
(

f2(u0)
ρλ2

2+Cλ2
, λ2f2(u0)

ρλ2
2+Cλ2

, 0, 0, 1, λ2

)
.

(3.7)

By the local unstable manifold theorem, Eq.(3.2) at equilibrium E(u0) has a two-
dimensional local smooth unstable manifold M = M(u0) such that any solution
starting in M stays in M and converges to E(u0) as t → −∞. Moreover, since
0 < u0 < SK1 , without loss of generality, we can choose M small enough such that
(u, u̇, v1, v̇1, v2, v̇2) ∈ M implies that 0 < u < SK1 . (We remark that the center
manifold corresponding to the zero eigenvalue is {(u1, 0, 0, 0, 0, 0) : u1 ∈ IR}, which
is a line consisting of all equilibrium points. So any solution of Eq.(3.2) can not
approach the E(u0) along the center manifold unless it is the equilibrium E(u0).)

First we observe that the subspace X = {(u, u̇, v, v̇, 0, 0)} ⊂ IR6 is invariant to
Eq. (3.2) and the eigenvector h1 ∈ X. It follows that M∩ X is one-dimensional
that is tangent to the line {E(u0) + αh1 : α ∈ IR} at E(u0). Hence by unstable
manifold theory there is a smooth function φ : (−α1, α1) : IR6 such that

M∩X = {φ(α) : α ∈ (−α1, α1)},
where α1 is a small positive number and

φ(α) = E(u0) + αh1 + 0(α2), α ∈ (−α1, α1).

Now M is tangent to the two-dimensional plane P spanned by the eigenvectors h1

and h2 at E(u0), where

P = {αE(u0) + h1 + βh2 : α, β ∈ IR}.
Hence the local unstable manifold M can be parametrized by a smooth function
Φ : V → IR6, which is an extension of φ to a small neighborhood V of origin in IR2

such that
M = {Φ(α, β) : (α, β) ∈ V}, Φ(α, 0) = φ(α),

and

Φ(α, β) = E(u0) + αh1 + βh2 + O(α2 + β2), (α, β) ∈ V. (3.8)
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Lemma 3.1. Let α0 > 0 be fixed such that (α0, 0) ∈ V. Then for each small β > 0
with (α0, β) ∈ V , if (u(t), v1(t), v2(t)) is a solution of Eq. (3.2) satisfying the initial
condition

(u(0), u̇(0), v1(0), v̇1(0), v2(0), v̇2(0)) = Φ(α0, β),
then v1(t) and v2(t) are all positive for all t ∈ (−∞, 0).

Proof. First it is clear that for i = 1, 2, (vi(t), v̇i(t)) → (0, 0) as t → −∞ because
Φ(α0, β) ∈ M. Moreover, it is clear that for small positive β > 0, Φ(α0, β) is
strictly positive (each component of Φ(α0, β) is positive) by the expressions of Φ in
(3.8), vectors h1 and h2 in (3.7). Hence

(u(t), u̇(t), v1(t), v̇1(t), v2(t), v̇2(t)) /∈M∩X, t ≤ 0,

for, M∩X is invariant. It follows that (v2(t), v̇2(t)) 6= (0, 0) for all t ≤ 0. We claim
that v2(t) and v̇2(t) remain positive for all t < 0. For if this is false, then there
must be a time t0 < 0 such that either v2(t0) > 0 and v̇2(t0) = 0 or v2(t0) = 0 and
v̇2(t0) > 0. Note that v2(t) satisfies Eq. (2.5) with d = d2 and g(t) = K2−f2(u(t) >
0 for all t ∈ (−∞, 0) because u(t) < SK1 < SK2 . Therefore Lemma 2.3 yields that
(v2(t), v̇2(t)) does not go to (0, 0) as t → −∞. This leads to a contradiction.
Observing that the subspace

Y = {(u, u̇, 0, 0, v2, v̇2)} ⊂ IR6

is also invariant to Eq. (3.2). A similar argument shows that v1(t) > 0 for t ≤ 0.

Lemma 3.2. Let u0 > SK2 be fixed. Then for each σ > 0, there is a γ > 0 such
that if W (t) = (u(t), u̇(t), v1(t), v̇1(t), v2(t), v̇2(t)) is a solution of Eq.(3.2) with

‖W (t1)− E(u0)‖ < γ, (3.9)

where ‖ · ‖ is the Euclidean norm of IR6, then W (t) exists for all t ≥ t1 and

|u0 − u(t)| < σ, t ≥ t1, lim
t→∞

vi(t) = 0, i = 1, 2.

For the proof of this lemma, see [4, Lemma 3.2, p.758].

Let Φ(α, β) be defined as above and let α0 > be a small fixed number. For any
small β > 0 with (α0, β) ∈ V, we let (u(t, β), v1(t, β), v2(t, β)) denote a solution of
Eq. (3.2) that satisfies the initial condition

(u(0, β), u̇(0, β), v1(t, β), v̇(0, β), v2(t, β), v̇2(0, β)) = Φ(α0, β).

Then by Lemma 3.1 v1(t, β) and v2(t, β) are positive for all t ≤ 0. We let TM (β) ≤
+∞ be such that (−∞, TM (β)) is a maximum interval of existence for the solution
(u(t, β), v1(t, uβ), v2(t, β)) and define

tM (β) = sup{t < TM (β) : vi(s, β) > 0, s ∈ (−∞, t], i = 1, 2}.
Let u(t) = u(t, β), vi(t) = vi(t, β). By applying the variation-of-constant formula
to the first equation in (3.2) we obtain

u̇(t) =
1
ρ

∫ t

−∞
e−C(t−s)/ρ[f1(u(s))v1(s) + f2(u(s))v2(s)]ds.

From the above expression one immediately concludes that u(t) is strictly monotone
increasing on (−∞, tM (β)), and hence

u+(β) = lim
t→tM (β)

u(t, β)
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is well defined.

Lemma 3.3. If
4di[fi(u+(β)−Ki] < C2, i = 1, 2,

then
1. tM (β) = +∞;
2. For i = 1, 2, vi(t, β) → 0 as t →∞.

Hence (u(t, β), v1(t, β), v2(t, β)) is a coexistence traveling wave solution connect-
ing (u0, 0, 0) and (u+(β), 0, 0)) such that u(t, β) is monotone increasing and vi(t, u0) >
0, i = 1, 2, for all t ∈ IR.

Proof. Applying [4, Lemma 2.5] to the equation

div̈i =C v̇i − [fi(u(t, β))−Ki]vi

respectively for i = 1, 2 we obtain this lemma.

Lemma 3.4. Let

W2(t) = (u2(t), u̇2(t), 0, 0, v22(t), v̇22(t)),

where (u2(t), 0, v22(t)) is a traveling wave solution connecting (ξ(u0), 0, 0) and (u0, 0, 0)
as defined at the beginning of this section. Let t0 be any fixed number. Then for
any σ > 0, there is a δ > 0 such that if 0 < β < δ, then there exists t1 < tM (β)
such that ‖W (t1, β)−W2(t0)‖ < σ, where W (t, β) is the solution of Eq. (3.2) with
W (0, β) = Φ(α0, β).

Recall that u0 = u0(u0) and the traveling wave solution (u1(t), v11(t), 0) con-
necting the equilibrium points (u0(u0), 0, 0) and (ξ(u0), 0, 0). Let

W1(t) = (u1(t), u̇1(t), v11(t), v̇11(t), 0, 0).

Then there is a t0 such that W1(t0) ∈M∩X. So

W1(t0) = Φ(α0, 0)

for some small positive α0. Without loss of generality we can suppose t0 = 0,
for otherwise we can make a time translation because Eq.(3.2) is an autonomous
system. Thus for small β > 0, W (0, β) is a small perturbation of the traveling wave
W1(t). The proof of Lemma 3.4 uses the fact that as long as β > 0, the component
v2(t) of W (t) is increasing when u(t) ≤ SK2 . Hence the component u(t) must passes
ξ(u0) as t increases. So that W (t) does not belong to the stable manifold of the
equilibrium point E(ξ(u0)) = (ξ(u0), 0, 0, 0, 0, 0). On the other hand, we can show
that when u(t) > ξ(u0), W (t, β) can get as close to the orbit of W2(t) as we want
by letting β → 0. We shall omit the detailed proof because it is little too long for
this paper. A complete proof will be given in a separate paper.

We are now ready to state and prove the coexistence of the traveling wave solu-
tion.

Theorem 3.5. Let C > 0 and u∗ > SK2 such that (3.4) is satisfied. For each
u0 ∈ (SK2 , ū

0), let u0(u0) be defined as in the beginning of this section. Then
there is a δ > 0 such that for each β ∈ (0, δ), the solution W (t, β) of Eq.(3.2)
with W (0, β) = φ(α0, β) is a strictly positive coexistence traveling wave joining the
equilibrium (u0(u0), 0, 0, 0, 0, 0) and (ũ0, 0, 0, 0, 0) for some ũ0 ∈ (SK2 , u

∗).
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Proof. Note that u0 < u∗, we can pick a small positive number σ such that u0+σ <
u∗. Let γ > 0 be the number in Lemma 3.2 corresponding to the number σ. Since
W2(t) → E(u0) as t →∞, there is a sufficiently large t0 such that

‖W2(t0)− E(u0)‖ <
γ

2
.

By Lemma 3.4, there is a δ > 0 such that for each β ∈ (0, δ), there is a t1 = t1(β) <
tM (β) such that

‖W (t1, β)−W2(t0)‖ <
γ

2
.

This yields that

‖W (t1, β)− E(u0)‖ ≤ ‖W (t1, β)−W2(t0)‖+ ‖W2(t0)− E(u0)‖ < γ.

One therefore deduces by Lemma 3.2 that

u(t, β) ≤ |u(t, β)− u0|+ u0 < σ + u0 < u∗, t ≥ t1(β).

It follows that
u+(β) < u∗.

So that
C2 > 4di[fi(u+(β))−Ki], i = 1, 2.

Thus, from Lemma 3.3 it follows that (u(t, β), v1(t, β), v2(t, β)) is a positive co-
existence traveling wave solution of Eq.(3.2) connecting the equilibrium points
(u0(u0), 0, 0) and (u+(β), 0, 0).

4. A short discussion. The positive coexistence traveling wave

w(t, β) = (u(t, β), v1(t, β), v2(t, β))

obtained actually bifurcates from boundary traveling waves w1(t) = (u1(t), v11(t), 0)
and w2(t) = (u2(t), 0, v22(t)). In fact, we can further show that there are T1 < T2

and a small ε > 0 such that

‖w(t, β)− w1(t)‖ ≤ ε, t ∈ (−∞, T1],

‖w(t, β)− w2(t)‖ ≤ ε, t ∈ [T2,+∞),

and w(t, β) stays in a small neighborhood of the equilibrium point (ξ(u0), 0, 0)
for t ∈ [T1, T2]. Hence we can call w(t, β) a weakly coupled positive coexistence
traveling wave in the sense that v2(t, β) is small for t ∈ (−∞, T1] while v1(t, β) is
small when t ∈ [T2,+∞). This can occur because ξ(u0) is between the two carrying
capacities SK1 and SK2 . This requires that u0 > SK2 but is close to SK2 . That is,
the weakly coupled coexistence traveling wave can occur only if the input nutrient
u0 slightly exceeds the maximum of the two carrying capacities. This means, in the
absence of adequate nutrient, the two competing organisms will manage to survive
in a more economical way. We will show in a separate paper that this weakly
coupled traveling wave no longer exists when the input quantity of nutrient u0 is
large.
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