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Abstract. In this paper we outline some methods of finding limit cycles for
planar autonomous systems with small parameter perturbations. Three ways
of studying Hopf bifurcations and the method of Melnikov functions in study-
ing Poincaré bifurcations are introduced briefly. A new method of stability-
changing in studying homoclinic bifurcation is described along with some in-
teresting applications to polynomial systems.

In honor of Professor Zhien Ma’s 70th birthday

1. Introduction. In 1901, Hilbert [24] posed 23 mathematical problems, of which
the second part of the sixteenth one is to find the maximal number and relative
position of limit cycles of the polynomial system of degree n:

ẋ = Pn(x, y), ẏ = Qn(x, y).

Numerous researchers have studied the above problem, especially for quadratic
and cubic systems. A detailed introduction and related literature can be found in
Schlomiuk [38] and Li [33]. In the following section, we only introduce some methods
of finding limit cycles which are used to study Hopf, Poincaré and homoclinic
bifurcations.

2. Methods to find limit cycles. As mentioned in Li [33], the fundamental
problems in studying limit-cycle bifurcations for planar systems are

• multiple Hopf bifurcations near a center or a focus;
• homoclinic or heteroclinic bifurcations near a separatrix loop consisting of

hyperbolic saddles and orbits connecting them;
• Poincaré bifurcations from a period annulus;
• limit-cycle bifurcations from a multiple limit cycle.

In this section we introduce some methods of studying limit-cycle bifurcations re-
lated to the first three types above.
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stability-changing, Poincaré bifurcations, homoclinic bifurcation, Hopf bifurcations.

67



68 M. HAN AND T. ZHANG

2.1. Hopf bifurcation. Consider the system

ẋ = ax + by + f2(x, y),
ẏ = −bx + ay + g2(x, y), (2.1)

where f2, g2 = O(|x, y|2), b 6= 0. The Poincaré map of (2.1) near the origin has the
form

P (r) = r + 2π
∑

j≥1

vjr
j , (2.2)

where v1 = 1
2π [e

2π
|b|a − 1], v2m = O(|v1, v3, . . . , v2m−1|),m ≥ 1.

The origin is said to have order k(≥ 0) if

vj = 0, j = 1, . . . , 2k, v2k+1 6= 0.

In this case the sign of v2k+1 determines the stability of the focus at the origin.
We remark that the stability and the order of a focus do not depend on the choice
of cross sections in defining a Poincaré map. Further, it is easy to prove by using
Rolle’s theorem.

Theorem 2.1. A focus of order k generates at most k limit cycles under C∞

perturbations, and k limit cycles can appear by suitable perturbations.

A typical way to find limit cycles in a Hopf bifurcation is to change the stability
of the focus. More precisely, if

0 < |v1| ¿ |v3| ¿ . . . ¿ |v2k+1|, v2j−1v2j+1 < 0, j = 1, 2, . . . , k,

then (2.1) has k limit cycles near the origin.
For quadratic systems, we have the following theorem obtained by Bautin [3].

Theorem 2.2. A focus of a quadratic system has at most an order of three. Further,
for this system a focus or center can generate at most three limit cycles under
perturbations of its coefficients.

Chen and Wang [4] (by the bifurcation method) and Shi [39] (by using the
Poincaré-Bendixson theorem) separately found a quadratic system with four limit
cycles. Increasingly, more mathematicians have suggested the following.
Conjecture 2.1. Quadratic systems have at most four limit cycles.

By normal form theory, Equation (2.1) has the following formal normal form in
polar coordinates:

ṙ = ar + a1r
3 + a2r

5 + . . . ,

θ̇ = −b− b1r
2 − b2r

4 − . . . .
(2.3)

By using the normal form method and stability analysis, Han, Lin and Yu [21]
obtained sufficient conditions for a cubic system to have 10 limit cycles, and Yu
and Han [40, 41] found some cubic systems having 12 limit cycles (all with small
amplitude). Earlier, James and Lloyd [26] found a cubic system having 8 limit
cycles. It seems that the maximal number of limit cycles for cubic systems is 12.

One can prove that there exist a formal series

V (x, y) = x2 + y2 +
∑

i+j≥3

cijx
iyj

and constants L2, L3, . . . , (called Lyapunov constants) such that
dV

dt
|(2.1)=

∑

k≥2

Lk(x2 + y2)k. (2.4)



BIFURCATION OF LIMIT CYCLES 69

For a relationship of coefficients in (2.2)–(2.4) we have the following.

Theorem 2.3. The following three statements are equivalent to each other:
i. vj = 0 for j ≤ 2m, v2m+1 6= 0.
ii. aj = 0 for j ≤ m− 1, am 6= 0.
iii. Lj = 0 for j ≤ m, Lm+1 6= 0.

Moreover, if one of the above conditions holds, then

v2m+1 =
am

|b| =
Lm+1

2|b| .

For Liénard Hopf bifurcations and some cubic systems, see Han [17], Gasull and
Torregrosa [10, 11], Christopher and Lloyd [6, 7], and Christopher and Lynch [8].
The following result was obtained by Han [15].

Theorem 2.4. The Liénard system

ẋ = p(y)− Σn
i=1aix

i, ẏ = −x(1 + x)

has Hopf cyclicity [ 2n−1
3 ] at the origin, where p is a C∞ function satisfying p (0) = 0

and p′(0) > 0. Here, cyclicity k means that the system has at most k limit cycles
near the origin and that k limit cycles can appear in an arbitrary neighborhood of
the origin.

2.2. The method of Melnikov functions. Consider a system of the form

ẋ = Hy + εf(x, y), ẏ = −Hx + εg(x, y). (2.5)

The function H(x, y) is called the Hamiltonian of (2.5) for ε = 0.
Suppose the equation H(x, y) = h defines a smooth closed curve Lh for h ∈ J ⊂

R. The Poincaré map of (2.5) in parameter h has the form

P (h, ε) = h + ε[M(h) + O(ε)],

where

M(h) =
∮

Lh

gdx− fdy, (2.6)

which is called the first-order Melnikov function (it is an Abelian integral).
For system (2.5) we have the so-called weakened Hilbert’s sixteenth problem

posed by Arnold [1, 2]: for given real polynomials H of degree n and f and g of
degree m, find the total number of zeros of the Abelian integral (2.6) (taking into
account multiplicity).

The above problem is very closely related to the number of limit cycles of system
(2.5) for ε 6= 0 small. In fact, the implicit function theorem implies the following.

Theorem 2.5. According to the implicit function theorem, we have the following
statements:

i. The system (2.5) has k limit cycles for ε 6= 0 and small if M(h) has k simple
zeros on the interval J .

ii. The system (2.5) has at most k limit cycles bifurcated from the period annulus
associated with the interval J for ε 6= 0 and small if M(h) has at most k zeros
(taking into account multiplicity) on any compact set of the interval J .

iii. The system (2.5) has at least k limit cycles for ε 6= 0 and small if M(h) has
k zeros each with odd multiplicity on the interval J .
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For quadratic systems (i.e, n = 3,m = 2), it has been proved for different cases
that M(h) has at most two zeros if it is not zero identically. For details, we refer
to the recent paper Chow, Li and Yi’s recent paper [5], which dealt with the last
case.

The Melnikov function M(h) can also be used to study Hopf bifurcation for
system (2.5). For the purpose, we suppose that the origin is an elementary singular
point with index +1 and that Lh approaches the origin as h goes to zero. Also,
suppose that the functions f and g in (2.5) depend on a vector parameter a in Rm

so that M(h)=M(h, a) also depends on a. Then we have the following (see Han
[18]).

Theorem 2.6. Under the above conditions, we have the following:
i. The Melnikov function M(h, a) is of class C∞ (resp., Cω) in h at h = 0 if the

functions H, f and g are of class C∞ (resp., Cω) in (x, y).
ii. If there exists a compact set D0 in Rm and a function Bk(a) 6= 0 for a in

D0 such that M(h, a) = Bk(a)hk+1 + O(hk+2) for |h| small, then there exist ε0 > 0
and an open set U(D0) containing D0 and a neighborhood V of the origin such that
(2.5) has at most k limit cycles in V for 0 < ε < ε0 and a ∈ U(D0).

iii. Suppose that the functions f and g are linear in a and that

M(h, a) = b0(a)h + b1(a)h2 + . . . + bk(a)hk+1 + O(hk+2)

for 0 < h ¿ 1. If

rank
∂(b0, . . . , bk)
∂(a1, . . . , am)

= k + 1,

and there exist functions φj(ε) = O(ε), j = 0, . . . , k such that (2.5) has a center at
the origin for bj=φj(ε), j = 0, . . . , k, then equation (2.5) has at most k limit cycles
near the origin for all a ∈ Rm and ε suffciently small, and k limit cycles can appear
for some (ε, a). In other words, (2.5) has Hopf cyclicity k at the origin.

In many cases the function M has the form

M(h) = I(h)[λ− P (h)], (2.7)

where I(h) 6= 0 on J and λ is a real parameter. The function P is called a detection
function corresponding to the periodic family Lh. The graph of λ = P (h) in the
plane (h, λ) is called a detection curve.

On the basis of the Poincaré-Pontrjagin-Andronov theorem on the global center
bifurcation and Melnikov method (see Melnikov [36]), Li et al. [28, 32] obtained
the following result for the bifurcation limit cycles.

Theorem 2.7. Suppose that (2.7) holds on the interval J . For a given λ = λ0

considering the set S of the intersection points of the straight line λ = λ0 and the
curve λ = P (h) in the (h, λ)-plane with h ∈ J , we have that

i. if S consists of exactly one point (h0, λ0) and P ′(h0) 6= 0 then there exists a
hyperbolic limit cycle of (2.5) near Lh0 ;

ii. if S consists of two points (h01, λ0) and (h02, λ0) having h02 > h01 and P ′(h01)
P ′(h02) < 0, then there exist two limit cycles near Lh01 and Lh02 , respectively;

iii. if S contains a point (h0, λ0) and P ′(h0)= P ′′(h0) = · · ·= P (k−1)(h0)= 0,
but P (k)(h0) 6= 0, then (2.5) has at most k limit cycles near Lh0 ;

iv. if S is empty, then (2.5) has no limit cycle.

Remark 1. When we use the above Theorem 2.7 to study the number of limit cycles
we can consider the values of P and the signs of P ′ at the endpoints of the interval
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J . Also, to get more limit cycles, we can take advantage of symmetry of (2.5) and
consider the function M for different families Lh defined on different intervals J
as well.

By using Theorem 2.7, Li and Huang [29] and Li and Liu [30, 31] gave different
cubic systems having 11 limit cycles with the same distributions of limit cycles.
Then Li [33] found a system of degree 5 having 24 limit cycles.

Christopher and Lloyd [6] introduced a method of quadruple transformation and
studied the number of limit cycles for some polynomial systems of particular degrees
by perturbing some families of closed orbits of a Hamiltonian system sequence in
small neighborhoods of some center points. The method is interesting and was
developed further in Li [33], where the results of Christopher and Lloyd [6] were
improved.

Many results have also been also obtained for the cases of general perturbations
of some special Hamiltonian systems. Higher-order Melnikov functions should be
considered in general to find the maximal number of limit cycles that bifurcate from
the periodic orbits of a period annulus in degenerate cases (see Li [33], Schlomiuk
[38] and Ilyashenko Yu [25]).

2.3. A new method to find limit cycles: Stability changing of a homoclinic
loop. Consider a polynomial system of the form

ẋ = λ1x + f(x, y), ẏ = λ2y + g(x, y), (2.8)

where λ1 > 0, λ2 < 0, f , g=O(|x, y|2). Equation (2.8) has a hyperbolic saddle at
the origin. Let α0 = λ1 + λ2. The saddle is called rough (fine) if α0 6= 0 (α0 = 0).

One can prove that if α0 = 0, then a formal transformation of the form

u = x +
∑

i+j≥2 aijx
iyj ,

v = y +
∑

i+j≥2 bijx
iyj

exists which carries equation (2.8) into the normal form

u̇ = λ1u[1 +
∑

m≥1 am(uv)m],
v̇ = −λ1v[1 +

∑
m≥1 bm(uv)m].

Set αm = am − bm, which is called the mth order saddle value of the origin.
Now suppose equation (2.8) has a homoclinic loop L. The Poincaré map P (x)

of equation (2.8) near L has the following form:
(a) α0 6= 0: P (x) = cxr(1 + o(1))), c > 0, r = −λ2

λ1
;

(b) α0 = 0: P (x) = x + βkxk + αkxk+1 ln x+ high-order terms, k ≥ 1,
where βk is called the kth-order separatrix value.

Set

c2k−1 = αk, k ≥ 0,

c2k = βk, k ≥ 1.

The sequence c1, c2, c3, c4, . . . is called a Dulac sequence and ck is called the kth-
order homoclinic constant. The homoclinic loop L has order k if

cj = 0, j = 0, . . . , k − 1, ck 6= 0.

A general theorem on homoclinic bifurcation is as follows (Roussarie [37]).

Theorem 2.8 (Leontovich-Roussarie). A homoclinic loop of order k generates at
most k limit cycles under perturbations. Moreover, k limit cycles can appear by
suitable perturbations.
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Consider equation (2.5). Suppose for ε = 0 (2.5) has a homoclinic loop L0

given by H(x, y) = 0. If the periodic orbits Lh near L0 are given by H(x, y) = h,
0 < |h| ¿ 1, then the first-order Melnikov function M(h) given by (2.6) has the
following asymptotic expansion:

M(h) = m0 + m1h ln |h|+ m2h + m3h
2 ln |h|+ m4h

2 + . . . . (2.9)

Theorem 2.9 (Roussarie [37]). If the coefficients in (2.9) satisfy

mj = 0, j = 0, . . . , k − 1,mk 6= 0, k ≥ 0,

then for ε 6= 0 small, equation (2.5) has at most k limit cycles in a neighborhood of
L0.

If the equation H(x, y) = 0 gives a heteroclinic loop, then the expansion (2.9)
remains valid [27]. However, how Jiang and Han determine the maximal number of
limit cycles near the loop is not known. In this aspect, Han and Zhang [17] gave a
generic condition for a 2-polycycle to generate at most two limit cycles. Recently,
Han, Wu and Bi [22] gave a condition for an n-polycycle to generate at least n limit
cycles

Using Theorem 2.9 to study homoclinic bifurcations makes it difficult to compute
the coefficients in the expansion (2.9), which we will discuss later.

We next study the stability of an isolated homoclinic loop. Suppose, as before,
that L is a homoclinic loop of (2.8) passing through the origin. Let c1 = λ1 + λ2.
Then it is well known that L is stable (resp., unstable) if c1 < 0 (resp., c1 > 0).
Ma and Wang [35] proved that if c1 = 0, then Ma and Wang [35] proved that the
integral c2 =

∮
L
(fx + gy)dt is convergent, and then Feng and Qian [9] verified that

L is stable (resp., unstable) if c2 < 0 (resp., c2 > 0). When c1 = c2 = 0, Joyal and
Rousseau [34] gave a computing formula for the first saddle value c3 of Eq.(2.8):

c3 =
1

2λ1
[fxxy + gxyy − (fxxfxy − gxygyy)/λ1]|x=y=0. (2.10)

If, replacing equation (2.8), we have a system of the form

ẋ = λy + f(x, y), ẏ = λx + g(x, y),

then, instead of (2.10), the first saddle value c3 at the origin has the following
computation formula:

c3 =
1
2λ

[fxxx−fxyy+gxxy−gyyy+(fxy(fyy−fxx)+gxy(gyy−gxx)−fxxgxx+fyygyy)/λ],

(2.11)
where the right-hand side function is evaluated at the origin.

Han, Hu and Liu [20] found that if c1 = c2 = 0, c3 6= 0, then the stability of L
depends on the sign of c3, the orientation of L and the side on which the Poincaré
map is well-defined.

The formula for c4, which Han and Zhu recently obtained, is very complicated.
Han, Hu and Liu [20] also obtained similar conclusions on the stability of a

double homoclinic loop.
We now describe how to find limit cycles near a homoclinic loop by the method of

stability changing. For this purpose, consider a system of the form with parameters

ẋ = Hy + εf(x, y, a),
ẏ = −Hx + εg(x, y, a), (2.12)

where ε is small, a ∈ Rn, n ≥ 1.
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First, let us suppose that for ε = 0, (2.12) has a homoclinic loop L0 passing
through a hyperbolic saddle S0. For ε 6= 0 and small, there exist a saddle point Sε

near S0 and separatrices Lu
ε and Ls

ε near L0.
The directed distance between Ls

ε and Lu
ε on a section l is given by

d(ε, a) = εN [m0(a) + O(ε)],

where N is a positive constant and

m0(a) =
∮

L0

gdx− fdy.

Equation (2.12) has a homoclinic loop Lε near L0 for ε 6= 0 and small if and only
if d(ε, a) = 0. When d(ε, a) 6= 0, its sign determines the relative position of Ls

ε and
Lu

ε . For (2.12), we introduce the following functions:

d0(L0, a) = m0(a),
d1(L0, a) = (fx + gy)(S0),
d2(L0, a) =

∮
L0

[fx + gy − d1(L0, a)]dt,

d3(L0, a) = ∂c3(ε,a)
∂ε |ε=0,

(2.13)

where c3(ε, a) is the first saddle value of equation (2.12) at the saddle Sε which can
be obtained by using formula (2.10) or (2.11). By Han [12] we have the following
theorem.

Theorem 2.10.
i. If there exists a0 ∈ Rn with n ≥ 2 such that

d0(L0, a0) = d1(L0, a0) = 0, d2(L0, a0) 6= 0,det
∂(d0, d1)
∂(a1, a2)

(a0) 6= 0,

then for any ε0 > 0 and neighborhood U of a0 there exists an open subset Vε ∈ U
for 0 < |ε| < ε0 such that equation (2.12) has 2 limit cycles near L0 for a ∈ Vε.

ii. If there exists a0 ∈ Rn with n ≥ 3 such that

dj(L0, a0), j = 0, 1, 2, d3(L0, a0) 6= 0,det
∂(d0, d1, d2)
∂(a1, a2, a3)

(a0) 6= 0,

then for any ε0 > 0 and neighborhood U of a0 there exists an open subset Vε of U
for 0 < |ε| < ε0 such that equation (2.12) has 3 limit cycles near L0 for a ∈ Vε.

We briefly outline the proof of the first conclusion. For definiteness, suppose
L0 is oriented clockwise and the Poincaré map is well-defined inside it. By the
assumption, we can suppose d′00 = ∂d0

∂a1
(a0) 6= 0. The implicit function theorem

implies that a unique function a1 = φ1(ε, a2, . . . , an) = φ10(a2, . . . , an) + O(ε)
exists such that for ε > 0 and |a− a0| small d(ε, a) ≥ 0 ⇔ d′00[a1 − φ1] ≥ 0. Hence,
a homoclinic loop Lε appears near L0 if a1 = φ1. Let a1 = φ1 and define

c1(ε, a2, . . . , an) = ε(fx + gy)(Sε) = ε[c10(a2, . . . , an) + O(ε)],

where c10(a2, . . . , an) = (fx + gy)(S0)|a1=φ10 . Let a0 = (a10, . . . , an0). Then our
assumption implies that

c10(a20, . . . , an0) = 0, d′10 =
∂c10

∂a2
(a20, . . . , an0) 6= 0.

Hence, a unique function a2 = φ2(ε, a3, · · · , an) = φ20(a3, . . . , an) + O(ε) exists
such that

c1(ε, a2, . . . , an) ≥ 0 ⇔ d′10[a2 − φ2] ≥ 0.
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Let a1 = φ1, a2 = φ2 and define

c2(ε, a3, . . . , an) = ε

∮

Lε

(fx + gy)dt = ε[c20(a3, . . . , an) + O(ε)],

where
c20(a3, . . . , an) =

∮

L0

(fx + gy)|a1=φ10,a2=φ20dt.

It is easy to see that c20(a30, . . . , an0) = d2(L0, a0) 6= 0, say, c20(a30, . . . , an0) >
0. Then for ε > 0, a1 = φ1, a2 = φ2 and |ε| + |a − a0| small Lε is unstable. Fix
ε > 0 and aj near aj0, j = 3, . . . , n and change a1 and a2 such that

a1 = φ1, 0 < |a2 − φ2| ¿ 1, c1(ε, a2, . . . , an) < 0.

Then Lε has changed its stability from unstable into stable and therefore an unsta-
ble limit cycle has appeared near it at the same time. Next, noting that we have
assumed that L0 is oriented clockwise and the Poincaré map is well defined inside
it, we then change a1 such that 0 < |a1−φ1| ¿ |a2−φ2|, d(ε, a) < 0. Clearly, Lε has
broken, and a stable limit cycle has appeared. Thus, two limit cycles can appear
near L0. In the same way, three limit cycles can be obtained under the conditions
of the second conclusion in Theorem 2.10.

For a relationship between the coefficients of the expansion (2.9) of the function
M(h, a) and the functions dj in (2.13), from Han and Ye [16] and Han, Hu and Liu
[20] we have

Theorem 2.11. Assume that L0 is oriented clockwise and the Poincaré map is well
defined inside it. Then

m1(a) = − 1
λ1(0,a)d1(L0, a) + O(|d0|),

m2(a) = d2(L0, a) + O(|d0|+ |d1|),
m3(a) = Nd3(L0, a) + O(|d0|+ |d1|+ |d2|),

where N < 0 is a constant.

Now we consider the more interesting case that (2.12) has a double homoclinic
loop L = L0

⋃
L1 for ε = 0, which are both homoclinic to a hyperbolic saddle S0.

Applying the formulas in (2.13), we can obtain functions as follows:

dji(a) = dj(Li, a), i = 0, 1, j = 0, 1, 2, 3,

where d10 = d11, d30 = d31.
Then following Han and Chen [19] and Han, Hu and Liu [20], we can prove the

following.

Theorem 2.12. Suppose that the functions in the right-hand side of (2.12) are odd
in (x, y) so that the vector field defined by (2.12) is centrally symmetric. Then
accordingly

i. If there exists a0 ∈ Rn with n ≥ 2 such that

d00(a0) = d10(a0) = 0, d20(a0) 6= 0, det
∂(d00, d10)
∂(a1, a2)

(a0) 6= 0,

then for any ε0 > 0 and neighborhood U of a0 there exists an open subset Vε ∈ U
for 0 < |ε| < ε0 such that equation (2.12) has 5 limit cycles near L for a ∈ Vε;

ii. If there exists a0 ∈ Rn with n ≥ 3 such that

dj0(a0), j = 0, 1, 2, d30(a0) 6= 0,det
∂(d00, d10, d20)
∂(a1, a2, a3)

(a0) 6= 0,
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then for any ε0 > 0 and neighborhood U of a0 there exists an open subset Vε ∈ U
for 0 < |ε| < ε0 such that equation (2.12) has 7 limit cycles near L for a ∈ Vε.

For the nonsymmetric case we have the following theorem.

Theorem 2.13.
i. If there exists a0 ∈ Rn with n ≥ 3 such that

dji(a0) = 0, j, i = 0, 1, d20(a0)d21(a0) > 0, det
∂(d00, d01, d10)
∂(a1, a2, a3)

(a0) 6= 0,

then for any ε0 > 0 and neighborhood U of a0 there exists an open subset Vε ∈ U
for 0 < |ε| < ε0 such that equation (2.12) has 5 limit cycles near L for a ∈ Vε.

ii. If there exists a0 ∈ Rn with n ≥ 5 such that

dji(a0), j = 0, 1, 2, i = 0, 1, d30(a0) 6= 0,det
∂(d00, d01, d10, d20, d21)

∂(a1, a2, a3, a4, a5)
(a0) 6= 0,

then for any ε0 > 0 and neighborhood U of a0 there exists an open subset Vε ∈ U
for 0 < |ε| < ε0 such that equation (2.12) has 7 limit cycles near L for a ∈ Vε.

Recently, the authors and their colleagues have used the methods stated in the
above two theorems to study the number of limit cycles of polynomial systems with
degree 3, 4 and 5, and so on. For example, Zhang, Zang and Han [43] studied a cubic
system and found out that it has 11 limit cycles with two different distributions, of
which one is new. Zhang et al. [44] discussed a polynomial system of degree 4 and
proved that it can have 15 limit cycles. Wu, Han and Chen [42] verified that the
system

ẋ = y,
ẏ = −x(x2 − 1)− (c1 + c2x

2 + c3y
2 + c4x

4)y
can have 7 limit cycles. Just recently, we proved that the cubic system

ẋ = y + ε
∑

i+j=3 aijx
iyj

ẏ = −x(x2 − 1) + ε
∑

i+j=3 bijx
iyj

can have 7 limit cycles for ε 6= 0 small.
We finally remark that the method of studying homoclinic bifurcations intro-

duced above can also be used to study heteroclinic bifurcations. For details, see
Han [13], Han and Zhang [17], Han, Wu and Bi [22], and Han and Yang [23].
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