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Abstract. The frequency-dependent (standard) form of the incidence is used
for the transmission dynamics of an infectious disease in a competing species
model. In the global analysis of the SIS model with the birth rate independent
of the population size, a modified reproduction number R1 determines the
asymptotic behavior, so that the disease dies out if R1 ≤ 1 and approaches
a globally attractive endemic equilibrium if R1 > 1. Because the disease-
reduced reproduction and disease-related death rates are often different in two
competing species, a shared disease can change the outcome of the competition.
Models of SIR and SIRS type are also considered. A key result in all of these
models with the frequency-dependent incidence is that the disease must either
die out in both species or remain endemic in both species.

1. Introduction. Population sizes of species are affected not only by ecological
interactions such as competition, predation, and parasitism, but also by the effects
of infectious diseases [13, 18, 23]. Infectious diseases are said to be of SIS type if an-
imals have no immunity after an infection, so that susceptibles move to the infective
class when infected and then back to the susceptible class after recovery. If there is
temporary immunity in a recovered class after an infection, then the disease is of
SIRS type. An SIR model is a special case of an SIRS model in which the immunity
is permanent, so that recovered animals never lose their immunity. Here we con-
sider SIS and SIRS modifications with disease-related deaths and disease-reduced
reproduction of the usual competing species model. For these models we show how
the infectious disease can affect the outcome of the interspecies competition.

The infection rate per unit time of susceptible animals through their contacts
with infectious animals is called the incidence of the disease. Let X(t) be the number
of susceptibles at time t, Y (t) be the number of infectives, and N(t) be the host
population size. Let β be the average number of adequate contacts (i.e., contacts
sufficient for transmission) of a susceptible animal per unit time. Since Y/N is the
proportion of animals that are infectious, βY/N is the average number of adequate
contacts with infectious animals per unit time of one susceptible. The number of
new cases per unit time (βY/N)X is the average number of adequate contacts with
infectious animals per unit time of all susceptibles. Hethcote [14, 15, 16, 17] calls
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this form, βXY/N , the standard incidence. Because it depends on the frequency
of infections Y/N , Begon et al. [3] called the form βXY/N frequency-dependent
incidence.

The mass action law ηXY , with η as a mass action coefficient, has also been
used for the incidence in infectious disease models [2]. In this case the parameter η
has no epidemiological interpretation, but comparing it with frequency-dependent
formulation shows that β = ηN , so that this form implicitly assumes that the con-
tact rate β is a linearly increasing function of population size. However, this linear
dependence is not supported by data, since the transmission between two animals
is determined primarily by the local interactions among animals, which are usually
independent of or only weakly dependent on the population size. Numerous stud-
ies have also found that frequency-dependent (standard) incidence is more realistic
than the mass action incidence [3, 8, 29]. Hethcote, Wang, and Li [19] gave careful
derivations of the frequency-dependent and mass action incidence for population
sizes and densities.

For two species let the contact rate βij be the average number of adequate
contacts of species i susceptible animals with species j animals per unit time (cf.
Hethcote [16, 17]). The fraction of animals in species j with size Nj that are
infectious is Yj/Nj , so that the average number of adequate contacts of one species
i susceptible animal with species j infectious animals per unit time is βijYj/Nj .
Since the number of species i susceptibles is Xi, the average number of adequate
contacts of species i susceptibles with species j infectious animals per unit time
is (βijYj/Nj)Xi; so, this is the number of new cases in species i due to contacts
with species j. Thus the frequency-dependent (standard) incidence, which is the
total number of new cases in species i due to contacts with their own species i and
the other species j, is given by [βiiYi/Ni + βijYj/Nj ]Xi. Hethcote, Wang, and Li
[19] showed that the frequency-dependent incidence in terms of species densities
has this same form. The mass-action incidence for two species is [ηiiYi + ηijYj ]Xi,
where ηij are mass-action coefficients for the interactions between species i and j
animals.

Models for two species which share a disease but do not compete have been
studied previously. Holt and Pickering [21], Begon et al. [5], and Greenman and
Hudson [12] found that two host SIS models with the mass action incidence can
have complicated behaviors such as one, two, or three infected coexistence equilibria
and one or more attractive periodic solutions. Hethcote, Wang, and Li [19] found
that similar models with frequency-dependent incidence have the classic endemic
model behavior, in which the disease dies out below the threshold and approaches
an endemic equilibrium above the threshold.

In their study of a competing species model with mass action incidence in which
one species was affected by a pathogen, Anderson and May [1] described how the
disease could influence the competition. A comprehensive survey of two host models
with a pathogen was given by Begon and Bowers [4]. In a thorough study of an SIS
competing species model with mass action incidence, density-independent death
rates, and disease-related deaths, Bowers and Turner [7] developed invadability
criteria to show how the forces of competition and infection combine. In a paper
on the cowpox virus in coexisting populations of bank voles and wood mice, Begon
et al. [6] found that frequency-dependent incidence was clearly superior. Venturino
[30] formulated competing species models with a disease in one species and both
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types of incidence; he found periodic solutions numerically in one model with mass
action incidence.

Tompkins, White, and Boots [28] used a variation of the model of Bowers and
Turner [7] with density-independent death rates and mass action incidence to study
the effects of a parapoxvirus in competing squirrel species in the United Kingdom.
Their model was SIR type for invading grey squirrels and SI type with disease-
related deaths for native red squirrels. Using parameters estimated from data, they
found that the invading grey squirrels eventually win the competition, and the
disease speeds up the process. They also used computer simulations to examine
the speed of the spatial spread of the grey squirrels into red squirrel territory.

The model considered here differs from previous models for a disease in two com-
peting species, because it uses the frequency-dependent incidence and the disease
can affect both species. The behaviors of an SIS model with logistic growth and a
competing species model are given in sections 2 and 3. After a general competing
species model with an SIS disease is formulated in section 4, we analyze this model
with birth and death rates independent of size in sections 5 and 6, respectively.
Results on an SIRS model with logistic growth are presented in section 7 and a
competing species model with an SIRS disease is formulated in section 8. This
model with size-independent birth rates is analyzed in section 9 and the results in
this paper are discussed in section 10.

2. The SIS model with logistic growth. In the SIS model with size-dependent
regulation of one species with disease-reduced reproduction and disease-related
deaths, the number of susceptibles is X(t) and the number of infectives is Y (t)
in host population with size N(t), so that N(t) = X(t) + Y (t). This SIS model
with logistic growth and frequency-dependent incidence βXY/N is

dN/dt =
[
a− χrN

K

]
[X + (1− f)Y ]−

[
b +

(1− χ)rN
K

]
N − ε0Y (2.1)

= r(1−N/K)N − (ε0 + af)Y + fχrY N/K

dX/dt =
[
a− χrN

K

]
[X + (1− f)Y ]−

[
b +

(1− χ)rN
K

]
X − βXY/N + γY,

dY/dt = βXY/N −
[
γ + b + ε0 +

(1− χ)rN
K

]
Y,

where a is the intrinsic per capita birth rate for susceptibles and f is the reduction
in birth rate due to the disease, so that a(1 − f) is the intrinsic per capita birth
rate for infectives. Here b is the intrinsic natural per capita death rate, r = a − b
is the positive intrinsic per capita net growth rate, χ is the convex combination
constant with 0 ≤ χ ≤ 1, K is the environmental carrying capacity, γ is the per
capita recovery rate, and ε0 is the per capita disease-related death rate. This SIS
model with frequency-dependent (standard) incidence, disease-related deaths, and
vertical transmission, but without disease-reduced reproduction, was studied by
Gao and Hethcote [11].

With no disease, the differential equation for N is the logistic differential equation
for restricted growth given by

dN/dt = [a− χrN/K]N − [b + (1− χ)rN/K]N
= r(1−N/K)N,
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where the first term is the birth rate, the second term is the death rate, and χ
is a convex combination parameter in the interval [0, 1]. Solutions with N(0) > 0
approach the carrying capacity K. For 0 < χ < 1, the per capita birth rate
a− χrN/K decreases and the per capita death rate b + (1− χ)rN/K increases as
the population size N increases. These size-dependent birth and death rates are
consistent with the effects of limited resources in a population. The birth rate is
independent of the population size when χ = 0, so that all of the size dependence
is in the per capita death rate, and the death rate is independent of size when
χ = 1. We consider the positively invariant subset of the first quadrant in XY
space with N < aK/χr, so that the birth rate is always positive. Since N ′ < 0
for N > K, all solution paths in the subset above approach, enter, or stay in the
subset with N ≤ K. Solution paths with N(0) > K which do not enter the region
N ≤ K in finite time have their omega limit sets on the N = K plane. Thus it
suffices to analyze solution paths in the subset of the first quadrant of XY space
with N = X + Y ≤ K.

The system (2.1) can be reduced to the following system of two equations by
using I = Y/N and X/N = 1− I:

dN/dt = [r(1−N/K)− (af + ε0)I + fχrIN/K]N, (2.2)

dI/dt = βI(1− I)− [γ + a + ε0 − (af + ε0)I − χr(1− fI)N/K]I.

This model is well posed in the positively invariant region D = {(N, I) : 0 ≤ N ≤
K, 0 ≤ I ≤ 1}. The behavior is governed by the three threshold quantities:

R2 = β/(γ + a + ε0 − χr), (2.3)

R1 = β/(γ + a + ε0),

φ =
r

(af + ε0)[1− (γ + b + ε0)/β]
,

where R2 ≥ R1. The asymptotic behaviors summarized in the table below were
proved in Hethcote, Wang, and Li [19].

Table 1. Asymptotic behaviors for the SIS logistic model
Cases Asymptotic behavior for large time

case 1: 1 ≥ R2 ≥ R1 N(0) > 0 ⇒ (N, I) → E2 = (K, 0)
case 2: R2 > 1 ≥ R1 N(0) > 0, I(0) > 0 ⇒ (N, I) → E4 = (N4, I4)
case 3: R1 > 1 & φ < 1 I(0) > 0 ⇒ (N, I) → E3 = (0, I3)
case 4: R1 > 1 & φ > 1 N(0) > 0, I(0) > 0 ⇒ (N, I) → E4 = (N4, I4)

The system always has the equilibrium points E1 = (0, 0) and E2 = (K, 0). If
R1 > 1, then the equilibrium point E3 = (0, I3) is on the boundary of D with

I3 =
β − (γ + a + ε0)
β − (af + ε0)

. (2.4)

If R2 > 1 and φ > 1, there is an equilibrium point E4 = (N4, I4) in the interior of D.
The intuitive explanation of case 2 in Table 1 is that the disease just barely remains
endemic since R2 > 1 ≥ R1, but the natural per capita growth rate r dominates
the per capita disease-induced death rate given by af + ε0 because φ > 1, so that
the population size goes to a steady state N4 that is less than the carrying capacity
K.

In case 3 the disease remains endemic since R2 > 1 and the per capita disease-
induced death rate given by af + ε0 overpowers the per capita natural growth rate



COMPETING SPECIES WITH INFECTIOUS DISEASE 223

r since φ < 1, so that the population is driven to extinction by the endemicity of
the disease. In case 4 the disease remains endemic since R2 > 1, and the per capita
disease-induced death rate given by af + ε0 is dominated by the natural per capita
growth rate r since φ > 1, so that the population size goes to a steady state N4

that is less than the carrying capacity K.

3. The competing species model. The usual model [10] for two species com-
peting for a limited resource such as food or habitat is

dN1/dt = r1[1− (N1 + α12N2)/K1]N1, (3.1)

dN2/dt = r2[1− (N2 + α21N1)/K2]N2,

where Ni is the number of individuals in species i, ri is the intrinsic per capita
growth rate of species i, and Ki is the environmental carrying capacity for species
i. The parameter αij gives the per capita inhibiting effect of species j on the
population growth rate of species i, as compared to the effect of species i on its
own population growth rate. One can interpret 1/Ki as the inhibition of species i
on its own growth and αij/Ki as the inhibition of species j on the growth of species
i.

This competing species model always has three equilibrium points, E0 = (0, 0),
E1 = (K1, 0), and E2 = (0,K2), on the boundary of the positively invariant first
quadrant. These boundary equilibria correspond to both species being absent, or
one species being absent while the other is at its carrying capacity. Solutions start-
ing on a positive axis approach the carrying capacity equilibrium on that axis. A
frequency-dependent phase plane analysis using nullclines yields four cases. In case
1, in which species 1 inhibits species 2 more that it inhibits itself (α21/K2 > 1/K1)
and species 2 inhibits itself more than it inhibits species 1 (1/K2 > α12/K1),
species 1 wins the competition and all paths with N1(0) > 0 approach the equi-
librium E1 = (K1, 0). In case 2, in which species 1 inhibits itself more that it
inhibits species 2 (1/K1 > α21/K2) and species 2 inhibits species 1 more than it
inhibits itself (α12/K1 > 1/K2), species 2 wins the competition and all paths with
N2(0) > 0 approach the boundary equilibrium E2 = (0,K2).

In case 3, in which each species inhibits the other more than it inhibits itself
(α21/K2 > 1/K1 and α12/K1 > 1/K2), the nullclines intersect at an unstable
saddle interior equilibrium E3 = (Ne

1 , Ne
2 ). In this case there is a separatrix curve

through the interior equilibrium and the origin with solutions starting below the
separatrix going to the equilibrium E1 = (K1, 0), and solutions starting above it
going to the boundary equilibrium E2 = (0,K2). Intuitively, whichever species is
initially dominant is the winner of the competition.

In case 4, in which each species inhibits itself more than it inhibits the other
species (1/K1 > α21/K2 and 1/K2 > α12/K1), the interior equilibrium is attrac-
tive, and all solutions starting with N1(0) > 0 and N2(0) > 0 approach this interior
equilibrium E3 = (Ne

1 , Ne
2 ). In this case the two species coexist and approach a

coexistence equilibrium. The interior equilibrium is found as the intersection of the
straight line nullclines N1 + α12N2 = K1 and N2 + α21N1 = K2. Thus

Ne
1 = (K1 − α12K2)/(1− α12α21),

Ne
2 = (K2 − α21K1)/(1− α12α21),

where the numerators and denominators are negative in case 3 and positive in case
4.
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4. Competing species with an SIS disease. The SIS model for two competing
host populations is

dN1/dt = r1(1− (N1 + α12N2)/K1)N1 − (ε10 + a1f1)Y1 (4.1)

+ f1χ1r1Y1(N1 + α12N2)/K1,

dX1/dt = (a1 − χ1r1(N1 + α12N2)
K1

)[X1 + (1− f1)Y1] + γ1Y1

− (β11Y1/N1 + β12Y2/N2)X1 − (b1 +
(1− χ1)r1(N1 + α12N2)

K1
)X1,

dY1/dt = (β11Y1/N1 + β12Y2/N2)X1

− (γ1 + b1 +
(1− χ1)r1(N1 + α12N2)

K1
+ ε10)Y1,

dN2/dt = r2(1− (N2 + α21N1)/K2)N2 − (ε20 + a2f2)Y2

+ f2χ2r2Y2(N2 + α21N1)/K2,

dX2/dt = (a2 − χ2r2(N2 + α21N1)
K2

)[X2 + (1− f2)Y2] + γ2Y2

− (β21Y1/N1 + β22Y2/N2)X2 − (b2 +
(1− χ2)r2(N2 + α21N1)

K2
)X2,

dY2/dt = (β21Y1/N1 + β22Y2/N2)X2

− (γ2 + b2 +
(1− χ2)r2(N2 + α21N1)

K2
+ ε20)Y2,

where the variables and parameter values are analogous to those in the SIS and
competing species models. We assume that the competing species do interact, so
that all contact rates βij including β12 and β21 are positive.

The system (4.1) can be reduced to the following system of four equations for
the population sizes and the infective fractions in them by using Xi = Ni − Yi and
Ii = Yi/Ni.

dN1/dt = [r1(1− (N1 + α12N2)/K1)− ε1I1 + f1χ1r1I1(N1 + α12N2)/K1]N1,
(4.2)

dI1/dt = (β11I1 + β12I2)(1− I1)

− [d1 − ε1I1 − χ1r1(1− f1I1)(N1 + α12N2)/K1]I1,

dN2/dt = [r2(1− (N2 + α21N1)/K2)− ε2I2 + f2χ2r2I2(N2 + α21N1)/K2]N2,

dI2/dt = (β21I1 + β22I2)(1− I2)

− [d2 − ε2I2 − χ2r2(1− f2I2)(N2 + α21N1)/K2]I2,

where ri = ai − bi, εi = εi0 + aifi, and di = γi + ai + εi0. The system (4.2) is
mathematically well posed in the four-dimensional region

D = {(N1, I1, N2, I2) : 0 ≤ Ni ≤ Ki, 0 ≤ Ii ≤ 1}. (4.3)

For equilibrium points of the system (4.2), it is easy to see that if one of the
equilibrium values Ie

i is zero, then the other Ie
j must also be zero. Thus, the disease

must either die out in both species or remain endemic in both species.

5. SIS model with size-independent birth rates. One simplification of the
model is to assume that the per capita birth rates are independent of size (χi = 0),
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so that the competing species model with an SIS infectious disease (4.2) becomes

dN1/dt = [r1(1− (N1 + α12N2)/K1)− ε1I1]N1, (5.1)

dI1/dt = (β11I1 + β12I2)(1− I1)− [d1 − ε1I1]I1,

dN2/dt = [r2(1− (N2 + α21N1)/K2)− ε2I2]N2,

dI2/dt = (β21I1 + β22I2)(1− I2)− [d2 − ε2I2]I2.

This system (5.1) uncouples, since the differential equations for the infective frac-
tions Ii are independent of the Ni variables. This I1I2 system

dI1/dt = (β11 − d1)I1 + β12I2(1− I1) + (ε1 − β11)I2
1 , (5.2)

dI2/dt = β21I1(1− I2) + (β22 − d2)I2 + (ε2 − β22)I2
2 .

was studied in Hethcote, Wang, and Li [19]. The feasible region for (5.2) is the unit
square D̂ = {(I1, I2) : 0 ≤ I1 ≤ 1, 0 ≤ I2 ≤ 1}. Because the off-diagonal entries in
the Jacobian matrix of the system (5.2) are positive, the system is cooperative in
D̂. Thus solutions must approach equilibria [20, 26]. The modified reproduction
number R1 for this model is the spectral radius ρ (the maximum absolute value of
an eigenvalue) of the next generation matrix [9, 16] given by

R1 = ρ

[
β11/d1 β12/d2

β21/d1 β22/d2

]
=

1
2





β11

d1
+

β22

d2
+

√(
β11

d1
− β22

d2

)2

+
4β12β21

d1d2



 .

(5.3)
From the trace and determinant of the Jacobian, we find that the equilibrium
Ê0 = (0, 0) is asymptotically stable if

β12β21 < (d1 − β11) (d2 − β22) , (5.4)

where the factors on the right side must be positive. This condition is equivalent
to R1 < 1.

The nullclines of (5.2) are

I2 =
I1 [d1− ε1I1 − β11(1− I1)]

β12 (1− I1)
, (5.5)

I1 =
I2 [d2− ε2I2−β22(1− I2)]

β21 (1− I2)
.

Because the second derivatives of the expressions above are positive, the first null-
cline is concave and the second is convex in D̂. These two nullclines pass through
the origin of D̂ and pass out the top and right side of D̂, respectively. Geometri-
cally we see that these nullclines do not intersect in D̂, if at the origin the slope
(d1 − β11)/β12 of the first nullcline is greater than the slope β21/(d2 − β22) of the
second nullcline, which is the same as condition (5.4). However, if the slope of the
first nullcline at the origin is less than the slope of the second nullcline, then the
nullclines do intersect inside D̂.

Thus, if R1 ≤ 1, then Ê0 = (0, 0) is the only equilibrium in D̂ and it is lo-
cally asymptotically stable. Because cooperativity implies monotonicity, all solu-
tion paths in D̂ must approach Ê0 = (0, 0). If R1 > 1, then the disease-free
equilibrium Ê0 = (0, 0) is unstable with a repulsive direction into D̂, since the
Perron Theorem implies that the spectral radius is a real positive eigenvalue and
the corresponding eigenvector has positive entries [22]. Moreover, R1 > 1 implies
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that there is a unique endemic equilibrium Êe = (Ie
1 , Ie

2) in D̂, which is globally
attractive in D̂ − {(0, 0)} by the monotonicity result above.

For the system (5.1), the limiting differential equations when R1 ≤ 1 are the
competing species model (3.1). By the last result in the appendix, the asymptotic
behavior of the system (5.1) is that the disease dies out and the behavior of the
two species corresponds to one of the four cases given in section 3. These four cases
with R1 ≤ 1 are cases 1 to 4.

If R1 > 1, so that the disease remains endemic, then the limiting differential
equations are a modified competing species system given by

dN1/dt = [(r1 − ε1I
e
1)(1− (N1 + α12N2)/K∗

1 )]N1,

dN2/dt = [(r2 − ε2I
e
2)(1− (N2 + α21N1)/K∗

2 )]N2,

where K∗
1 = (r1 − ε1I

e
1)K1/r1 and K∗

2 = (r2 − ε2I
e
2)K2/r2 are called modified

carrying capacities. Using the last result on limiting systems in the appendix,
we find that the asymptotic behavior of the system (5.1) is that Ii(t) → Ie

i as
t →∞ and the behavior of the two population sizes when K∗

1 and K∗
2 are positive

corresponds to one of the four cases given in section 3 with K1 and K2 replaced by
the modified carrying capacities K∗

1 and K∗
2 . Since K∗

1 < K1 and K∗
2 < K2, the

endemicity of the disease changes the parameter ranges for which the conditions of
each of the first four cases are satisfied, so that the asymptotic behavior of the two
species with an endemic disease may be given by a different case. Even if the case
does not change, the attractive equilibria are different.

In case 5, in which species 1 inhibits species 2 more than it inhibits itself
(α21/K∗

2 > 1/K∗
1 ) and species 2 inhibits itself more than it inhibits species 1

(1/K∗
2 > α12/K∗

1 ), species 1 wins the competition and all paths with N1(0) > 0
approach the equilibrium E∗

1 = (K∗
1 , Ie

1 , 0, Ie
2). Because of the endemicity of the

disease, the new equilibrium E∗
1 has a value K∗

1 that is lower than the original
carrying capacity K1. Thus the disease has decreased the equilibrium population
size of species 1.

In case 6, in which species 1 inhibits itself more than it inhibits species 2
(1/K∗

1 > α21/K∗
2 ) and species 2 inhibits species 1 more than it inhibits itself

(α12/K∗
1 > 1/K∗

2 ), species 2 wins the competition and all paths with N2(0) > 0
approach the boundary equilibrium E∗

2 = (0, Ie
1 ,K∗

2 , Ie
2), where K∗

2 < K2.
In case 7, in which each species inhibits the other more than it inhibits itself

(α21/K∗
2 > 1/K∗

1 and α12/K∗
1 > 1/K∗

2 ), the nullclines intersect at an unstable
saddle interior equilibrium E∗

3 = (N∗
1 , Ie

1 , N∗
2 , Ie

2). In this case, there is a separatrix
surface through the interior equilibrium and the origin, so that solutions starting on
one side of the separatrix go to the equilibrium E∗

1 = (K∗
1 , Ie

1 , 0, Ie
2), and solutions

starting on the other side go to the boundary equilibrium E∗
2 = (0, Ie

1 ,K∗
2 , Ie

2). As in
the competing species model in section 3, the coordinates of the interior equilibrium
are

N∗
1 = (K∗

1 − α12K
∗
2 )/(1− α12α21),

N∗
2 = (K∗

2 − α21K
∗
1 )/(1− α12α21).

In case 8, in which each species inhibits itself more than it inhibits the other
species (1/K∗

1 > α21/K∗
2 and 1/K∗

2 > α12/K∗
1 ), the interior equilibrium is at-

tractive, and all solutions starting with N1(0) > 0 and N2(0) > 0 approach this
coexistence equilibrium E∗

3 = (N∗
1 , Ie

1 , N∗
2 , Ie

2). In this case, the intersections of
the two straight line nullclines with the axes decrease, so that the new coexistence
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equilibrium E∗
3 = (N∗

1 , Ie
1 , N∗

2 , Ie
2) has lower values for the population sizes than

those of the original coexistence equilibrium E3 = (Ne
1 , Ne

2 ). Thus the endemicity
of the disease changes the parameter ranges leading to the case 4 and also reduces
the species sizes at the attractive coexistence equilibrium.

Note that there are three additional cases when one or both of the modified
carrying capacities K∗

1 and K∗
2 are nonpositive. In case 9, when K∗

1 > 0 and
K∗

2 ≤ 0 so that r2 ≤ ε2I
e
2 , the intrinsic per capita net growth rate r2 is dominated by

the per capita disease-induced death rate ε2I
e
2 . In this case, all paths with N1(0) > 0

approach the boundary equilibrium E∗
1 = (K∗

1 , Ie
1 , 0, Ie

2), where K∗
1 < K1. Hence,

the endemicity of the disease drives species 2 to extinction and reduces the carrying
capacity of species 1 to K∗

1 , so it does not drive species 1 to extinction.
In case 10, when K∗

1 ≤ 0 and K∗
2 > 0 so that r1 ≤ ε1I

e
1 , the intrinsic per

capita net growth rate r1 is dominated by the per capita disease-induced death
rate ε1I

e
1 . In this case all paths with N2(0) > 0 approach the boundary equilibrium

E∗
2 = (0, Ie

1 ,K∗
2 , Ie

2), where K∗
2 < K2. Thus the endemicity of the disease drives

species 1 to extinction and reduces the carrying capacity of species 2 to K∗
2 , so it

does not drive species 2 to extinction.
In case 11, when K∗

1 ≤ 0 and K∗
2 ≤ 0, both intrinsic per capita net growth

rates are dominated by their per capita disease-induced death rates. In this case
all paths with N1(0) ≥ 0 and N2(0) ≥ 0 approach the boundary equilibrium E∗

0 =
(0, Ie

1 , 0, Ie
2). Thus the endemicity of the disease drives both species to extinction.

6. SIS model with size-independent death rates. If the per capita death
rates are independent of size (χi = 1) and there is no reduction in the birth rate of
infectives (fi = 0), then the competing species model with an SIS infectious disease
(4.2) becomes

dN1/dt = [r1(1− (N1 + α12N2)/K1)− ε1I1]N1, (6.1)

dI1/dt = (β11I1 + β12I2)(1− I1)− [d1 − ε1I1 − r1(N1 + α12N2)/K1]I1,

dN2/dt = [r2(1− (N2 + α21N1)/K2)− ε2I2]N2,

dI2/dt = (β21I1 + β22I2)(1− I2)− [d2 − ε2I2 − r2(N2 + α21N1)/K2]I2.

This model is similar to the model used in Bowers and Turner [7], except that they
used mass action incidence instead of frequency-dependent incidence.

Recall from section 4 that the disease must either die out in both species or
remain endemic in both species. When the disease dies out, the four equilib-
ria are the trivial equilibrium E0 = (0, 0, 0, 0), equilibria E1 = (K1, 0, 0, 0) and
E2 = (0, 0,K2, 0), in which one species wins, and the coexistence equilibrium
E3 = (Ne

1 , 0, Ne
2 , 0). The equilibrium sizes K1, K2, Ne

1 , and Ne
2 are the same

as in the competing species model in section 3. The parameter ranges for the
cases in Table 2 are the same as those for the competing species model in sec-
tion 3. Thus, in case 1 species 1 inhibits species 2 more that it inhibits itself
(α21/K2 > 1/K1) and species 2 inhibits itself more than it inhibits species 1
(1/K2 > α12/K1). In this case, in the competing species model in section 3, species
1 always wins. But in this model with an SIS disease, species 1 wins if condition 1
is satisfied, where condition 1 is β11 − d1 + r1 + β22 − d2 + r2α21K1/K2 < 0 and
(β11−d1+r1)(β22−d2+r2α21K1/K2) > β12β21. If condition 1 is not satisfied, then
equilibrium E1 = (K1, 0, 0, 0) is unstable, so that the disease may remain endemic.

In case 2, species 1 inhibits itself more that it inhibits species 2 (1/K1 > α21/K2)
and species 2 inhibits species 1 more than it inhibits itself (α12/K1 > 1/K2). Case 2
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is the symmetric analogue of case 1, in which species 2 wins in the competing species
model in section 3. This also occurs in the model with an SIS disease if condition
2 is satisfied, where condition 2 is β11 − d1 + r1α12K2/K1 + β22 − d2 + r2 < 0 and
(β11−d1+r1α12K2/K1)(β22−d2+r2) > β12β21. If condition 2 is not satisfied, then
equilibrium E2 = (0, 0,K2, 0) is unstable, so that the disease may remain endemic.

In case 3 in Table 2, each species inhibits the other more than it inhibits itself
(α21/K2 > 1/K1 and α12/K1 > 1/K2). In this case, in the competing species
model in section 3, the boundary equilibria E1 and E2 are both stable and there
is a separatrix through the unstable saddle interior equilibrium, so that solution
paths on one side of the separatrix go to one boundary equilibrium and those on
the other side go to the other boundary equilibrium. This also occurs in the model
with an SIS disease if conditions 1 and 2 are both satisfied. If both are not satisfied,
then the disease may remain endemic.

In case 4, each species inhibits itself more than it inhibits the other species
(1/K1 > α21/K2 and 1/K2 > α12/K1). In this case, both boundary equilibria
E1 and E2 are always unstable. In the competing species model in section 3,
there is a globally stable interior, coexistence equilibrium. The equilibrium E3 =
(Ne

1 , 0, Ne
2 , 0) is locally asymptotically stable in the model with an SIS disease if

condition 3 is satisfied, where condition 3 is β11 − d1 + r1 + β22 − d2 + r2 < 0 and
(β11 − d1 + r1)(β22 − d2 + r2) > β12β21. If condition 3 is not satisfied, then the
disease may remain endemic.

Table 2. Local stabilities of the disease-free equilibria
case 1 case 2 case 3 case 4

E0 unstable unstable unstable unstable
E1 stable if cond 1 unstable stable if cond 1 unstable
E2 unstable stable if cond 2 stable if cond 2 unstable
E3 not in region not in region unstable stable if cond 3

It was shown in section 4 that the disease must either die out in both species or
remain endemic in both species. Thus, when all of the equilibria without disease
in Table 2 are unstable or not in the region, we expect that the disease remains
endemic in both species. Equilibria with endemic disease in both species are given
in Table 3, where E4 = (0, I4

1 , 0, I4
2 ), E5 = (K5

1 , I5
1 , 0, I5

2 ), E6 = (0, I6
1 ,K6

2 , I6
2 ), and

E7 = (N7
1 , I7

1 , N7
2 , I7

2 ). As in the model in section 5, the modified carrying capacities
are Km

i = (ri − εiI
m
i )Ki/ri for m = 5, 6, or 7, and the interior equilibrium E7 has

coordinates given by

N7
1 = (K7

1 − α12K
7
2 )/(1− α12α21),

N7
2 = (K7

2 − α21K
7
1 )/(1− α12α21).

Conditions are given in Table 3 for the existence of the four equilibria; these are
similar to cases 1 to 4 in section 5. Determining the local stability of these four
endemic equilibria seems to be mathematically intractable, so that the complete
global behavior is not known. However, the results in the tables give insight by
providing conditions which determine when the disease dies out or remains endemic
in both species. We expect that the behavior of this model with size-independent
death rate would be similar to the behavior of the model with size-independent
birth rate in section 5. For example, when the modified carrying capacities Km

i are
not positive, then we expect behavior similar to cases 9, 10, and 11 in section 5.
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Table 3. Conditions for the existence of endemic equilibria
Equilibria Conditions for existence

E4 β11 − d1 > 0 or β22 − d2 > 0 or (β11 − d1)(β22 − d2) < β12β21

E5 K5
1 > 0 and condition 1 is not satisfied

E6 K6
2 > 0 and condition 2 is not satisfied

E7 N7
1 > 0, N7

2 > 0, and condition 3 is not satisfied

7. The SIRS model with logistic growth. Consider the SIRS model for one
population with size-dependent regulation, frequency-dependent incidence, and
disease-related deaths, but without disease-reduced reproduction. The host pop-
ulation with size N(t) has X(t) susceptibles, Y (t) infectives, and Z(t) individuals
who are removed with temporary immunity, so that N(t) = X(t) + Y (t) + Z(t).
This SIRS model with logistic growth is

dN/dt =
[
a− χrN

K

]
N −

[
b +

(1− χ)rN
K

]
N − ε0Y (7.1)

= r(1−N/K)N − ε0Y

dX/dt =
[
a− χrN

K

]
N − βXY/N −

[
b +

(1− χ)rN
K

]
X + δZ,

dY/dt = βXY/N −
[
γ + ε0 + b +

(1− χ)rN
K

]
Y,

dZ/dt = γY −
[
δ + b +

(1− χ)rN
K

]
Z,

where a is the intrinsic per capita birth rate for susceptibles, b is the intrinsic
natural per capita death rate, r = a − b is the positive intrinsic per capita net
growth rate, χ is the convex combination constant with 0 ≤ χ ≤ 1, K is the
environmental carrying capacity, ε0 is the per capita disease-related death rate, γ
is the per capita recovery rate, and δ is the per capita rate of loss of temporary
infection-induced immunity. This SIRS model with different notation was studied
by Gao and Hethcote [11]. As in the SIS model, it suffices to analyze solution paths
in the subset of the first octant of XY Z space with N = X + Y + Z ≤ K.

The model (7.1) can be reduced to the following system of three equations for
the host population size, the infective fraction I, and the removed fraction R by
using I = Y/N and R = Z/N , and X/N = 1− I −R.

dN/dt = [r(1−N/K)− ε0I]N, (7.2)

dI/dt = βI(1− I −R)− [γ + a + ε0 − ε0I − χrN/K]I,

dR/dt = γI − [δ + a− ε0I − χrN/K]R.

This model is well posed in the positively invariant region

D = {(N, I, R) : 0 ≤ N ≤ K, I ≥ 0, R ≥ 0, I + R ≤ 1}.
This SIRS model has the same threshold quantities R2 = β/(γ + a + ε0 − χr) and
R1 = β/(γ + a + ε0) as the SIS model (2.3), but the net growth threshold is now

φ =
r

ε0[1− (γ + b + ε0)/β]

(
1 +

γ

δ + b

)
.

The asymptotic behaviors are summarized in the table below. All results in the
table were proved globally when the birth rate is size-independent (χ = 0). For
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χ > 0, global stability was proved in case 1, and local asymptotic stabilities of the
attractive equilibria were proved in the other cases.

Table 4. Asymptotic behaviors for the SIRS logistic model

Cases Asymptotic behavior for large time
case 1: 1 ≥ R2 ≥ R1 N(0) > 0 ⇒ (N, I,R) → E2 = (K, 0, 0)
case 2: R2 > 1 ≥ R1 N, I > 0 at 0 ⇒ (N, I, R) → E4 = (N4, I4, R4)
case 3: R1 > 1 & φ < 1 I(0) > 0 ⇒ (N, I,R) → E3 = (0, I3, R3)
case 4: R1 > 1 & φ > 1 N, I > 0 at 0 ⇒ (N, I, R) → E4 = (N4, I4, R4)

8. Competing species with an SIRS disease. The SIRS model for two com-
peting species with size-dependent regulation, frequency-dependent incidence, and
disease-related deaths, but without disease-reduced reproduction is

dN1/dt = r1(1− (N1 + α12N2)/K1)N1 − ε10Y1, (8.1)

dX1/dt = (a1 − χ1r1(N1 + α12N2)
K1

)N1 − (β11Y1/N1 + β12Y2/N2)X1

− (b1 +
(1− χ1)r1(N1 + α12N2)

K1
)X1 + δ1Y1,

dY1/dt = (β11Y1/N1 + β12Y2/N2)X1

− (γ1 + b1 +
(1− χ1)r1(N1 + α12N2)

K1
+ ε10)Y1,

dZ1/dt = γ1Y1 −
[
δ1 + b1 +

(1− χ1)r1(N1 + α12N2)
K1

]
Z1,

dN2/dt = r2(1− (N2 + α21N1)/K2)N2 − ε20Y2,

dX2/dt = (a2 − χ2r2(N2 + α21N1)
K2

)N2 − (β21Y1/N1 + β22Y2/N2)X2

− (b2 +
(1− χ2)r2(N2 + α21N1)

K2
)X2 + δ2Y2,

dY2/dt = (β21Y1/N1 + β22Y2/N2)X2

− (γ2 + b2 +
(1− χ2)r2(N2 + α21N1)

K2
+ ε20)Y2,

dZ2/dt = γ2Y2 −
[
δ2 + b2 +

(1− χ2)r2(N2 + α21N1)
K2

]
Z2,

where the variables and parameter values are similar to those in the one-population
model. When δ1 and δ2 are zero, the immunity is permanent, so that the model is
of SIR type.

The system (8.1) can be reduced to the following system of six equations for the
host population sizes, the infective fractions, and the removed fractions by using
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Ii = Yi/Ni and Ri = Zi/Ni, and Xi/Ni = 1− Ii −Ri:

dN1/dt = [r1(1− (N1 + α12N2)/K1)− ε10I1]N1, (8.2)

dI1/dt = (β11I1 + β12I2)(1− I1 −R1)

− [d1 − ε10I1 − χ1r1(N1 + α12N2)/K1]I1,

dR1/dt = γ1I1 − [δ1 + a1 − ε10I1 − χ1r1(N1 + α12N2)/K1] R1,

dN2/dt = [r2(1− (N2 + α21N1)/K2)− ε20I2]N2,

dI2/dt = (β21I1 + β22I2)(1− I2 −R2)

− [d2 − ε20I2 − χ2r2(N2 + α21N1)/K2]I2,

dR2/dt = γ2I2 − [δ2 + a2 − ε20I2 − χ2r2(N2 + α21N1)/K2] R2,

where ri = ai − bi, and di = γi + ai + εi0. The system (8.2) is analyzed in the
six-dimensional region

D = {(N1, I1, R1,N2, I2, R2) : 0 ≤ Ni ≤ Ki, Ii ≥ 0, Ri ≥ 0, Ii + Ri ≤ 1}. (8.3)

This model with frequency-dependent incidence is similar to the model of Tompkins,
White, and Boots [28], but they used mass action incidence and size-independent
death rates.

9. SIRS model with size-independent birth rates. If the per capita birth
rates are independent of the population sizes (χi = 0), then the competing species
model with an SIRS infectious disease (8.2) becomes

dN1/dt = [r1(1− (N1 + α12N2)/K1)− ε10I1]N1, (9.1)

dI1/dt = (β11I1 + β12I2)(1− I1 −R1)− [d1 − ε10I1]I1,

dR1/dt = γ1I1 − [δ1 + a1 − ε10I1]R1,

dN2/dt = [r2(1− (N2 + α21N1)/K2)− ε20I2]N2,

dI2/dt = (β21I1 + β22I2)(1− I2 −R2)− [d2 − ε20I2]I2,

dR2/dt = γ2I2 − [δ2 + a2 − ε20I2]R2.

In this case the equations for I1, R1, I2, and R2 are independent of N1 and N2, so
that this four-dimensional subsystem uncouples from the original six-dimensional
system (9.1). The feasible region for the subsystem is D̂ = {(I1, R1, I2, R2) : Ii ≥
0, Ri ≥ 0, Ii + Ri ≤ 1}. For equilibrium points of the subsystem, it is easy to see
that if one of the equilibrium values Ie

i is zero, then Re
i = 0, Ie

j = 0, and Re
j = 0.

Thus, the disease must either die out in both species or remain endemic in both
species.

The Jacobian at the equilibrium Ê0 = (0, 0, 0, 0) has two negative eigenvalues,
−(δ1 +a1), −(δ2 +a2), and two eigenvalues that are roots of the quadratic equation

λ2 − (β11 − d1 + β22 − d2)λ + (β11 − d1)(β22 − d2)− β12β21 = 0.

This quadratic equation is the same as the characteristic equation for the two-
dimensional SIS model in section 5, so that it has the same modified reproduction
number R1 given by (5.3). Thus the equilibrium Ê0 = (0, 0, 0, 0) is locally asymp-
totically stable if R1 ≤ 1. For solutions starting near Ê0, the limiting differential
equations for N1 and N2 are the competing species model (3.1). Hence the last
result in the appendix implies that for R1 ≤ 1, the local asymptotic behavior of
the system (9.1) is that the disease dies out and the behavior of the two species
corresponds to one of the four competing species cases given in section 3.
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In looking for interior equilibria for this model, we have Ri = γiIi/(δi+ai−εi0Ii),
so that I1 and I2 must satisfy

I2 =
I1 (d1− ε10I1)

β12 [1− I1 − γ1I1/(δ1 + a1 − ε10I1)]
− β11I1

β12
, (9.2)

I1 =
I2 (d2− ε20I2)

β21 [1− I2 − γ2I2/(δ2 + a2 − ε20I2)]
− β22I2

β21
.

Unfortunately, these curves do not have the nice monotonic behavior that was
obtained for the SIS model (5.1) with size-independent birth rates, so that there
can be more than one interior equilibrium point. Analysis of the global behavior of
this model seems to be mathematically intractable.

10. Discussion. In our analyses of competing species models with an infectious
disease of SIS, SIR, or SIRS type, in which the transmission is governed by the
frequency-dependent incidence, we obtain the classic endemic model behavior.
Specifically, the disease either dies out in both species or remains endemic in both
species. For the SIS model in section 5 with birth rates that are independent of
species population sizes, a modified reproduction number R1 determines the asymp-
totic behavior, so that the disease dies out if R1 ≤ 1 and approaches a globally
attractive endemic equilibrium if R1 > 1. When the disease dies out, the four usual
competing species outcomes (species 1 wins; species 2 wins; stable coexistence; win-
ner depends on initial conditions) are possible. These four outcomes with different
equilibrium values are also possible when the disease remains endemic, but there is
another possible outcome, in which the disease-related deaths and disease-reduced
reproductions for the endemic disease drive one or both populations to extinction.
Inequalities involving the parameters are given that determine which outcome oc-
curs in the competition when the disease remains endemic.

The inequalities for the seven endemic cases in section 5 are not the same as the
inequalities for the four disease-free cases. Thus, in our models a shared disease
not only can change the equilibrium values, but also can change the outcome of
the competition. For example, a disease could change the outcome from the winner
being dependent on the initial conditions to one species winning. Or a disease that
is more harmful to a superior competitor could allow the coexistence or dominance
of an otherwise inferior competitor. Bowers and Turner [7] cite the following two
instances in which a disease has a greater effect on one of the competing species, so
that the winning species is switched. Park [24] found that the flour beetle Tribolium
castaneum usually wins a competition in a culture with the flour beetle Tribolium
confusum. But the sporozoan parasite, Adelina triboli, has a greater negative im-
pact on Tribolium castaneum, so if the shared culture contains the parasite, then
Tribolium confusum usually wins. Sibma et al. [25] also found winner reversal in
competing oat and barley plants when a root-feeding nematode, Heterodera ame-
nae, was introduced. In the case of introduced grey squirrels invading the territory
of native red squirrels in the United Kingdom, the modeling of Tompkins, White,
and Boots [28] suggests that the parapoxvirus, which has a harmful effect on red
squirrels, has sped the replacement of the red squirrels by grey squirrels.

One important conclusion of this paper is that the form of the disease incidence
strongly affects the asymptotic behavior of a competing species model. In the
competing species model of Bowers and Turner [7] formulated using the mass action
incidence, the disease could remain endemic in one species but die out in the other



COMPETING SPECIES WITH INFECTIOUS DISEASE 233

species, even though the contact rates between the two species were positive. This
behavior does not occur in our SIS competing species models formulated with the
frequency-dependent (standard) incidence, since the disease either dies out in both
species or remains endemic in both species. Because the contact rates β12 and β21

between the species are positive, it intuitively seems reasonable that infectives in
one species would infect some susceptibles in the other species, so that endemicity
of the disease in one species would imply endemicity in the other species. The
form of the incidence used can also determine whether periodic solutions occur in
a model. Periodic solutions were found numerically by Venturino [30] in an SIS
competing species model formulated with the mass action incidence for the disease
transmission. In contrast, our SIS competing species model with the frequency-
dependent incidence in section 5 never has periodic solutions.

Appendix. Stability results using limit systems. Consider the following
systems:

.
x = f(t, x), (A1)

.
y = g(y), (A2)

where f and g are continuous and locally Lipschitz in x in Rn, and solutions exist
for all positive time. Equation (A1) is called asymptotically autonomous with limit
system (A2) if f(t, x) → g(x) as t → ∞ uniformly for x in Rn. Thieme [27]
considered the situation in which e is a locally asymptotically stable equilibrium
of (A2) and ω is the ω-limit set of a forward-bounded solution x(t) of (A1). If ω
contains a point y0 such that the solution of (A2) with y(0) = y0 converges to e as
t →∞, then ω = {e}, that is, x(t) → e as t →∞. Thus, it follows that if solutions
of the system (A1) are bounded and the equilibrium e of the limit system (A2) is
globally asymptotically stable, then any solution x(t) of the system (A1) satisfies
x(t) → e as t →∞.
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