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Località Crocicchia, I-61029 Urbino, Italy

Abstract. The dynamics of a differential functional equation system repre-
senting an allelopathic competition is analyzed. The delayed allelochemical
production process is represented by means of a distributed delay term in a
linear quorum-sensing model. Sufficient conditions for local asymptotic sta-
bility properties of biologically meaningful steady-state solutions are given in
terms of the parameters of the system. A global asymptotic stability result is
also proved by constructing a suitable Lyapunov functional. Some simulations
confirm the analytical results.

1. Introduction. A competition between two populations is called allelopathic
when one (or both) species is able to produce allelochemicals which inhibit the
growth of the other one. Allelopathic competitions occur between algal species [4],
algae and bacteria [1], bacteria and bacteria [3], algae and aquatic plants [2], and
plants and plants [7]. They may have a relevant role in applications; for instance,
in materials biotechnology and bioremediation processes. On the basis of several
experimental results in [5], a general mathematical model was proposed for the
so-called quorum-sensing mechanism, consisting in the dependence of the allelo-
chemical production on the concentrations of populations. In [8], the dynamics of
allelopathic competitions were also studied by using linear quorum-sensing models,
two different kinds of uptake models (Michelis-Menten and Andrews), and different
types of toxic effects (inhibitory or lethal). In the quoted papers, all the biological
processes involved have been considered instantaneous. In the present paper, by ob-
serving that the production of allelochemicals actually can be delayed, we introduce
a linear delayed model of quorum sensing based on a distributed delay term which
takes into account the past history of the interacting populations. Furthermore, the
effects of allelochemicals are considered to be lethal and are represented through
a mass-action term. As in [8], we also assume that the allelopathic competition
occurs in a chemostat-like environment.
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The plan of this paper is as follows. In Section 1, basic notations and the
mathematical model, consisting in a nonlinear functional differential system of four
equations, are introduced. The analysis of steady-state solutions and their stability
properties is performed in Sections 2 and 3. The global asymptotic stability of a
boundary equilibrium is proved in Section 4 by constructing a suitable Lyapunov
functional. All analytical results are expressed in terms of the parameters of the
system. Finally, in Section 5, numerical simulations are presented, concerning the
special case of an exponential delay kernel.

2. Models and Notations. The proposed mathematical model is the following:





Ṡ = (S0 − S)D − f1(S)N1 − f2(S)N2

Ṅ1 = N1 [f1(S)−D − γp]

Ṅ2 = N2

[(
1−

∫ 0

−τ

kω1(θ)N1(t + θ)dθ

)
f2(S)−D

]

ṗ = N2f2(S)
∫ 0

−τ

kω1(θ)N1(t + θ)dθ −Dp,

(1)

where

S(t) is the nutrient concentration at time t;
N1(t) is the density of the sensitive microorganism at time t;
N2(t) is the density of the toxin producing organism at time t;
p is the concentration of toxicant in the environment at time t;
S0 is the constant input rate of the limiting nutrient concentration (S0 > 0);
D is the constant washout rate (D > 0);
m1 (> 0) is the maximal specific growth rate of population N1;
m2 (> 0) is the maximal specific growth rate of population N2;
γ (> 0) is the death rate of population N1 due to the toxin;
ω1(θ) is the kernel function which weights the past values of the toxin production(

0 ≤ ∫ 0

−τ
kN1ω1(θ)dθ ≤ 1

)
and represents the fraction of potential growth

devoted to produce allelochemicals.

Moreover,

fi(S) =
miS

ai + S
i = 1, 2 (2)

is the functional response (Michaelis-Menten) of the two populations, and ai, i =
1, 2 (> 0) is the half-saturation constant.

We now discuss the main properties of equations (1). Let us define

x(t) := (S(t), N1(t), N2(t), p(t)) ∈ <4

and xt(θ) = x(t + θ), θ ∈ [−τ, 0], for all t ≥ 0. Then (1) can be rewritten as

ẋ(t) = F (xt), (3)

with initial conditions at t = 0 given by

φ ∈ C([−τ, 0],<4),

where C([−τ, 0],<4) is the Banach space of continuous functions mapping the in-
terval [−τ, 0] into <4 with the norm

‖φ‖ = sup
θ∈[−τ,0]

|φ(θ)|,
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where | · | is any norm in <4. Moreover, a solution of (3) will be denoted as follows

x(t) = x(φ, t) θ ∈ [−τ, 0]. (4)

For biological relevance, we define nonnegative initial conditions φ(θ) ≥ 0, θ ∈
[−τ, 0], with φ(0) ≥ 0, to equations (3) (φi(θ) ≥ 0, θ ∈ [−τ, 0] and φi(0) ≥
0, i = 1, 2, 3, 4). For this system, several qualitative properties of the solutions
can be proved, such as positiveness, boundedness, global existence in the future,
and uniqueness.

3. Steady-State Solutions. We turn now to the analysis of the equilibria of
system (1). We look for nonnegative constant solutions of type Ē = (S̄, N̄1, N̄2, p̄)
of the following algebraic system:





(S0 − S)D − f1(S)N1 − f2(S)N2 = 0
N1 [f1(S)−D − γp] = 0
N2 [(1− kN1∆(τ)) f2(S)−D] = 0
f2(S)kN1N2∆(τ)−Dp = 0,

(5)

where

∆(τ) =
∫ 0

−τ

ω1(θ)dθ.

We consider the model under the assumption that

min{m1,m2} > D, (6)

we can define the quantities λi, (> 0) such that

fi(λi) = D i = 1, 2.

Hence, it is immediately seen that E0 = E+000 = (S0, 0, 0, 0) is an equilibrium of
system (3) whatever the value of S0 is. Moreover the following theorem holds:

Theorem 3.1. By assuming that (6) holds true, it is possible to prove that
i. a steady-state solution E1 = E++00 = (λ1, S

0 − λ1, 0, 0) exists if λ1 < S0;
ii. a steady-state solution E2 = E+0+0 = (λ2, 0, S0 − λ2, 0) exists if λ2 < S0.

Let us now look for a positive equilibrium E3 = (S∗, N∗
1 , N∗

2 , p∗), S∗ > 0, N∗
1 >

0, N∗
2 > 0, p∗ > 0. From system (5) we have





(S0 − S∗)D − f1(S∗)N∗
1 − f2(S∗)N∗

2 = 0

p∗ =
f1(S∗)−D

γ

N∗
1 =

f2(S∗)−D

k∆(τ)f2(S∗)

N∗
2 =

D(f1(S∗)−D)
γ(f2(S∗)−D)

.

(7)

We can prove the following:

Lemma 3.1. There are at most two positive values of the S∗ solution of (7)1.

Proof. By substitution of N∗
1 , N∗

2 in (7)1, we get (S 6= λ2):

(S0 − S∗)D − f1(S∗)
f2(S∗)−D

k∆(τ)f2(S∗)
− f2(S∗)

D(f1(S∗)−D)
γ(f2(S∗)−D)

= 0. (8)
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Substituting fi(S∗) =
miS

∗

ai + S∗
i = 1, 2 we obtain that S∗ are positive zeros of the

cubic equation
α0S

3 + α1S
2 + α2S + α3 = 0, (9)

where the coefficients are real and
α0 = Dk∆(τ)m2(m2 −D) > 0,
α3 = D2γa2

2m1 + D2KS0γ∆(τ)a1a2m2 > 0.

Then (9) has one negative root, and therefore there are at most two positive values
of S, solutions of (9).

Theorem 3.2. Assume that
λ1 > λ2; (10)

then there exists a unique positive equilibrium of (5):

E3 = E++++ = (S∗, N∗
1 , N∗

2 , p∗) (11)

if and only if

∆(τ) > ∆∗ with ∆∗ :=
f2(λ1)−D

f2(λ1)(S0 − λ1)k
. (12)

Proof. The components of E3 are solutions of (7). We devote our attention to the
equation (7)1 because all the other components are expressed in terms of S∗.

We can observe that all the other components are positive if and only if

S∗ > λ = max{λ1, λ2},
where S∗ is a zero of the function

F (S) = (S0 − S)D − f1(S)
f2(S)−D

k∆(τ)f2(S)
− f2(S)

D(f1(S)−D)
γ(f2(S)−D)

(13)

which is the left-hand side of (8).
Of course, F (S) is negative if S > S0, and therefore at positive equilibrium S∗

must be such that λ < S∗ < S0; that is, S∗ is a zero of function (13) in the interval
(λ, S0). By assumption (10), λ = λ1, we consider the function (13) in the interval
[λ1, S

0]. Note that in [λ1, S
0], the function F (S) is continuous: in fact functions

fi(S), i = 1, 2 are continuous and positive if S > 0. Moreover, since S ≥ λ1 implies
S > λ2, it follows that f2(S) ≥ f2(λ2) = D; that is, in [λ1, S

0] f2(S)−D > 0.
Now note that, owing to (13),

F (S0) < 0,

and by assumption (12),

F (λ1) = D(S0 − λ1)− D(f2(λ1)−D)
f2(λ1)k∆(τ)

> 0.

Hence F (S) has at least one zero S∗ ∈ (λ1, S
0). We prove that the zero in (λ1, S

0)
is unique. Consider the interval (0, λ2), where fi(S) − D < 0, i = 1, 2. Observe
that

lim
S→0+

F (S) = DS0 +
m1a2D

m2a1k∆(τ)
> 0

and that
lim

S→λ−2
F (S) = −∞.
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Since F (S) is continuous in (0, λ2), there exists another zero of the function (13)
in (0, λ2). Owing to Lemma 3.1, there are at most two positive values for the S∗

solution of (7)1. Hence, there is exactly one zero of F (S) in (λ1, S
0) and therefore

exactly one positive equilibrium solution of (7).
Assume now that (10) holds but (12) is violated; that is, ∆(τ) ≤ ∆∗.
If ∆(τ) = ∆∗, then F (λ1) = 0, and we have two zeros of F (S) in (0, λ1], one in

(0, λ2) and the other one in S∗ = λ1, but no zero in (λ1, S
0). Hence, we do not

have positive equilibria.
Finally, if ∆(τ) < ∆∗, then F (λ1) < 0. Since lim

S→λ+
2

F (S) = +∞, there is at least

one zero in (λ2, λ1). Since another zero of F (S) is in (0, λ2), we have two zeros of
F (S) in (0, λ1), so we cannot have zeros of F (S) in (λ1, S

0). Hence, again, positive
equilibria do not exist.

In conclusion, if λ1 > λ2 we have one positive equilibrium if ∆(τ) > ∆∗.

Remark 1. When ∆(τ) = ∆∗, the positive equilibrium E3 coincides with the bound-
ary equilibrium E1.

Theorem 3.3. Assume that

λ2 > λ1 (14)

and

γ < inf
(λ2,S0)

f2(S)(f1(S)−D)
(f2(S)−D)(S0 − S)

. (15)

Then, there are no positive equilibria of (5).

Proof. The existence of positive equilibria requires that the function

F (S) = (S0 − S)D − f1(S)
f2(S)−D

k∆(τ)f2(S)
− f2(S)

D(f1(S)−D)
γ(f2(S)−D)

has zeros in the interval (λ, S0), that is, in (λ2, S
0). If we prove that F (S) < 0

for all S ∈ (λ2, S
0), the theorem holds true. By the assumptions (14) and (15), we

obtain

(S0 − S)D − f1(S)
f2(S)−D

k∆(τ)f2(S)
− f2(S)

D(f1(S)−D)
γ(f2(S)−D)

<

(S0 − S)D − f2(S)
D(f1(S)−D)
γ(f2(S)−D)

< 0;

that is, F (S) < 0 for all S ∈ (λ2, S
0), and the proof is complete.

Remark 2. When τ = 0, the positive equilibrium E3 does not exist. However
if τ = 0 and λ1 = λ2, there is a continuous infinity of boundary equilibria Ē ≡
(S̄, N̄1, N̄2, 0).
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4. Local Stability Properties. By means of a change of variables involving the
generic equilibrium Ē = (S̄, N̄1, N̄2, p̄), system (1) is transformed into the system





ẋ1 = (S0 − S̄ − x1)D −
2∑

i=1

fi(x1 + S̄)(N∗
i + xi+1)

ẋ2 = (x2 + N̄1)
[
f1(x1 + S̄)−D − γ(p̄ + x4)

]

ẋ3 = (x3 + N̄2)
[
F2(x1 + S̄)−

∫ 0

−τ

kω1(θ)x2(t + θ)dθf2(x1 + S̄)−D

]

ẋ4 = (x3 + N̄2)f2(x1 + S̄)
∫ 0

−τ

kω1(θ)(x2(t + θ) + N̄1)dθ −D(x4 + p̄),

(16)

where F2(x) = (1−kN̄1∆(τ))f2(x). The stability analysis of the generic equilibrium

Ē can be performed by means of the characteristic equation associated to the
linearized system of (16) in Ē:





ẋ1 = (−D −
2∑

i=1

f ′i(S̄)N∗
i )x1 − f1(S̄)x2 − f2(S̄)x3

ẋ2 = f ′1(S̄)N̄1x1 + [f1(S̄)−D − γp̄]x2 − γN̄1x4

ẋ3 = f ′2(S̄)N̄2

(
1− kN̄1∆(τ)

)
x1 + [F2(S̄)−D]x3+

−N̄2f2(S̄)
∫ 0

−τ

kω1(θ)x2(t + θ)dθ

ẋ4 = f ′2(S̄)N̄1N̄2k∆(τ)x1 + f2(S̄)N̄1k∆(τ)x3 −Dx4+

+N̄2f2(S̄)
∫ 0

−τ

kω1(θ)x2(t + θ)dθ.

(17)

Remark 3. We can represent the right-hand side of system (17) as a sum of two
terms as follows:

ẋ = Lx +
∫ 0

−τ

K(θ)x(t + θ)dθ,

where

L =




−D − f ′1(S̄)N̄1 − f ′2(S̄)N̄2 −f1(S̄) −f2(S̄) 0
f ′1(S̄)N̄1 f1(S̄)−D − γp̄ 0 −γN̄1

f ′2(S̄)N̄2

(
1− kN̄1∆(τ)

)
0 F2(S̄)−D 0

f ′2(S̄)N̄1N̄2k∆(τ) 0 f2(S̄)N̄1k∆(τ) −D




(18)
and

K(θ) =




0 0 0 0
0 0 0 0
0 −N̄2f2(S̄)kω1(θ) 0 0
0 N̄2f2(S̄)kω1(θ) 0 0


 . (19)

The characteristic equation, given by

det
∣∣∣∣ρI − L−

∫ 0

−τ

K(θ)eρθdθ

∣∣∣∣ = 0, (20)

where I ∈ <4 is the identity matrix, can be written as follows:
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∥∥∥∥∥∥∥

ρ + D + f ′1(S̄)N̄1 + f ′2(S̄)N̄2 f1(S̄) f2(S̄) 0
−f ′1(S̄)N̄1 ρ− (f1(S̄)−D − γp̄) 0 γN̄1

−f ′2(S̄)N̄2

(
1− kN̄1∆(τ)

)
Φ(ρ) ρ− [(F2(S̄)−D] 0

−f ′2(S̄)N̄1N̄2k∆(τ) −Φ(ρ) −f2(S̄)N̄1k∆(τ) ρ + D

∥∥∥∥∥∥∥
= 0

(21)
where

Φ(ρ) =
∫ 0

−τ

N̄2f2(S̄)kω1(θ)eρθdθ.

Local stability properties of boundary equilibria are proved as follows:

Theorem 4.1. The following statements hold true:
i. If S0 < λ1 and S0 < λ2, then the equilibrium E0 is locally asymptotically

stable.
ii. If E1 exists and ∆(τ) > ∆∗, then E1 is locally asymptotically stable.
iii. If E2 exists and λ2 < λ1, then E2 is locally asymptotically stable.

Proof. (i) It is easy to show that the characteristic equation obtained by computing
(21) in E0 = (S0, 0, 0, 0) admits the following roots:

ρ1 = −D, ρ2 = f1(S0)−D, ρ3 = f2(S0)−D, ρ4 = −D.

The steady-state E0 is asymptotically stable if

ρ2 < 0 =⇒ f1(S0) < D =⇒ S0 < λ1,
ρ3 < 0 =⇒ f2(S0) < D =⇒ S0 < λ2.

(ii) The characteristic equation obtained by computing (21) in E1 = (λ1, S
0 −

λ1, 0, 0) can be written as follows:

[ρ+D][ρ−(1−kN̄1∆(τ))f2(λ1)−D)][ρ2+(D+N̄1f
′
1(λ1))ρ+DN̄1f

′
1(λ1)] = 0. (22)

By computing the roots of (22), we obtain

ρ1 = −D, ρ2 = (1− kN̄1∆(τ))f2(λ1)−D, ρ3 = −D, ρ4 = −N̄1f
′
1(λ1).

If E1 exists, it is locally asymptotically stable if (1−kN̄1∆(τ))f2(λ1)−D < 0; that
is,

∆(τ) >
f2(λ1)−D

k(S0 − λ1)f2(λ1)
(:= ∆∗).

(iii) The characteristic equation obtained by computing (21) in E2 = (λ2, 0, S0 −
λ2, 0) can be written as follows:

(ρ + D)(f1(λ2)−D − ρ)[ρ2 + (D + N̄2f
′
2(λ2))ρ + DN̄2f

′
2(λ2)] = 0. (23)

By computing its roots, we obtain

ρ1 = −D, ρ2 = f1(λ2)−D, ρ3 = −D, ρ4 = −N̄2f
′
2(λ2).

If E2 exists, it is locally asymptotically stable if

ρ2 < 0 =⇒ f1(λ2)−D < 0 =⇒ λ2 < λ1.
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Regarding the positive equilibrium E3 = (S∗, N∗
1 , N∗

2 , p∗), we observe that the
characteristic equation (21) becomes

det




ρ + a11 a12 a13 0
−a21 ρ 0 a24

−a31 Φ(ρ) ρ 0
−a41 −Φ(ρ) −a43 ρ + a44


 = 0; (24)

that is,

ρ4 + (a11 + a44)ρ3 + (a11a44 + a13a31 + a12a21)ρ2 + (a13a31a44 + a12·
a21a44 − a12a41a24)ρ− a12a24a31a43 + [a24ρ

2 − (a13a21 + a24a43 − a11·
a24)ρ− (a21a13a44 + a24a43a11 − a13a31a24 − a13a41a24)]Φ(ρ) = 0,

(25)

where
a11 = D + f ′1(S

∗)N∗
1 + f ′2(S

∗)N∗
2 a12 = f1(S

∗) a13 = f2(S
∗)

a31 = f ′2(S
∗)N∗

2 (1− kN∗
1 ∆(τ)) a24 = γN∗

1 a21 = f ′1(S
∗)N∗

1

a41 = f ′2(S
∗)N∗

1 N∗
2 k∆(τ) a43 = f2(S

∗)N∗
1 k∆(τ) a44 = D

and the information of the delay τ is carried by Φ(ρ). Therefore, the analysis of
the asymptotic stability of E3 can not be performed without specifying the choice
of the delay kernel ω1(θ).

5. Global Stability of Equilibria. Return to system (1) rewritten as (3), cen-
tered about one equilibrium. To prove the global stability we will use the following
results:

Theorem 5.1. Assume that a(·), b(·) are nonnegative continuous functions, a(0) =
b(0) = 0, lim

s→+∞
a(s) = +∞, and that V : C → < (C = C([−τ, 0],<n)) is continuous

and satisfies
V (φ) ≥ a(|φ(0)|), V̇(3)(φ) ≤ −b(|φ(0)|).

Then the solution x = 0 of (3) is uniformly stable, and every solution is bounded.
If in addition, b(s) > 0 for s > 0, then x = 0 is globally asymptotically stable; that
is, every solution of (3) approaches x = 0 as t → +∞.

If we set

g(S) =
f2(S)(f1(S)−D)

(S0 − S)(f2(S)−D)
, (26)

then we can prove the following:

Lemma 5.1. Assume that
λ2 > λ1. (27)

Then there exists a positive number c1 such that

sup
0<S<λ2

g(S) < c1 < inf
λ2≤S≤S0

g(S). (28)

Proof. We first examine the numerator of g(S). Let ψ(S) = f2(S)(f1(S)−D). This
quantity is positive in S = λ2; in fact, since (27) holds, then f1(λ2) > f1(λ1) = D.
Therefore, ψ(λ2) = D(f1(λ2)−D) > 0.

Furthermore, ψ(S) is negative in (0, λ1); in fact, if S < λ1, then f1(S) < f1(λ1) =
D and ψ(S) < 0. ψ(S) has a zero in λ1 and, if S > λ1, by considering the derivative
of ψ(S), we obtain

ψ′(S) = f ′2(S)(f1(S)−D) + f ′1(S)f2(S) > 0, S ∈ (λ1, S
0).

Therefore, ψ(S) > 0 in (λ1, S
0).
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Since ψ(S) has a unique zero in λ1 and since g(S) < 0 in (λ1, λ2), then instead
of (28) we need only show that

sup
0<S<λ1

g(S) < inf
λ2<S<S0

g(S). (29)

To prove (29) consider the function

w(S) = g(S)
S − λ2

S − λ1
.

(S−λ2) in the numerator removes the pole in g(S), and (S−λ1) in the denominator
removes the zero.

First of all we can show that w(S) is monotone increasing; in fact, by remem-
bering that f1(λ1) = f2(λ2) = D, we can write

w(S) = g(S)
S − λ2

S − λ1
=

f2(S)(f1(S)− f1(λ1)
(S0 − S)(S − λ1)

S − λ2

f2(S)− f2(λ2)

=
m2S

a2 + S

1
(S0 − S)

a1m1

(a1 + S)(a1 + λ1)
(a2 + S)(a2 + λ2)

a2m2

=
S

(S0 − S)(a1 + S)

[
a1m1(a2 + λ2)
a2(a1 + λ1)

]
.

Thus,

w(S) =
AS

(S0 − S)(a1 + S)
,

where

A =
[
a1m1(a2 + λ2)
a2(a1 + λ1)

]
> 0.

If we compute w′(S) we obtain

w′(S) =
Aa1S

0 + AS2

(S0 − S)2(a1 + S)2
> 0.

Then w(S) is monotone increasing. Moreover, consider the function
S − λ1

S − λ2
. It is

easy to check, by computing its derivative, that it is monotone decreasing. Fur-
thermore, from (27) we obtain

λ1(S0 − λ2) < λ2(S0 − λ1),

that is,
λ1

λ2
<

S0 − λ1

S0 − λ2
.

Hence,

sup
0<S<λ1

S − λ1

S − λ2
< inf

λ2<S<S0

S − λ1

S − λ2
.

Finally, since we can write

g(S) = w(S)
S − λ1

S − λ2
,

we obtain, by the monotone growth of w(S) and the properties of
S − λ1

S − λ2
, that

sup
0<S<λ1

g(S) < inf
λ2<S<S0

g(S),

and the proof is complete.
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Theorem 5.2. Assume that λ2 > λ1 and γ < inf
λ2≤S≤S0

g(S). Then the equilib-

rium E1 = (λ1, S
0 − λ1, 0, 0) is globally asymptotically stable in <4

B1
(<4

B1
= {x ∈

<4|x3, x4 ≥ 0 and xi > 0, i = 1, 2}).
Proof. Consider the function

V =
∫ S

λ1

N∗
1 (f1(ξ)−D)

S0 − ξ
dξ + D

∫ N1

N∗
1

ξ −N∗
1

ξ
dξ + αDN2 + αDp, (30)

where α > 0 is to be chosen and we have written N∗
1 for S0 − λ1. It follows that

V̇(1) =
N∗

1 (f1(S)−D)
(S0 − S)

Ṡ + D
N1 −N∗

1

N1
Ṅ1 + αDṄ2 + αDṗ

=
N∗

1 (f1(S)−D)
(S0 − S)

[
(S0 − S)D − f1(S)N1 − f2(S)N2

]
+ D

N1 −N∗
1

N1
N1

[f1(S) +−D − γp] + αDN2

[(
1− ∫ 0

−τ
kω1(θ)N1(t + θ)dθ

)
f2(S)−D

]
+

+αD
[
N2f2(S)

∫ 0

−τ
kω1(θ)N1(t + θ)dθ −Dp

]

= DN∗
1 (f1(S)−D)− f1(S)(f1(S)−D)N∗

1

(S0 − S)
N1 − f2(S)(f1(S)−D)N∗

1

(S0 − S)
N2

+DN1(f1(S)−D)−DN∗
1 (f1(S)−D)−D(N1 −N∗

1 )γp + αDN2f2(S)+
−αD2N2 − αD2p

=
[
αD(f2(S)−D)− f2(S)(f1(S)−D)N∗

1

(S0 − S)

]
N2+

(f1(S)−D)
[
D − f1(S)N∗

1

(S0 − S)

]
N1 −DN1γp−Dp(αD −N∗

1 γ).

We can write
V̇ = T1 + T2 + T3 + T4,

where the meaning of the letters T1, T2, T3, T4 is obvious. Clearly, T3 ≤ 0 since
N1 ≥ 0 and p ≥ 0. If f1(S) < D, then S < λ1, so

f1(S)N∗
1

(S0 − S)
<

f1(λ1)N∗
1

(S0 − λ1)
= D.

So, the first factor of T1 is negative, and the second is positive. If f1(S) > D, then
S > λ1, so

f1(S)N∗
1

(S0 − S)
>

f1(λ1)N∗
1

(S0 − λ1)
= D.

So, the first factor of T1 is positive, and the second is negative. Therefore, T1 ≤ 0.
About T4, we can see that it is negative if we choose α as follows:

α >
N∗

1 γ

D
. (31)

Now we want to show that T2 ≤ 0. We can write T2 = N2Φ(S); it is immediately
seen that Φ(λ2) < 0. Consider now S 6= λ2; then

Φ(S) = αD(f2(S)−D)− f2(S)(f1(S)−D)N∗
1

(S0−S)

= N∗
1 (f2(S)−D)

[
c1 − f2(S)(f1(S)−D)

(S0−S)(f2(S)−D)

]
,

where c1 =
αD

N∗
1

. Therefore, if α is positive, then c1 is positive. The aim is to

choose c1 so that if f2(S) > D, that is, S > λ2, then the term in square brackets
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is negative, and if f2(S) < D, i.e. S < λ2, then it is positive. To study the term in
square brackets, let us set

g(S) =
f2(S)(f1(S)−D)

(S0 − S)(f2(S)−D)
.

It holds that
lim

S→λ−2
g(S) = −∞ lim

S→λ+
2

g(S) = +∞.

Moreover,
lim

S→S0
g(S) = +∞ and g(0) = g(λ1) = 0.

Therefore, by using Lemma 5.1 we can choose c1 so that

sup
0<S<λ2

g(S) ≤ c1 ≤ inf
λ2≤S≤S0

g(S),

obtaining that T2 < 0 (see Figure 1).

Figure 1. Graph of g(S).

So, by considering condition (31), if we choose

max{γ, sup
0<S<λ2

g(S)} < c1 ≤ inf
λ2≤S≤S0

g(S),

then all the assumptions of Theorem 5.1 hold true for the Liapunov functional (30)
if we consider that V (φ) = V (φ(0)) := a(|φ(0)|), which is positive definite, and
V̇ (φ)|(1) = −b(|φ(0)|) where b(|φ(0)|) is positive definite. This completes the proof
for the global asymptotic stability of the equilibrium E1.

6. Numerical Simulations: Solver Details. First we observe that the com-
plexity of the system has not allowed us to compute stability switches of equilibria
through the Beretta-Kuang procedure [6]. Therefore, we will limit ourselves to pre-
senting some numerical simulations obtained by specifying the nature of the kernel
to illustrate the analytical results.
The simulations were obtained by using Matlab’s ODE15s solver and by changing
(1) in a finite-delay differential system.

Exponential delay kernel:
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Consider the exponential delay kernel

ω1(θ) =
{

βeαθ α, β ∈ <+, θ ∈ [−τ, 0]
0 θ ∈ < − [−τ, 0] .

We transform system (1) into an equivalent system of delay differential equations
(35) with a fixed delay τ . “Equivalent” means that such a new system has the same
equilibria and the same characteristic equation (regarding the original variables) as
the original system (1). Define

u(t) =
∫ 0

−τ

ω1(θ)N1(t + θ)dθ. (32)

By the transformation s = t + θ in (32), we obtain

u(t) =
∫ t

t−τ

ω1(s− t)N1(s)ds. (33)

Therefore,
du

dt
= ω1(0)N1(t)− ω1(−τ)N1(t− τ) +

∫ t

t−τ
∂ω1(s−t)

∂t N1(s)ds =

= βN1(t)− βe−ατN1(t− τ) +
∫ t

t−τ
∂
∂t (βeα(s−t))N1(s)ds =

= βN1(t)− βe−ατN1(t− τ)− αu(t).

(34)

Hence, system (1) is transformed into




Ṡ = (S0 − S)D − f1(S)N1 − f2(S)N2

Ṅ1 = N1 [f1(S)−D − γp]
Ṅ2 = N2 [(1− ku(t)) f2(S)−D]
ṗ = N2f2(S)ku(t)−Dp
u̇ = βN1 − βe−ατN1(t− τ)− αu,

(35)

with the following initial conditions for the original state variables:

S(t) = S(0) for t ∈ [−τ, 0];
N1(s) = φ(s) for s ∈ [−τ, 0];
N2(t) = N2(0) for t ∈ [−τ, 0];
p(t) = p(0) for t ∈ [−τ, 0].

(36)

Furthermore, we define at t = 0 the initial condition for u in (35) by

u(0) =
∫ 0

−τ

ω1(s)φ(s)ds. (37)

The equilibria of system (35) are the same as those of system (1); in fact, if we
consider the last equation of the following system,




(S0 − S)D − f1(S)N1 − f2(S)N2 = 0
N1 [f1(S)−D − γp] = 0
N2 [(1− kN1∆(τ)) f2(S)−D] = 0
f2(S)kN1N2∆(τ)−Dp = 0
βN1 − βe−ατN1(t− τ)− αu = 0,

(38)

we obtain
βN1(1− e−ατ ) = αu;

that is,

u = N1
β(1− e−ατ )

α
= N1∆(τ).
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By substituting this expression of u in the remaining equations of (38), we get




(S0 − S)D − f1(S)N1 − f2(S)N2 = 0
N1 [f1(S)−D − γp] = 0
N2 [(1− kN1∆(τ)) f2(S)−D] = 0
f2(S)kN1N2∆(τ)−Dp = 0,

which is exactly the original set of algebraic equations for equilibria of (1).
Moreover, with few calculations, it is easy to show that the characteristic equa-

tions of (35), corresponding to the equilibria, are the same of those of system (1).
In the four simulations performed, only the size of the delay has been changed,
whereas the set of initial conditions and the numerical values of the parameters

S0 = 1.86, D = 0.6, m1 = 1.45, m2 = 1.58, a1 = 2.39, a2 = 2.73, γ = 0.8,
β = 2 log 2, α = log 1.2, k = 0.4.

have been kept fixed.
In Figure 2a there are three boundary rest points; hypotheses of Theorem

4.1−iii. hold and E2 is locally asymptotically stable. In Figure 2b an interior
rest point appears, and both E1 and E2 are locally asymptotically stable (bistable
attractors).
Finally, in Figures 2c and 2d, according to the increasing of the size of delay, we
note that the same initial conditions are attracted by different boundary equilibria,
which proves that the basins of attraction of the asymptotic stable equilibria are
changing.

Figure 2. In graph (a), τ = 0.01; in (b), τ = 0.08; in (c), τ = 0.3;
and in (d), τ = 1.
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