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DEDICATION

Professor MA Zhien, as a septigenarian, remains a significant international influence on the
research and teaching of applied mathematics and mathematical ecology. We are delighted to
join the authors of this special volume in dedicating this paper in honor of Zhien-an outstanding
scientist, an exceptional mentor, a stimulating teacher, an impressive operatic talent even on the
rare occasion when the English or Italian words evade him, a fine gentleman and an extremely
good friend. It has been a pleasure to study and learn from Zhein many aspects of mathematical
ecology and on this occasion to return to the subject of our first joint endeavors and the topic of
this paper, ecotoxicology.

Abstract. A heterogenous environment usually impacts, and sometimes de-
termines, the structure and function of organisms in a population. We simulate
the effects of a chemical on a population in a spatially heterogeneous environ-
ment to determine perceived stressor and spatial effects on dynamic behavior
of the population. The population is assumed to be physiologically structured
and composed of individuals having both sessile and mobile life history stages,
who utilize energetically-controlled, resource-directed, chemical-avoidance ad-
vective movements and are subjected to random or density dependent diffusion.
From a modeling perspective, the presence of a chemical in the environment
requires introduction of both an exposure model and an effects module. The
spatial location of the chemical stressor determines the exposure levels and
ultimately the effects on the population while the relative location of the re-
source and organism determines growth. We develop a mathematical model,
the numerical analysis for this model, and the simulation techniques necessary
to solve the problem of population dynamics in an environment where hetero-
geneity is generated by resource and chemical stressor. In the simulations, the
chemical is assumed to be a nonpolar narcotic and the individuals respond to
the chemical via both physiological response and by physical movement. In the
absence of a chemical stressor, simulation experiments indicate that despite a
propensity to move to regions of higher resource density, organisms need not
concentrate in the vicinity of high levels of resource. We focus on the dynam-
ical variations due to advection induced by the toxicant. It is demonstrated
that the relationship between resource levels and toxicant concentrations is
crucial in determining persistence or extinction of the population.
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1. Introduction. Populations are structured by organismal processes and intraspe-
cific interactions in synchrony with the biotic and abiotic components of their en-
vironments. Previous results modeling the role of a toxic chemical in dynamically
structuring the population have generally assumed a homogeneous environment [6,
10, 13, 16, 19, 20]. In this paper, we discuss mathematical model relationships be-
tween the processes specific to the individual organism (physiology and energetics),
intraspecific interactions at the population level (mortality) and the heterogeneous
abiotic environment (resource dynamics and chemical stress). This approach re-
quires the integration of several representations including the following: (i) a model
of the abiotic environment; (ii) a model of an individual organism that represents
physiological processes fundamental to growth and is sufficient to measure effects of
environmental stressors; (iii) a model of the exposure and effects of stressors at the
individual level; and (iv) a model of the population that represents the growth dy-
namics, variation between individuals, and also tracks both birth and death events
and their interspecific interactions. The novel aspects of this paper include the
coupling of the chemical uptake and effects with the spatially heterogeneous envi-
ronment model. For physiologically-based models, we present a general simulation
approach, indicate numerical techniques, and give examples that illustrate the dy-
namics of a chemically stressed structured population in a spatially heterogenous
environment. The numerical techniques of [4, 21] for age-structured models and
the procedure indicated for physiologically structured models in [7] are generally
applicable to this extended setting but require a technique that numerically de-
structures the physiological components of the individuals in the population. We
liberally use the ideas, process representations, and fish parameter values obtained
in our previous work [2, 4, 8, 9, 13, 16, 17]. An objective of this paper is to provide
a synthesis that integrates biological and environmental concepts in stress ecology.
To investigate the structured population in a heterogenous environment requires a
new numerical scheme that is indicated here in some detail.

Spatial structuring of a population can occur when dispersion processes, such as
advection or diffusion, force a change in the location of individuals. The numer-
ical methods for models of classical advection (hyperbolic models) and diffusion
(parabolic models) remain independent. For advective populations in a habitat
characterized by a homogeneous resource, the method of characteristics where co-
horts of individuals with the same age and physiological condition often forms the
basis of the numerics [9, 17]. In heterogeneous environments where environmental
characteristics associated with the location of the individuals and the movement
behavior are similar, a uniform advective force makes it possible to regard members
of a cohort as identical [9, 17]. However, when forces disperse cohorts of individu-
als, the situation is numerically complicated when similar individuals in the same
age or size cohorts are physically transported to locations where they are exposed
to different levels of toxicants or resources. Forces that disperse cohort individuals
that were previously uniformly clustered require novel numerical treatments that
are especially needed to address population models driven by individual control
processes.

The dynamics of the stressed structured population models can be complex.
Here we consider survival mechanisms for a population in a stressed environment
and discuss aspects of persistence and extinction [11, 12] in a simulation model.
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2. The Mathematical Model. Individual-based population models structured
by physiological representations are a proven methodology for investigating the
role of energetics in population dynamics [1, 6, 14, 15] in a homogeneous envi-
ronment. The spatial environment has traditionally been suppressed in ecotoxico-
logical modeling efforts that involve complexities such as individuals represented
by physiological structure, reactions to chemical stresses, and movement in a het-
erogenous environment [3, 5, 10]. However, continuous spatio-temporal processes
can be formulated within similar setting, an extended McKendrick–von Foerster
framework; for example, advection can be directly included in the hyperbolic for-
mulation, provided individual movement dynamics can be explicitly represented [9,
17] and diffusion incorporated in the traditional manner. We will investigate such
a prototypic model, its numerical analysis, and its application to environmental
stresses.

The mathematical model consists of an individual model describing the organ-
ism’s life history in terms of physiological variables, a population model that inte-
grates across all individuals in the population, an exposure model that determines
the concentration of chemical in an organism, and an effects model to determine
the consequences of a stressor concentration. Because of the intricacies of the
ecotoxicological problem, we choose to employ minimalistic representations in our
formulation, which helps to explain the relevance of each assumption. The life his-
tory of the organism is assumed to consist of two stages, one sessile and one mobile.
The abiotic factors, the resource and the chemical, are assumed to be either homo-
geneous across the entire spatial domain or nonhomogeneous step functions along
cells in the spatial domain. The chemical is assumed to be a nonpolar narcotic,
which includes a large percentage of known chemicals (approximately 70%) and is
a relatively simple mode of action that allows direct uptake and effects representa-
tions.

2.1. The Population Model. The population dynamics, as described by ex-
tended McKendrick–von Foerster-type partial differential equations, reflects changes
in time and space through a density function: ρ = ρ(t, a,m1, ..., mM , x) (numbers/d·
mM , number per age per mass of physiological variable mi, at time t and location
x). It is assumed that the organism’s life history contains a stage where indi-
vidual movement is not significant to the spatial modeling concerns such as can
occur in the early life stages, the embryonic or the juvenile period. During this
time of immobility, assumed to occur for a ∈ (0, J ] , the population model is, for
t ∈ [t0, T ], a ∈ (0, J ], x ∈ Ω,

∂ρ

∂t
+

∂ρ

∂a
+

M∑

i=1

∂(ρ gi)
∂mi

= −µρ ; (1)

in the remaining mobile life stages (including the adult stages), for t ∈ [t0, T ], a ∈
(J,Am], x ∈ Ω,

∂ρ

∂t
+

∂ρ

∂a
+

M∑

i=1

∂(ρ gi)
∂mi

−∇ · (k ∇ρ− qρ) = −µρ ; (2)

and the initial-boundary condition is
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k
∂ρ

∂ν
− qν = 0 or ρ = 0, on ∂Ω,

ρ |t=t0= ρ0 (3)

ρ |a=0=
∫ Am

0

∫ ∞

0

· · ·
∫ ∞

0

βρdadm1 · · · dmM ,

where Am is the maximal attainable age, µ is the mortality function, k is
the diffusivity coefficient, q is the advection rate function, gi (briefly described
in (4) below) represent the rates of change of the physiological variables, β =
β(t, a, x, P, m1, · · · ,mM ) is the birth rate and P (t, x) is the total population size at
(t, x). This analysis considers diffusion [20, 25] that is a random walk plus density-
dependent dispersal which is represented as k = 1 + κp P̂ , P̂ =

∫ Am

J
ρ da,

where κp is a constant and P̂ stands for the number of mobile organisms. The
function q = q(a,m1,m2, ..., mN , x, P, ... in (3) represents the advection movement
velocity (m/d) and describes how an individual of age a with physiological condi-
tion represented by the variables mi at location x alters its advection movement
in response to environmental heterogeneity and energetic constraints. The ν is the
unit outward normal direction vector of the boundary of the domain, ∂Ω.

2.2. The Individual Model. On time intervals where there are no reproductive
events, the dynamics of the physiological variables (such as lipids and proteins) are
modeled as an M-coupled ordinary differential system:

dm1

da
= g1(t, a, m1,m2, · · · ,mM , x)

· · ·
dmM

da
= gM (t, a,m1,m2, · · · ,mM , x),

(4)

where a represents age of the individual, t represents time, x represents the spatial
location in the habitat Ω ⊂ RZ (Z = 1, 2, 3), and mi (i = 1, 2, · · · ,M) represents
the masses of the M physiological variables governing the growth of the organism.
The gi include representation of the process effects of environmental variables such
as temperature and toxic chemical concentrations [6, 9, 13, 17].

2.3. The Exposure Model. The exposure model is coupled with the individual
model. The basic ideas employed to assess chemical exposure and effects on indi-
viduals are discussed in [18]. The uptake of chemicals from the environment and
food represents the chemical exchange between the aqueous environment and the
individual fish across the gill membranes and the chemical exchange between the
fish and its food across the intestinal wall. The uptake model we use is a modifi-
cation of the Food and Gill Exchange of Toxic Substances (FGETS) [18] to handle
exposure of fish to nonpolar, hydrophobic, reversible chemicals.

The mathematical model that describes the processes of chemical uptake from
the environment and food and includes dilution of chemicals due to organism growth
is

dCT

dt
= k1Cw +

F

WT
CF − k2CT − EkE

WT
CA − 1

V

dV

dt
CT , (5)

where CT , Cw, CF , and CA are respectively the concentrations of the chemical
in the whole fish, in the environment, in the food, and in the aqueous portion of
the organism. F is the weight of the food eaten per day, and E is the weight of
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material defecated per day. kE is the partition coefficient of chemical to excrement
and is given by kE = CE

CA
, where CE is the concentration of the chemical in the

feces. k1 and k2 are the uptake and depuration rates of the environmental chemical,
respectively, and are specified by

k1 = SgkwV −1, k2 = SgkwV −1(PA + PLKL + PSKS)−1.

kw measures the conductivity of the exposed surface area, Sg, and V is the volume
of the organism calculated by using the total weight, WT , and the density of the
organism. PA, PL, and PS are the aqueous, lipid, and structural fractions of the
organism, respectively; KL is the partition coefficient of the chemical between the
organismal lipid and water; KS is the partition coefficient of the chemical between
the organismal structure and water. The last term in (5) represents the dilution of
chemical due to organism growth. The relationships between this set of variables
and those of the structured model are delineated in [6].

To calculate the concentration of the chemical in the food, we assume instanta-
neous chemical equilibration with the water and within the organism. The food,
like the consumer, consists of the aqueous, lipid, and structural phases, and the
chemical is distributed among them according to its affinity for these phases.

To model the effects of chemicals on individuals, the uptake model is coupled
with models for the mode of action and models for concentration-response rela-
tions. Effects of chemicals on individuals focus on mortality but sublethal effects,
such as reduction of growth rate, could be considered using a similar method. We
do not include sublethal effects in our simulations. The assessment of mortality
due to chemical action is implemented by utilizing formulations based on quantita-
tive structure-activity relations (QSARs). We utilize results developed for baseline
narcotic chemicals and relate a chemical property, the octanol/water partition co-
efficient, Kow, to mortality of individuals. For a single individual, an effect occurs
when the concentration of the chemical in the aqueous phase reaches a critical level,
denoted by LC50, and is calculated from the equation log LC50 = −0.8− log Kow

[16].

2.4. The Dispersal Model. Detailed information on the movement behavior of
individuals is only recently becoming available, a result due to significant advances
in technology. We simplify dispersal issues for illustrative purpose and assume that
diffusion is a random walk dispersal and that advection is the sum of two forces,
one of which is resource directed and the other is chemically directed. Individu-
als alter movement in response to changes in resource density and in response to
concentration of contaminated media. Exposed organisms may avoid contaminated
environments or may be attracted to them (for example, due to pesticide-debiliated
prey) or may lose their ability to detect contamination due to toxicant effects. If the
contamination is local and of short duration, avoidance can prevent the occurrence
of effects on mobile organisms. However, avoidance of chronically contaminated
media or food may result in resource deficiency, which could seriously reduce the
population. There is no standardized procedure for determining avoidance and pref-
erence behaviors largely because they depend on the chemical and its concentration
as well as the species.

Equations (1) and (2) incorporate the growth rates, gi of the physiological vari-
ables mi and the advection rate, q, of an individual into the population. In partic-
ular, our simulations are based on the movement equation
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q = qr + qc (6)
where qr represents the advective movement velocity due to changes in food density
and qc represents the advective movement velocity due to changes in the concen-
tration of contaminated media. The function qr is

qr = κrvs
∂r

∂x
, (7)

where κr is a positive constant that measures the tendency of predators to pursue
prey and represents the distance covered by the foraging predator per unit change
in the prey density. The derivative ∂r

∂x represents the rate of change of the resource
at x; vs is an average swimming velocity (m/d) of an individual with length Lf (m)
and is given by vs = 8.64 · 104sLf , where s denotes the body lengths per second of
the predator while performing sustained cruising. The function qc is

qc = κcvs
∂Cw

∂x
, (8)

where κc is a constant that measures the tendency to move according to chemical
concentration and represents the distance covered by the foraging fish per unit
change in the contaminated media. If κc is positive, the fish is attracted to the
contaminated location; if it is negative, then it tends to avoid the contamination.

The mortality function µ accounts for different types of mortalities. It includes
mortality due to the physiological process of aging, mortality due to starvation,
juvenile density-dependent mortality, and mortality due to exposure to lethal levels
of a toxicant. Toxicant mortality is assessed at the individual level according to
lipid content of the organism.

The toxicant-population model is formulated so that a toxicant may be released
at different locations and at numerous times for an arbitrary exposure length, and as
a result, we may obtain a spatially explicit variation in toxicant concentration. The
spatial location of the chemical stressor determines the exposure, and the chemical
concentration, which can be variable over the spatial domain. We do not simulate
the chemical transport, but rather we mimic point sources and nonpoint sources
with functional representations in the model.

Our numerical procedure follows cohorts of individuals that move continuously
in the heterogeneous habitat, which results from both resource and toxicant distri-
butions, and allows effects of spatially explicit toxicant exposure to be assessed at
the individual level. A characteristic behavior of the unstressed model is that the
fish and resource biomass as well as the age, lipid, and structural distributions are
dynamically related to a period of one year, the same period as the reproductive
events, for parameter values that result in the coexistence of the population. As
will be indicated graphically below, the reproductive peaks in the population dy-
namics are dominant features that are present even in populations that are going
to extinction.

3. The Computational Model. The computational model is based upon a lo-
calization technique, physiological destructurization (to decompose the structure
related to the physiological model), and a linearization approach. To localize the
problem, we introduce a small positive parameter for step size that leads to a se-
quence of local problems. Physiological destructurization is used at the local prob-
lem level where the individual growth model and the partial differential equations
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for the population dynamics are considered sequentially. The initial value problem
of the ordinary differential system describing the individual is approximated and
this approximate solution is inserted into the partial differential problem. The par-
tial differential equation solution is then approximated over the small time interval.

Population  Distribution

an Initial Population

Age-group & Q-Cohort

Q-cohort

and Q-cohort

Each Q-cohort

Time

IF age > RT1

Calculate Population

Biomass, etc.

Solve Individual Model

By RK Method to Each

Form New Q-cohorts &

w/o Move for

Solve Pop Model

Solve Pop Model w/ Move

Run Non-spatial

Simulation

Model to Create

Read Parameters

Loop (time)

Advance Simulation

Start New Q-cohort or

Combine Birth?

Advance Ages of

Each Age-group

Each Q-cohort

Check Birth for 

Another Q-cohort

Combine Eggs onto

Clean Up

No Yes

No

Yes

Figure 1. The complete flow chart for the numerical simulations.

The numerical solution of the local structured population model differs from classi-
cal approaches because the model form is a nonlocal initial-boundary value problem
for a nonlinear partial differential equation with discontinuous coefficients. Then,
this problem is linearized using the technique of a positive delay to handle and
overcome the nonlinearity. The flow chart of the numerical simulation is provided
in Figure 1.

Because of stiffness, the numerical methods use the implicit Runge-Kutta method
for the individual model. For the partial differential equation problem, we use a
characteristic finite difference discretization in the age-time domain and a finite
element method with numerical integration and upwind modification of advective
terms in the spatial domain. Our analyses for this and related age-structured models
show that the numerical schemes not only yield optimal error estimates from the
perspective of numerical analysis, but they also produce biologically reasonable
approximate solutions [2, 4].

Let τ be the finite difference mesh size for age a as well as for time t,

0 = t0 < t1 < t2 < · · · < tNt = T,
0 = a0 < a1 < a2 < · · · < aNa

= Am,
(9)

where tn = t0 +n · τ , aj = a0 + j · τ and there is a Nj such that aNj
= J . We apply

the 1-stage implicit Runge-Kutta method for the individual model (4); see [2].
Our development of a computational scheme for individually-based population

models respects the heterogeneity of the environment by employing the technique
of tracking age-groups and the construction or reconstruction of special cohorts.
An age-group is a collection of individuals with the same age. Because of the
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heterogeneity, growth characteristics of individuals in the population may differ
and, at times, be considerably distinct. We introduce the growth pattern (q-cohort)
into the age group to account for these individual growth differences. The q-cohort
consists of individuals of the same age whose physiological properties are close in
that these individuals will have similar responses to the same environment over a
time computational step and over a local spatial region. In a single age-time step
of the computation, the q-cohort functions as a characteristic cohort in a spatially
homogeneous model. Essentially, the final values of this step are calculated by
numerical schemes of the individual model and the individual-based population
model. For the transition from the current step to the next computation, the
algorithm reconstructs the q-cohorts and initial values for the next step because the
previous q-cohorts may have already changed in the spatial environment. Figure 2
presents a flow chart for one time-age step of a q-cohort of the numerical procedure.
We use an array structure for a q-cohort, each of whose array elements stores a

Model
Solve Individual

Start

If age > RT1

No

Yes

Solve pop model
w/o move

Check Birth

Yes

Birth?

q-cohort
Start new

existing ones
Combine with

No Yes

Solve pop model
w/ move;

form new q-cohorts

Next Step

Combine

Figure 2. Flow chart for one time-age step of a q-cohort.

physiological characteristic value or age. A double-linked list of q-cohorts is used
to describe the differences in individuals of the same age-group in a small spatial
area (represented by a nodal point) at a special time. For a q-cohort with a known
value, (m∗

1, · · · , m∗
M ), as its representative physiological properties, obtained from

the individual model (4) at a time step t = t0 ≥ 0, the population equation for
this q-cohort at time interval [t0, t0 + τ ] can be rewritten, for t ∈ [t0, t0 + τ ], a ∈
[0, Am], and x ∈ Ω,

∂ρ

∂t
+

∂ρ

∂a
+

M∑

i=1

gi
∂ρ

∂mi
−∇ · (k̃ ∇ρ− q̃ρ) = −µ̃ρ , (10)
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where k̃ and q̃ are zero-extended to a ∈ [0, J) and have the values k and

q at ((m∗
1, · · · ,m∗

M , t0, · · · ), respectively; µ̃ stands for µ +
M∑

i=1

∂gi

∂mi
evaluated at

(m∗
1, · · · ,m∗

M , t0, · · · ).
Let u0(a, x) ∈ L2([0, Am], V ) be nonnegative. Then, under sufficient smoothness

conditions, there exists a unique nonnegative weak solution of the following age-
structured population problem, That is, there exists a unique nonnegative ρ ∈
L2([t0, t0 + τ ]× [0, Am], V ) such that, for t ∈ [t0, t0 + τ ], a ∈ [0, Am],

(∂τ ρ, w) + α(k̃, q̃ρ, w) = −(µ̃ρ, w), ∀ w ∈ V,
ρ(t0, a, x) = ρ0(a, x), ∀ x ∈ Ω,

ρ(t, 0, x) =
∫ Am

0

βρ(t, a, x)da, ∀ x ∈ Ω,

where V = H1(Ω) or H1
0 (Ω), (·, ·) is the inner product of L2(Ω); and

∂τρ ≡ ∂ρ

∂t
+

∂ρ

∂a
+

M∑

i=1

gi
∂ρ

∂mi
,

α(k̃, v, w) =
∫

Ω

(k̃∇u− q̃u)∇wdx .

Since the above partial differential problem is linear, the verification is straight-
forward; see [2, 8, 9, 11] for the details.

Therefore, we can develop a meaningful numerical scheme for the population
model in the time interval [t0, t0 + τ ] = [tn−1, tn] . We introduce a weakly acute
simplex triangulation Th with mesh size h for Ω [2, 4]. In particular, if Ω = [0, L], Th

is:
0 = x0 < x1 < x2 < · · · < xNh+1 = L, (11)

where xi = x0 + ih and h = L/(Nh + 1). Let Vh be the linear finite element space
over Th to approximate V and Nh be the set of all true unknown nodal points of
Vh. Thus, the numerical scheme on [tn−1, tn] is

∂̃τρn,j
h (i) = −µ̃n−1,j

h (i) ρn,j
h (i), i ∈ Nh, 1 ≤ j ≤ Nj ,

(∂̃τρn,j
h , w)h + αh(k̃n−1

h , q̃n−1
h , ρn,j

h , w) =

−(µ̃n−1,j
h ρn,j

h , w)h, ∀w ∈ Vh, Nj < j ≤ Na, (12)

ρn,0
h =

1
2
β̃n−1,0

h ρn,0
h τ +

Na−1∑

j=1

β̃n−1,j
h ρn,j

h τ

Pn
h =

1
2
ρn,0

h τ +
Na−1∑

j=1

ρn,j
h τ, 0 ≤ n ≤ Nt,

where ∂̃τρn,j
h =

1
τ

[ρn,j
h − ρn−1,j−1

h ]; (·, ·)h and αh(k, v, w), (·, ·) and α(k, v, w) are
calculated by a numerical integration,

To solve the above scheme, a parallel algorithm has been developed in [2]. This
is especially relevant for 2- or 3-dimensional settings where the computational effort
can be voluminous. The following proposition is important to the numerics (for the
age structure analogue, see [4]).
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Let Th be a weakly acute simplex triangulation. Then under appropriate smooth-
ness conditions and if τ > 0 is sufficiently small, the numerical scheme (12) has a
unique nonnegative solution.

4. The Simulation Model. For the convenience of graphical presentations, the
habitat is assumed to be linear, Ω = (0, L). L is taken to be 1 Km and is divided
into 10 equal length cells. Each of the resource density and chemical concentration
is assumed to be homogeneous within a cell but can differ between cells.

Figure 3. a: (Upper left) and b: (upper right) Resource Distri-
bution Patterns; and c: (lower) Point Source Chemical Toxicant
Distribution.

We choose the same step size for age and time as in (5) with τ = 1/20 days and
the triangulation Th as in (7) with h = 0.0025Km. We focus on investigating the
dynamics of an Oncorhynchus mykiss (rainbow trout) population under stress.
Numbers and size as measured by total fish nonlabile structure are among the
variables we will track in the simulations. For O. mykiss, an energetics-based
individual model has been described in the form (4) with M = 2, and the state
variables are lipids and proteins. We refer to [2, 8, 13] for the explicit formulations
of gL and gS .

In the simulations, the mortality function µ is assumed to have the form µ =
µa + µw + µy + µd where µa, µw, µy, and µd represent the mortality related to age,
size, the younger age classes and density, respectively (cf. [6, 8]). The population
birth process is determined at the individual level by accumulating the totality of
births resulting from the individual model outputs. The resource-directed advection
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velocity, qr, of an individual generally will depend on the size of the individual, the
individual energy available, and the gradient of the resource at the position where
the individual is located.

The advective movement rule requires that individuals tend to move towards

neighboring areas with higher food densities. q = κvs
∂r

∂x
. We refer to [6] for the

details and their parameter values.

5. Methodology. Simulation results for individual-based populations with both
diffusion and advection are few, although there are numerical and theoretical studies
for some special cases [4]. We have tested some of our models without toxicant stress
and reported the results elsewhere [4, 7]. Here we present simulations carried out
for situations that include differences in the resource distributions (homogeneous
or heterogeneous step functions), a movement type (random diffusion-advection),
and special boundary conditions (Dirichlet). We can consider chemical effects that
range from sublethal to lethal although here we report on the results for lethality.

To demonstrate the importance of environmental heterogenity, a chemical stres-
sor is introduced into the spatial environment, and we investigate the effects of
varying the spatial distribution of the environmental chemical concentration.

In the numerical simulations, we take the time-age step size τ = 1/20 days, the
spatial mesh size h = 0.0025 km and the simulation end time T = 5, 400 days.
For simplicity, we assume that the initial population occupies only a 1% interval
located at the middle of the habitat domain Ω.

The heterogeneous environment consists of a step function chemical distribu-
tion and either a uniform resource or a step function resource distribution (Fig.
3). We then illustrate the dynamic behavior of the population when a particular
heterogeneity is present.

6. Results. Lassiter and Hallam [16] developed an approach to evaluate the effects
of the lipid distribution on population dynamics in response to an acute exposure
of a lipophilic narcotic chemical in a homogeneous environment. According to
this theory, in an assessment of mortality, an individual with smaller lipid fraction
content will die before another individual with a larger lipid fraction, given equal
exposure. This theory, the survival of the fattest, considers homogeneous toxic
exposures to a static population that are necessarily acute. The theory is not valid
when these assumptions are violated [6].

For dynamic populations, survival of the population after chronic exposure is
determined not only by the lipid distribution, but also by the growth rate of the
individuals in the population [6]. The prediction of survivors of toxic stress in dy-
namic populations is difficult even in homogeneous environments. Some scenarios
of exposure that can lead to slowly growing organisms as the dominant survivors,
intermediate growing organisms as the dominant survivors, and fast growing organ-
isms as the dominants in the population. This can depend on seemingly innocuous
characteristics such as sex and reproductive state [6].

In addition to the physiological aspects of the population, the response of a fish
population to a toxicant exposure depends on the spatial pattern of the toxicant
and resource as related to the distribution of individuals in time and space, the
duration of the exposure, and the concentration of the toxicant, as is demonstrated
below. The spatio-temporal pattern of release of chemicals from a source(s) is a
major aspect of uncertainty in an ecological risk assessment, but this aspect has
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been addressed in some useful software (Spatial Analysis Decision Assistance; see
www.tiem.utk.edu/SADA).

We consider two simple scenarios for the release of a chemical: 1) point-source
release (taken as an inhomogeneous spatial distribution of the chemical) and 2) non–
point source release (taken as a homogeneous spatial distribution of the chemical).
We incorporate release of the chemical in our model by dividing the habitat into cells
that are assumed chemically homogeneous. We have analogous test distributions
for the resource, as indicated in Figure 3. For the following simulations, the habitat
in which the populations live is taken to be 1 km long and is divided into 10 cells.
The parameter values used in the simulations may found in [17].

Figure 4. Simulation Results for the Illustration 1. The graph
represents the protein dynamics in the population as a function of
space and time. This is an example of persistent dynamics when
the fish can avoid the chemical.

To demonstrate the effects of chemicals and the importance of chemical het-
erogeneity, we impose a chemical stress on the theoretical population employing
the same toxic chemical throughout the examples and investigating the outcomes
by varying the resource distribution, the spatial distribution of the environmental
chemical concentration and the initial time of exposure. The dynamic structure of
the population is compared before and after the exposure and the spatio-temporal
evolution of the stressed population is compared to that of the nominal, unstressed
population.

Illustration 1. This illustration compares two situations with different move-
ment laws. The chemical distribution is the step function (Figure 3c), and the
distributions of resource in each illustration are assumed to be uniform with a re-
source density of 5.0×10−7g/cm3. A chronic chemical exposure begins at day 1,400
in the simulation and continues to the end of the simulation, which is day 5,400.
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Figure 5. Simulation results for Illustration 1. The protein dis-
tribution of the population as a function of space and time. The
example is of a population that has gone to extinction at day 3,500
due to toxic exposure. The time and distance axes have been inter-
changed from Figure 4 to allow viewing the extinction result more
clearly.

When fish have a tendency to avoid the chemical (so qc < 0), the dynamic
behavior is a plume-like structure. The main reason for the dynamic spatial struc-
turing is that chemically induced advection dominates the diffusion process forming
the plume. The population persists until the end of the simulation (see Figure 5).
The graphics in Figure 5 represent the total protein components of the population
in the simulation. Protein is one component of the total size of an individual, and
the total protein has a close correlation with the total numbers in the population.
The peaks represent the annual birth events in the population.

Under the same environmental conditions, but with the advection term qc > 0,
so that the movement into toxic areas is now feasible, the advective force remains
dominant but the population now goes to extinction at day 3,500. These outcomes
are presented in Figure 6.

Illustration 2. In the next two examples, both the resource and the chemical
are assumed to be distributed according to the step functions in Figures 3a and
3c respectively. The chemical exposure begins at day 1,400 and remains chronic
throughout the simulation period of an additional 4,000 days. When fish avoid the
chemical, (qc < 0), the dynamic results indicate that the population persists until
the end of the simulation, taken as day 5,400. Here, chemically-induced advection
dominates both the diffusion and the resource-directed advection.
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The slight reduction in resource distribution as indicated in Figure 3b and the
same chemical exposure scenario produces extinction at day 4,000 (Figure 6). When
qc > 0 and the original resource distribution (Figure 3b) applies, the interesting
case where the population still persists results despite higher exposure to the tox-
icant. This scenario might occur when a chemical is present in the food and the
resource directed advection is operational.

Figure 6. Simulation result for Illustration 2. The figure rep-
resents the protein dynamics in the population as a function of
space and time when the fish can move through the chemical. The
population persists despite higher toxic exposures because of an
adequate supply of resource.

7. Discussion. These illustrations indicate that the dynamics of our physiolog-
ically structured model is sensitive to several temporal and spatial assumptions.
These include (i) behavioral mechanisms that relate chemical concentrations to
movements and (ii) physiologically directed mechanisms that relate resouce abun-
dance to movement. We have shown previously that fish may not congregate in
areas of highest resource level because of resource-directed movement. Here we find
that exposure via movement can determine persistence or extinction of the popula-
tion, and there is a trade-off between the concentrations of toxic chemical and the
levels of resource available.
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